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The intestinal epithelium represents a critical barrier protecting the host against diverse luminal noxious agents, as well as
preventing the uncontrolled uptake of bacteria that could activate an immune response in a susceptible host. The epithelial
monolayer that constitutes this barrier is regulated by a meshwork of proteins that orchestrate complex biological function such as
permeability, transepithelial electrical resistance, and movement of various macromolecules. Because of its key role in maintaining
host homeostasis, factors regulating barrier function have attracted sustained attention from the research community. This paper
will address the role of bacteria, bacterial-derived metabolism, and the interplay of dietary factors in controlling intestinal barrier

function.

1. Introduction

The gastrointestinal tract (GI) from the mouth to the rectum
is lined by a single layer of cells that provides both phys-
ical protection from the potentially irritant and antigenic
substances present in the luminal compartment and also
performs essential biological functions such as absorption,
secretion, and transport of various nutrients and water. In the
lower GI tract, the intestine is divided into two distinctive
anatomical sections: the small and large intestines. Impor-
tantly, the intestinal epithelium is constantly in a self-renewal
state where proliferative stem-cell-containing crypts generate
various specific cell lineages, namely, enterocytes, enteroen-
docrine cells, Paneth cells, and goblet cells. Biological events
regulating intestinal epithelial cell proliferation, differentia-
tion, migration, and survival are all implicated in the control
of intestinal barrier function. Although, the distribution and
ratio of these cells along the GI tract vary, collectively they
protect the host against luminal contents; this single layer of

cells forms a tight barrier preventing access of noxious sub-
stances to the underlining abundant immune cells. Moreover,
the intestine is home to an estimated 10'* bacteria, termed the
gut microbiota, which surpasses by a factor of 10 the estimated
10"* human cells. It is essential for host homeostasis to prevent
an unregulated uptake/translocation of this microbiome, and
the maintenance of an intact epithelial barrier plays a pivotal
role in this function. There is significant interest in identifying
factors and conditions influencing intestinal barrier function
as these could have a profound impact on pathologies such as
inflammatory bowel diseases (IBD) and colorectal cancer.
The intestinal epithelium evolved in a unique environ-
ment where dietary metabolites, bacteria, and bacterial-
derived metabolites are omnipresent. This environment likely
provides a synergistic interaction between this tripartite that
potentially influences each component. For example, the
epithelium impacts microbial communities by producing
various mucin products and antimicrobial factors that limit
bacterial colonization and adherence. In addition, bacteria
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provide, as byproducts of their metabolism, various com-
pounds (essential vitamins, antioxidants, short-chain fatty
acid (SCFA), ect.) that impact host homeostasis [1, 2]. Finally,
composition of dietary intake can also have significant
impact on both the gut epithelial barrier and the bacterial
communities [3-5].

In this paper we focus on providing an overview of the
latest emerging research that attempts to unify elements of
these three fields: intestinal epithelial barrier, microbiome,
and dietary intake—specifically, how these interact and
modulate one another. We will discuss emerging studies
into the molecular effects of short-chain fatty acids, their
production by bacteria through intake of prebiotic fiber and
resistant starches, and emerging details on probiotics and
their mechanisms of action.

2. The Intestinal Barrier

The mucosa surrounding the lumen forms a barrier to the
microbiome and is comprised of a single layer of epithelial
cells. An intact barrier is a prerequisite for normal health,
and rapid resealing after injury is essential for prevention
of disease [6, 7]. The epithelial barrier has the unenviable
task of confining the microbiome and any potentially harmful
substances to the lumen while regulating the flow of solutes,
nutrients, and ions into the underlying mucosa [8, 9]. Trans-
fer through an intact epithelium occurs by two routes: (1)
across the apical plasma membrane via specialized channels
(transcellular) and (2) through the paracellular space between
epithelial cells via pores created by the paracellular junc-
tion proteins. The intercellular junctions consist of Zonula
Occludens (tight junctions (TJs)) and Zonula Adherens (AJs)
collectively known as the apical junction complex (AJC),
gap junctions, and Desmosomes [10]. AJC formation confers
cell polarity and selective barrier permeability. Maintaining
barrier homeostasis requires the coordination of (1) the TJ
proteins, (2) the actin cytoskeleton, (3) endocytosis, and
(4) intracellular signaling pathways. In addition to these
well-orchestrated processes, the commensal bacteria play an
active role in maintaining host barrier homeostasis, likely by
regulating cell renewal, promoting wound healing repair, and
reorganizing the T7s.

