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RESEARCH NOTE

Modelling cholera transmission dynamics 
in the presence of limited resources
Farai Nyabadza2, Jennifer Mawunyo Aduamah1 and Josiah Mushanyu3*

Abstract 

Objectives:  We study the transmission dynamics of cholera in the presence of limited resources, a common feature 
of the developing world. The model is used to gain insight into the impact of available resources of the health care 
system on the spread and control of the disease. A deterministic model that includes a nonlinear recovery rate is for-
mulated and rigorously analyzed. Limited treatment is described by inclusion of a special treatment function. Center 
manifold theory is used to show that the model exhibits the phenomenon of backward bifurcation. Matlab has been 
used to carry out numerical simulations to support theoretical findings.

Results:  The model analysis shows that the disease free steady state is locally stable when the threshold R0 < 1 . It is 
also shown that the model has multiple equilibria and the model exhibits the phenomenon of backward bifurcation 
whose implications to cholera infection are discussed. The results are useful for the public health planning in resource 
allocation for the control of cholera transmission.
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Introduction
Cholera is an acute gastro-intestinal infection and water-
borne disease which is caused by the bacterium Vibrio 
Cholerae, V. cholerae O1 or O139 . Vomiting and diar-
rhoea are its major characteristics and when patients 
are treated with delay, it can lead to severe dehydration 
and death within few hours. The disease has two modes 
of transmission: direct and the indirect transmission. 
Direct transmission (human–human) is very uncom-
mon as compared to the indirect (environment–human) 
which occurs by ingesting contaminated food or water [1, 
2]. An estimated 100,000–120,000 deaths are due to chol-
era every year in the world with only a small proportion 
being reported to World Health Organization (WHO) 
[3].

Cholera remains a significant threat to public health 
in the developing world, with cyclic outbreaks occur-
ring twice per year in endemic areas [4]. For instance, 
more recently on the 6th of September 2018, a 

cholera outbreak in Harare was declared by the Min-
istry of Health and Child Care (MoHCC) of Zimbabwe 
[5]. As of 15 September 2018, 3621 cumulative suspected 
cases, including 71 confirmed cases, and 32 deaths had 
been reported (case fatality ratio: 0.8% ); of these, 98% 
(3564 cases) were reported from the densely populated 
capital Harare [5]. The City of Harare is facing a plethora 
of challenges, notably insufficient safe water supplies, 
frequent sewer pipe bursts, uncollected refuse and ram-
pant illegal vending [6]. This has negatively impacted on 
public health in the city exposing residents to diarrhoeal 
disease outbreaks, an upsurge in typhoid fever cases and 
sporadic outbreaks of cholera [6]. As of the year 2018, the 
disease has also claimed more than 67 lives in Zambia 
and Malawi did report some cases of cholera in Lilongwe. 
Thus, the cholera tragedy continues to devastate disad-
vantaged countries and communities. For more informa-
tion about cholera and its occurrence, we refer the reader 
to [7, 8].

Several mathematical models describing cholera 
dynamics have been proposed and analyzed; see for 
instance [8–17]. These models differ from each other 
in some aspects. In most of these models, the recovery 
rate is assumed to be a constant. However, in reality the 
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recovery rate depends on time of recovering process, 
which can be related to the number of infectious individ-
uals seeking treatment and the basic factor; availability of 
health resources to the public. The resources of the health 
system includes the number of health care workers (phy-
sicians, nurses, pharmacists, etc.), capacity of the hos-
pital settings (number of hospital beds and medicines) 
and the effectiveness and efficiency of the treatment. In 
many developing countries, resources of treatment are 
extremely scarce. So this approximation cannot reflect 
the real cure rate.

Motivated by the recent cholera outbreak in Zimba-
bwe which has overwhelmed the resources of the health 
care system, we formulate a compartmental deterministic 
mathematical model with a suitable treatment function 
in order to study the impact of limited hospital resource 
capacity on Cholera disease. The number of available 
hospital beds per 10,000 (hospital bed-population ratio) 
is used by health planners as a method of estimating 
resource availability to the public [18, 19]. Due to the 
significance of hospital bed-population ratio (HBPR), we 
will formulate the recovery rate incorporating the impact 
of limited resource capacity of the health care system in 
terms of HBPR for this work.