Of all the transmembrane proteins (claudins, occludin,
MarvelD3, JAM-A, tricellulin and lipolysis-stimulated lipo-
protein receptor, LSR) [11-13], claudins determine the selec-
tive permeability of the barrier. This is achieved by different
patterns of charged amino acids in the extracellular loops
of individual claudin proteins, which interact to generate
different sized pores through which solute transfer occurs
[14-17].

While TJ stability is required for maintenance of barrier
integrity, TJ formation has to be dynamic to accommodate
intestinal epithelial cell turnover that occurs every 4-5 days
[18]. To this end, TJ proteins are continuously internalized
and recycled back to the plasma membrane via endocytosis.
Under normal physiological conditions, the macroscopic
renewal of TJs involves continuous strand breakage and refor-
mation involving clathrin-mediated endocytosis [19, 20]. In
contrast, claudins are recycled via a mechanism similar to that
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used for gap junction internalization, where T] membranes
are endocytosed together into one of the adjoining cells [21].
During internalization, the claudins separate from other TJ]
proteins and generate claudin-enriched vesicles, which have
the potential to regulate the claudin composition of TJs.

TJ turnover and claudin expression can also be mod-
ulated by cytokines as a plausible mechanism for neutro-
phil migration across epithelial barriers [22]. In particular,
TNF increased paracellular permeability in vitro by claudin
downregulation [23]. Furthermore, cytokine-induced inter-
nalization of TJ] proteins can be blocked in vitro using
inhibitors of clathrin-mediated endocytosis [20]. T] recycling
can also be hijacked by pathogenic bacteria (e.g., enteropatho-
genic E. coli, H. pylori, and C. difficile) [24]. Bacterial-
induced inflammation also increases claudin internalization
and increases permeability [25, 26]. Macropinocytosis is
another route in which TJ proteins can be internalized [27]
and colocalize with markers of early and recycling endo-
somes. These data suggest a plausible mechanism for rapid
redistribution of protein back to the TJ, sealing the epithelial
barrier after an inflammatory insult has subsided [28].

Physiological regulation of barrier homeostasis relies on
tightly controlled signal transduction pathways that converge
on the cytoplasmic T] proteins [29-36]. The cytoplasmic
TJ proteins (ZO-1, -2, and -3; cingulin; and afadin) link
the transmembrane proteins to the actin cytoskeleton and
also act as scaffolds for major signaling complexes [29, 30,
37-39]. Phosphorylating components of the cytoskeleton,
namely, myosin light chain (MLC) via myosin light chain
kinase (MLCK) or Rho-associated kinase (ROCK), cause it
to contract, which separates the T] and increases paracel-
lular permeability [28, 40-42]. In addition to the physical
separation of the T], ROCK compromises barrier integrity by
increasing endocytosis of TJ proteins [28]. Current opinion
suggests regulation of TJs is a delicate balance between
interacting networks incorporating protein kinase C (PKC),
protein kinase A (PKA), mitogen-activated protein kinases
(MAPK), and phosphoinositide 3-kinase (P13-K) [42-45].

Though regulation of epithelial cell-cell junctions is an
important factor for maintenance of homeostasis, a func-
tional epithelium also requires regulation of IEC survival
[46]. Differentiated cells traveling up from the crypt base
(enterocytes, enteroendocrine cells, and goblet cells) to the
villi are thought to die from anchorage-independent death
(anoikis). However, recent findings show that at least a
part of these sloughed-off cells can survive for a time after
being evicted, giving credence to the hypothesis that these
cells are sloughed off by simple lack of space due to cell
overcrowding [47]. Additionally, apoptosis was believed to
be the main regulator of intestinal epithelial cell numbers
[48], given the strong in vivo staining patterns of caspase-3
in the gastrointestinal epithelium [49] and studies correlating
caspase-3 and apoptosis in IECs shed from the intestinal
monolayer [50, 51]. Mounting evidence supports, however,
that the recently described necroptosis, or highly regulated
programmed necrosis, is another active pathway that appears
to regulate the intestinal epithelium homeostasis in response
to different stimuli, including TNF-« which can also activate
the apoptotic pathway [52-54]. Though born with seemingly
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normal epithelium, mice with the IEC-specific deletion of
either caspase-8 or of Fas-associated protein with death
domain (FADD), two proteins involved in cell death, quickly
developed postnatal spontaneous phenotypes. IEC-specific
deletion of caspase-8, for example, resulted in development
of spontaneous ileitis with an 80% penetrance and was found
to be responsible for TNF-«-induced necroptosis [52]. Mice
with IEC-specific deletion of FADD showed reduced weight,
diarrhea, and the development of spontaneous colitis, and
the IECs of which were shown to have undergone necrotic
cell death not apoptosis [55]. These findings indicate that
numerous pathways regulate various aspects of IEC survival,
a critical biological process for intestinal barrier function.

It is clear that alterations in normal signal transduc-
tion pathways that impact barrier homeostasis (prolifer-
ation/apoptosis/necroptosis) result in unregulated passage
of luminal bacteria across the epithelium and subsequent
aberrant activation of the mucosal immune system, leading to
inflammation [40, 56, 57]. Increasing evidence also indicates
that barrier function and its complex regulatory network are
influenced by the microbiota and dietary components, both
directly through endogenously produced microbial products,
as well as indirectly through the metabolites in the host diet.

3. Microbial Products and the Intestinal
Epithelial Barrier

A wide array of pattern recognition receptors (PRR) are
implicated in the sensing/detection of various microbial
structures such as membrane components, nucleic acids, and
motility apparatuses [58].

Toll-like receptors (TLRs) and Nod-like receptors (NLRs)
are probably the most studied PRRs in the intestine, and
their contribution to barrier function was investigated using
various models of intestinal injury [59-61]. For example,
TLR2 signaling through PKC is essential to enhance ZO-
l-associated barrier function in intestinal epithelial cells
following dextran-sulfate-sodium (DSS) exposure [62]. In
addition, TLR4 and the signaling protein MyD88 have been
shown to play a beneficial role in wound healing responses
and restoration of barrier integrity in DSS-induced acute
injury [63]. In addition, deletion of signaling molecules
downstream of TLRs such as nuclear factor kappa B (NF-
xB) essential modulator (NEMO), the NF-«B transcriptional
subunit RelA, TGF-f-activated kinase, and other IxB kinases
within the intestinal epithelium results in increased suscepti-
bility to colitis [64-67].

Although these findings highlight the important role of
microbial structures in regulating barrier function, another
layer of complexity is the relationship between the bioactive
potential of the microbiota and the intestinal barrier. Indeed,
the identification of specific microorganisms producing com-
pounds involved in the modulation of intestinal barrier
function has gained tremendous attention.

Microorganisms and their associated genome (~3 x 10°
genes) are likely to produce compounds that shape host
response. Indeed, the beneficial effects of lactic-acid produc-
ing organisms in fermented milk products on health were first

proposed at the beginning of the 20th century by Metchnikoft
[68]. Fermented milk products (FM) are representative of
a group of natural compounds and microorganisms known
as probiotics, which are defined as food supplements that
are intended to improve health [69]. Probiotics have gained
enormous interest in recent years as a means to help maintain
intestinal homeostasis and/or alleviate specific GI pathologies
[70-75]. In fact some strains of probiotic microbes can reduce
gut permeability through direct effects on intestinal epithelial
cells and reduce inflammation [5, 76-78]. Probiotics can
mediate their beneficial activity through several mechanisms
including (a) competitive exclusion of bacterial adherence
and/or translocation; (b) release of bacteriocidin and lactic
acid, which can inhibit the growth of pathogens; (c) produc-
tion of butyric acid; (d) antioxidative effects; (e) enhancement
of barrier function; (f) modulation of immune cell response;
and (g) inhibition of NF-«B activation [79-87]. We will
discuss several of the most prominently emerging probiotic
foods and microorganisms that impact the intestinal barrier.