The paper is arranged as follows; in “Main text” sec-
tion, we formulate and establish the basic properties of 
the model. The model is analysed for stability in “Analysis 
of the model” section. In “Numerical simulations” sec-
tion, we carry out some numerical simulations. Param-
eter estimation and numerical results are also presented 
in this section. The paper is concluded in “Conclusions” 
section.

Main text
The model
The cholera model classifies the human population at 
time t, denoted by N(t), into susceptible individuals S(t), 
cholera infected individuals I(t) and recovered individu-
als R(t) such that,

An additional compartment B(t), representing the con-
centration of vibrios in contaminated water has also been 
incorporated in the model. We use the model in [8] and 
incorporate aspects of limited resources as proposed in 
[20]. The model involves assumptions which are of criti-
cal importance and these are:

	 i.	 The recovery rate depends on both the number of 
infectious individuals (I) and the hospital bed-pop-
ulation ratio (b).

	 ii.	 All the infected individuals cannot recover unless 
they get treated in hospitals.

N (t) = S(t)+ I(t)+ R(t).

	iii.	 Recovered individuals are not permanently 
immune to the disease.

Susceptible individuals are recruited into the community 
either by birth or immigration at a rate µN  . Susceptible 
individuals can be infected either through human-to-
human transmission or by ingesting environmental 
vibrios from contaminated aquatic reservoirs at the rates 
β1I and β2

B

B+ k
 , respectively. The recovery rate of 

infected individuals is given by γ . This recovery rate 
includes the hospital bed-population ratio, b > 0 and also 
depends on infected individuals I, such that, it is a func-
tion of both b and I. The recovery rate γ (b, I) is thus given 
as follows:

where γ1 is the maximum per capita recovery rate due 
to the sufficient health care resource and few infectious 
individuals as well as the inherent property of a specific 
disease, γ0 is the minimum per capita recovery rate due 
to the function of basic clinical resources. This recovery 
function was firstly used in [21]. The following assump-
tions for the recovery rate γ (b, I) are made: 

(H1)	� γ (b, I) > 0 for I ≥ 0 , b > 0 , and γ (b, 0) = γ1 > 0,
(H2)	� ∂γ (b,I)

∂I < 0 , lim
I→∞

γ (b, I) = γ0 > 0 and 

lim
I→ 0

γ (b, I) = γ (b, 0) = γ1
,

(H3)	� ∂γ (b,I)
∂b

> 0 , lim
b→∞

γ (b, I) = γ1 and lim
b→ 0

γ (b, I) = γ0.

We assume a constant size population with natural 
death rate given by µ . Cholera-infected individuals con-
tribute to V. cholerae in the aquatic environment at rate 
α and vibrios have a net death rate δ in the environment. 
The differential equations for the Cholera model are;

We assume that all parameters are positive and the ini-
tial conditions of system (2) are given by: S(0) = S0 > 0, 
I(0) = I0 ≥ 0, R(0) = R0 ≥ 0, B(0) = B0 > 0.

(1)γ (b, I) = γ0 + (γ1 − γ0)
b

I + b
,

(2)


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






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





dS

dt
= µN − β1

SI

N
− β2

SB

B+ k
− µS,

dI

dt
= β1

SI

N
+ β2

SB

B+ k
− γ (b, I)I − µI ,

dR

dt
= γ (b, I)I − µR,

dB

dt
= αI − δB.
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Analysis of the model
Non‑dimensionalization of the model
Our system of equations has different dimensions with 
respect to the human population and V. cholerae. To make 
system (2) dimensionless, the following substitutions are 
made: S = sN  , I = iN  , R = rN  , B = xN  , k = k̂N  and 
b = b̂N  with s + i + r = 1 . The new system becomes:

Positivity of solutions
Since system (3) describes changes in the population 
of humans, it is considered mathematically and epide-
miologically well-posed if it satisfies the positivity and 
boundedness conditions.

Lemma 1  Given that the initial conditions of system (3) 
are positive, the solutions s(t), i(t), r(t) and x(t) are non-
negative for all t > 0.