Although probiotics have a relatively safe track record
in humans, some studies have raised concerns about intro-
ducing billions of bacteria into a host [88, 89]. In an effort
to circumvent this potential health hazard, attention has
been directed on identifying probiotic-derived beneficial
molecules that can be used in lieu of whole, live microor-
ganisms. A recent report has shown that a recombinant
40 kDa soluble protein derived from Lactobacillus rhamnosus
GG (LGG) is able to reproduce the antiapoptotic effect
of the bacterium in vitro, a process mediated through an
EGFR-dependent mechanism [73]. Importantly, the delivery
of LGGp40 to the colon in vivo using a novel pectin/zein
hydrogel bead system, is able to ameliorate DSS-induced
intestinal injury as well as oxazolone-induced Th2-driven
colitis [73]. Administration of supernatant from LGG cul-
tures (LGGyy,), prior to oral gavage with ethanol, significantly
ameliorated the multiple alcohol-induced damaging effects
to the ileal epithelium. The protective effect of LGG,, on
ethanol-induced increased barrier permeability was multi-
factorial. It reversed the ethanol-mediated downregulation
of TJ proteins ZO-1, claudin, and occluding, among others,
and the mucosal protective proteins ITF, CRAMP, and P-gp
mRNAs. In addition, LGGy,, reversed the alcohol-induced
decrease of Hif-2a mRNA and protein levels. As the mucosal
protective proteins ITF, CRAMP, and P-gp are under Hif
transactivational control, this suggests that maintenance of
this transcription factor may play a strong role in LGGyy,-
mediated effects.

Another lactobacillus with therapeutic potential is L.
brevis SBC8803, which, unlike LGG, reportedly has benefi-
cial effects when administered as a heat-killed, freeze-dried
purification of monocultures. In a recent report, heat-killed
L. brevis was able to dose-dependently induce heat shock
proteins (Hsp) 25, 27, and 70 in vitro using the colonic
cell line, Caco-2, Hsps, being important stress-induced pro-
teins involved in the protection of the colonic epithelium
against bacterial-induced injury [90-92]. Daily transanal
administration of 0.1% freeze-dried L. brevis culture in saline
decreased DSS-induced intestinal inflammation, improved
survival, and decreased expression of TNF-«, IL-12, and IL-13



[72], highlighting the importance of identifying the differing
mechanisms of action of different Lactobacilli.

Lactobacillus plantarum (Lp) is a probiotic that has been
the subject of numerous studies on the human GI system
since the early 1990s [93]. This bacterium, which has been
isolated from both healthy human intestine and the more
potent strain isolated from sourdough (isolate 299V, aka
DSM 9843), appears to have many beneficial effects in both
animal models [94, 95] and human studies [96, 97]. Recent
studies have further supported the potential of Lp in treating
intestinal disorders. A small, 40-patient randomized, double-
blind clinical trial showed that Lp resolved abdominal pain
in all IBS patients compared to the control group and pro-
vided significant bowel movement regularity to constipated
patients [96]. A recent, large scale follow-up clinical trial
was performed using similar parameters and metrics and
demonstrated beneficial effects [98]. While these and other
studies focused on the ability of Lp to ameliorate overall
disease either in animal models or in clinical trials, the
underlying molecular pathways have just recently begun to
be elucidated. Using a rat model of obstructive jaundice,
analysis of the terminal ileum has provided a fairly thorough
molecular characterization of the effects of a twice-daily
oral gavage using Lp. Specifically, the authors found that
Lp lowered obstructive jaundice-mediated intestinal epithe-
lial cell (IEC) apoptosis and importantly increased mRNA
expression of T] proteins claudin-1and -4, occludin, and ZO-
1, in addition to PKC. Markedly increased JAM-A and PKC
protein levels were also reported [99]. This increase in TJ
proteins is consistent with an earlier study, which revealed
intake of Lp maintains the intestinal barrier integrity in rats
exposed to E. coli by inhibiting the E. coli-induced increase
in barrier permeability [94]. Given the above-mentioned
studies, one can assume this latter effect is likely through the
increase of T] proteins. Notably, Lp has also been suggested to
release factors that significantly inhibit pathogenic bacterial
adhesion to the mucosa [100]. Hence, the beneficial effect
of Lp appears to center on upregulation of T] proteins to
strengthen the barrier, though it may also work to keep
pathogens from adhering to the epithelium and invading the
host. In addition, the beneficial effects of bacteria could be
mediated through production of metabolites such as SCFA
generated from the host diet.

4. Bacteria-Produced SCFA and the Intestinal
Epithelium Barrier

The anaerobic environment of the intestine allows certain
gut microbes to harness nutrients through fermentation of
nutrients passing through the lumen, resulting in the gener-
ation of a large array of metabolites. Among the metabolites
produced by this process are essential vitamins such a vitamin
K and most of the water-soluble B vitamins such as biotin,
cobalamin, and riboflavin [101], which are then absorbed
by the host [102]. Also among these metabolites are the
SCFA, such as propionate, acetate, and butyrate derived
from dietary fiber, fermentable carbohydrates, and resistant
starches, which are not broken down in the upper digestive
tract [103]. Fermentation of dietary fiber is important to
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intestinal homeostasis as this process induces upper gastroin-
testinal motility [104] and the satiety hormones glucagon-
like peptide-1 (GLP-1) and peptide YY (PYY) [105-108]. In
addition, not only do these SCFAs show therapeutic potential
in treatment of patients with IBD [109,110], but these bacterial
derivatives also appear to further improve colonic health [111].
Interestingly, patients with ulcerative colitis (UC) appear
to have impaired butyrate metabolism [112]. As such, the
molecular mechanisms of action of these SCFA have become
a subject of increasing investigation.

The presence of SCFA in the intestine directly affects
barrier permeability. Butyrate, for example, has been shown
to protect Caco-2 cell monolayers from Campylobacter jejuni
invasion and translocation in a concentration-dependent
manner by increasing transepithelial electrical resistance
(TEER) [113]. Similarly, butyrate, but not a mix of butyrate,
acetate, and propionate, was shown to significantly reverse
the increases in intestinal permeability, bacterial transloca-
tion, and histological damage caused by exposure to the
chemotherapeutic agent 5-Fluorouracil in mice [114]. Unlike
the first study, by using T-84 and Caco-2 monolayers, TEER
was shown to be increased by all three individual SCFAs or by
a mix thereof [115]. The ability of butyrate to increase TEER
may relate to its capacity to increase cingulin, ZO-1, and ZO-
2 proteins and mRNA levels as shown in Rat-1 fibroblasts
[116]. In the same study, butyrate was shown to increase
protein levels of cingulin in COS-7 cells and both cingulin
and occludin in HeLa cells [116]. These findings suggest that
SCFA strengthen the barrier through increase of both TEER
and TJ protein production.

The intracellular signaling events induced in IECs by
SCFA, presumably by binding to their cognitive G-protein
coupled receptors 41 and 43 (GPR41 and GPR43, resp.)
[117] and their role in barrier function, remain elusive
[118, 119]. For example, the protective effects of butyrate
against chemical-induced damage and microbial transloca-
tion were recently shown to be associated with decreased
IxB phosphorylation (and presumably NF-«B activity) [120],
with the latter having been shown to play both positive
and negative roles in maintenance of intestinal homeostasis
[121]. Specifically, using a T84 human colon cell model
of barrier function, butyrate was shown to protect against
dinitrophenol-induced mitochondrial damage and increased
permeability, as well as E. coli translocation. A more recent
report has shown that butyrate activates the cyclic adenosine
monophosphate (cAMP) — protein kinase A (PKA) —
cAMP responsive element binding protein (CREB) pathway
in Caco-2 cells [122]. However, butyrate had no effect on
adenylyl cyclase or phosphodiesterase, enzymes that regulate
production and degradation of cAMP, respectively. This
observation is important because these enzymes are regulated
by GPR signaling [123], suggesting that activation of the
cAMP pathway by butyrate is independent of GPR41/43
signaling. As such the roles of GPR41 and GPR43 in SCFA
signaling remain in question, though we are slowly gaining a
better understanding of the mechanisms mediated by these
formerly orphan receptors.

Besides investigation of the molecular pathways involved
in SCFA signaling, identification of bacteria and groups of
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bacteria producing SCFA, as well as the dietary component
influencing them, has gained attention.

The characterization of the complex microbial ecological
system present in the intestine using ribosomal 16S sequenc-
ing techniques has revealed that the human microbiome is
dominated by two phyla, the Firmicutes (~75%) and Bac-
teroidetes (~20%), with lesser contributions from Proteobac-
teria and Actinobacteria [124-126]. The Firmicutes found in
the mucosal tissues are primarily composed of Clostridium
XIVa and IV groups, which are active producers of SCFA.
It is interesting to note that levels of acetic, butyric, and
propionic acids decreased in fecal samples of IBD patients
compared to normal healthy controls [127, 128]. Similarly,
a number of reports showed that Clostridium XIVa and IV
groups decreased in patients with Crohn’s disease [129, 130].
These observations suggest that environmental conditions
(diet, inflammation, ect.) could shape microbial status and
influence their ability to produce SCFA. In addition, different
pH levels are found throughout the colon and the fermen-
tation of dietary fiber that produces SCFA is thought to be
responsible for the low pH found in the proximal colon
[131]. A recent study found that the majority of Bacteroides
and Proteobacteria species were growth-inhibited at a pH
of 5.5, a level representative of the proximal colon pH. In
contrast, the majority of Gram-positive, both Actinomycetes
and Firmicutes species, were tolerant to the lower pH. The
latter is important as the Firmicutes clusters studied included
butyrate-producing bacteria of the class Clostridia such as
Eubacterium rectale and Roseburia inulinivorans. Moreover,
using human faecal samples, it was shown that keeping fer-
mentation chambers at different pH resulted in strikingly dif-
ferent bacterial profiles. While at pH 5.5 the majority of bac-
teria detected were Firmicutes, mainly Clostridia species, at a
pH of 6.5 the majority of bacteria detected were Bacteroides
species. Therefore, pH levels may shape the gut microbial
communities by allowing growth of low pH-tolerant bacteria
such as butyrate-producing Firmicutes species [132].

The ability of diet to modify the gut microbiota and SCFA
production was also recently studied using obese patients
given three diets comprised of successively lower carbohy-
drate levels, a source for bacterial SCFA production. These
diets were administered for four weeks successively, and at
the end of each 4-week feeding period stool was collected.
The study showed that by lowering carbohydrate levels, also
representative of high protein/low carbohydrate weight loss
diets, total SCFA production was significantly and concomi-
tantly reduced, with a notably disproportionate reduction
in butyrate levels. And while the gut microbiota was not
significantly altered in terms of Firmicutes versus Bacteroides
ratio, a significant reduction in butyrate-producing Roseburia
species and Eubacterium rectale was found to correlate
with decreasing carbohydrate consumption [133]. The gut
microbiome of children in Europe (EU) who consume
mostly Western diets and that of children in rural Africa,
specifically Burkina Faso (BF), whose diet is rich in fiber,
were recently compared. BF children not only had higher
levels of Firmicutes species but also of Bacteroides species
in the genera Prevotella and Xylanibacter, with the latter
producing enzymes that can hydrolyze cellulose and xylan,

which the human enzymatic repertoire lacks. These latter
species were completely absent in the EU children, and as
predicted children in BF had higher SCFA levels than their
European counterparts [134].

Fermentation itself, which results in SCFA production,
has become a point of interest and recently two groups have
studied the metabolites formed from the fermentation of
human fecal samples in continuous 3 vessel spill-over systems
which simulate the proximal, transverse, and distal colons of
human [135]. The first group utilized a large amalgamation of
fibers as the source for metabolite production and was able
to show that when more fiber was introduced into the system
at 3-fold that of baseline, an increase in colonic fermentation
and concomitant increase in saccharolytic bacteria were
observed in the fecal samples [136]. The second group took a
different approach, however, opting instead to utilize human
fecal samples and exposure to four different naturally high
fiber-containing flours. While all flours had significant effects
on resulting changes to the metabolite profile, each resulted
in distinct responses from the samples. The “Pulses” flour
(50:50 lentils and chickpeas) had the most promiscuous
effect on the metabolites measured, showing increases in
acetate, propionate, and tyrosine levels but decreases in
butyrate, isovalerate, and trimethylamine levels. In contrast,
the least effective flour, whole grain rye, only produced a sig-
nificant decrease in the metabolite methanol, demonstrating
how differently distinct fiber sources can act on shaping the
SCFA and metabolite profiles [137]. Further studies will be
needed to identify what fiber sources are optimal for SCFA
production and associated beneficial effects.

5. Milk, Bacterium, and the Gut
Epithelial Barrier

While identification of bacteria that provide benefit to the gut
has been the subject of intense research focus, the role the
diet has on promoting or inhibiting growth of detrimental
or pathogenic bacteria has also become a burgeoning field.
Although consumption of fermented milk has historically
been associated with beneficial effects [68], as discussed
above, it is clear that milk itself can have different effects
depending on the source from which it is derived. For
example, unlike human milk, animal milk, which forms part
of the typical Western diet, does not contain the antimicrobial
enzymes lactoferrin and lysozyme, which are thought to help
shape the composition of the gut microbiota [138, 139]. This
proof-of-principle was shown in a recent study using goat
milk containing human lysozyme (HLZ), produced via a
transgenic goat model, as HLZ was able to cause a compo-
sitional change in the gut microbiota of pigs. Specifically,
after 17 days of being fed HLZ these young pigs contained
significantly lower populations of Firmicutes and Clostridia
species as compared to controls. In addition, though not
statistically significant, the authors observed an increase in
the Proteobacteria population [140]. This last finding is very
interesting when taking into account a more recent study
showing that consumption of animal-derived milk fat is able
to alter the composition of gut microbiota communities in



6 BioMed Research International
\ Disease Health FPam =
[ JEEN S Fermentation of dietary
1 cﬁ I @@ fiber and carbohydrates
oe -
° e oD
o e ¢+ g © M . ° o o9 N —
°‘: o ) s .8 ... ‘o oo ....d
OJ f ° . ] ®e ° o:'::\:.' '-'.o:.'
Mucosal LW ST T e & T T T oo 8SSEERSTEETSSS R
o (ST o SIS | JhEsmEpEmRRAS
ayer %— o o o o o os o8 o
Intestinal T
epithelium O O O

Barrier permeability
Bacterial translocation ‘
TEER
1 TJ protein levels

= TJand A] proteins
®  Milk fat

@ Probiotic bacteria
@ SCFA-producing bacteria

% Taurine-conjugated bile acids@®® Pathogenic bacteria

O® SCFA
o

® Probiotic bacterial products

FIGURE I: Intestinal epithelial responses to diet and microbes. Diets containing fermentable fibers, resistant starches and the like result
in increased gut fermentation and SCFA production. A constant diet containing these elements would shift the host gut microbiome to
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pathology such as increased intestinal inflammation.

wild-type and 1110/~ mice, a genetically susceptible model of
colitis. Milk fat was able to induce a bloom in the population
of Deltaproteobacteria within the 11107/~ mice, specifically
they were able to show a bloom of Bilophila wadsworthia,
which coincided with an increase in taurine-conjugated bile
acids in these mice. As bile acids are a source of energy for B.
wadsworthia, it was then shown that gavage using bile acids in
lieu of milk induced the same Deltaproteobacteria bloom. A
bloom of B. wadsworthia by use of either agent also caused
a significant increase in the incidence of colitis within the
11107~ mice [1]. Interestingly, increase in Proteobacteria is
associated with IBD in humans [141, 142]. Further studies
would be necessary before establishing cause/effect relation-
ship between milk fat consumption, Proteobacteria, and IBD.

In contrast to the detrimental effects that milk fat has in
mice genetically susceptible to colitis, it has also been shown
that fermented milk in turn can have beneficial effects on
colitis models. For example, using a T-bet '~ /Rag2 ™/~ model
of UG, it was recently shown that administration of B. ani-
malis subspecies lactis-containing fermented milk product
(FM) was able to significantly reduce intestinal inflammation

[143]. Amelioration of colitis was characterized by an increase
in the population of lactate-consuming butyrate-producing
bacteria species, as well as an increased presence of other
SCFAs. Furthermore, the increase in lactate-consuming bac-
terial species correlated with a significantly reduced cecal
pH. While this may seem inconsequential, low pH has been
shown to create an inhospitable environment for Enterobac-
teriaceae species to grow, with the latter having been recently
reported to be colitogenic in T-bet '~ /Rag2™/~ mice [144].
Further support for the beneficial effects of B. animalis subsp.
lactis was shown in another recent study that used a rat model
of stress and hypersensitivity. FM containing B. lactis was able
to reduce visceral hypersensitivity and stress-induced blood
endotoxin levels; additionally FM was able to reverse stress-
induced downregulation of T] proteins JAM-A and occludin.
Though interesting, the contribution of B. lactis to this effect
is questionable given that the authors used FM containing
not only B. lactis but also Lactococcus lactis CNCM 1-1631,
Lactobacillus bulgaricus, and Streptococcus thermophiles [71].

These studies represent an interesting point, showing how
a seemingly innocuous food product such as milk can have
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far reaching consequences on an individual’s gut microbiota.
While the direct effects on barrier function were not inves-
tigated in these studies, the use of colitis models provides at
least a reference point for potential beneficial effects and will
help define molecular mechanisms of action.

Though the gut barrier landscape is a very complex
environment, taken together, we can now envision it as one
in which intake of diet affects the gut in one of two ways.
On the one hand, it can affect the gut by promoting the
increase of pathogenic or opportunistic bacteria and thereby
damaging the barrier through increases in permeability and
bacterial translocation, along with decreases in T] proteins
and TEER resulting in pathology such as inflammation. On
the other hand, a diet that includes probiotic bacterial species
or prebiotic fibers that result in SCFA would strengthen the
epithelial barrier by increasing T] proteins and TEER, as
well as decreasing permeability and bacterial translocation
helping to avoid or ameliorate pathology (Figure 1).

6. Perspective

The impact of bacteria on intestinal barrier function is
clearly illustrated by the action of specific pathogenic enteric
bacteria that have evolved remarkable means to penetrate
and circumvent this important host defense mechanism.
Pathogenic enteric bacteria such as Salmonella, Shigella, and
Yersinia species, utilized specific effector proteins to alter
intestinal tight junction proteins and weaken barrier func-
tion. On the other hand, millions of years of evolution have
led to the acquisition of a complex intestinal microbiota
that was selected for its capacity to maintain a symbiotic
relationship with the host. This biota has formed through
a complex set of environmental factors including dietary
habits. Evidence suggests that this biota not only prevents
pathogenic bacteria from accessing the epithelial barrier, but
also actively promotes the state of a healthy barrier through
the action of their metabolism.

Some bacteria such as Lactobacillus plantarum appear to
modulate the epithelial barrier through the action of secreted
protein (LGG p40) whereas other such as Clostridium likely
influence the barrier through production of metabolites
(SCFA). In view of the richness and diversity of the micro-
biota, it would be important to “mine” this biota and identify
microorganisms with “barrier protective function.” Because
of the interplay between diet and microbial composition,
identification of nutritional components that contribute to
barrier function should also be a forefront priority. Integra-
tion of microbial genomic, metabolomics, and transcriptomic
technology would be essential to carry this mission forward.
Understanding the intricate relationship between epithelial
barrier, microbe, and diet would undeniably contribute key
knowledge that could be harness for therapeutic purpose.
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