Proof  Assume that t1 = sup{t > 0 : s > 0, i > 0,

x > 0} ∈ (0, t] . Thus, t1 > 0 . Let �(t) = β1i +
β2x

x + k̂
 , it 

follows from the first equation of (3) that,

so that,

Similarly, it can be shown that i(t) > 0 , r(t) > 0 and 
x(t) > 0 , for all time t > 0 .�  �

(3)



























































ds

dt
= µ− β1si − β2

sx

x + k̂
− µs,

di

dt
= β1si + β2

sx

x + k̂
−

�

γ0 + (γ1 − γ0)
b̂

i + b̂

�

i − µi,

dr

dt
=

�

γ0 + (γ1 − γ0)
b̂

i + b̂

�

i − µr,

dx

dt
= αi − δx.

s(t1) exp

{

µt1 +

∫ t1

0

�(x)dx

}

− s(0)

≥

∫ t1

0

µ exp

{

µy+

∫ y

0

�(x)dx

}

dy,

s(t) = s(0) exp

{

−

(

µt1 +

∫ t1

0

�(x)dx

)}

×

[

exp

{

−

(

µt1 +

∫ t1

0

�(x) dx

)}]

∫ t1

0

µ exp

{

µy+

∫ y

0

�(x) dx

}

dy > 0.

Invariant region

Theorem  1  Let (s(t), i(t), r(t), x(t)) be the solution of 
system (3) with initial conditions (s0, i0, r0, x0) . The com-
pact set,

is positively invariant and attracts all solutions in R4
+.

Proof  We follow the proof given in [22]. Consider, 
W (t) = (WH ,WB) = (s + i + r, x) . The time derivative of 
W(t) is given by

This gives

From (4), we have 
dW

dt
≤ 0 which implies that � is a posi-

tively invariant set. We also note that by solving (4) we 
have;

where WH (0) and WB(0) are the initial conditions of WH (t) 
and WB(t) respectively. Thus, 0 ≤ (WH (t),WB(t)) ≤

(

1,
α

δ

)

 
as t → ∞ and hence � is an attractive set.�  �

Disease free steady state and the basic reproduction number
System (3) has a disease free steady state given by

a scenario depicting an infection-free state in the com-
munity or society. The basic reproduction number, R0 , 
defined as the expected number of secondary cases pro-
duced by a single infectious individual in a completely 
susceptible population over the duration of its infec-
tious period, is a threshold parameter that allows us to 
predict whether the disease will die out or persist [23]. 
Generally, R0 < 1 means that the disease cannot invade 

� =
{

(s, i, r, x) ∈ R
4
+,WH ≤ 1,WB ≤

α

δ

}

dW

dt
=

(

WH

dt
,
WB

dt

)

=

(

ds

dt
+

di

dt
+

dr

dt
,
dx

dt

)

,

= (µ− µWH , αi − δx).

(4)










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









dWH

dt
= µ− µWH ≤ 0, for WH ≥ 1,

dWB

dt
= αi − δx ≤ αWH − δWB ≤ 0, for WB ≥

α

δ

with WH ≥ 1 and δ > 0.

0 ≤ (WH (t),WB(t)) ≤
(

1+WH (0)e
−µt ,

α

δ
+WB(0)e

−δt
)

,

E0 =
(

s0, i0, r0, x0
)

= (1, 0, 0, 0),
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the population and R0 > 1 means that each infected 
individual produces more than one secondary infected 
individual.

Denote the basic reproduction number of system (3) by

Here, R0 is the sum of two sub-reproduction numbers 
representing the contributions of individuals in compart-
ments i and x respectively.

Local stability of the disease‑free steady state
We now show that the disease-free equilibrium point E0 
is locally asymptotically stable whenever R0 < 1.

Theorem 2  The disease-free equilibrium point E0 of sys-
tem (3) is locally asymptotically stable if R0 < 1 and is 
unstable if R0 > 1.

Proof  The Jacobian matrix of system (3) at E0 is given by

We determine the local stability of the disease-free equi-
librium by the following submatrix of J (E0),

We note that all off-diagonal elements are positive, thus 
we now consider matrix −J1(E0) . We claim that −J1(E0) is 
an M-matrix. Multiplying matrix −J1(E0) by the positive 
3× 1 matrix X1 = [µδ, δγ1, αµ]

T , we have

where X2 is a positive 3× 1 matrix given by 
X2 = [µδ(µ+ γ1), 0, 0]

T . Since −J1(E0) is an M-matrix, 
it follows that all eigenvalues of J1(E0) have negative real 
parts, which implies the local asymptotic stability of the 
disease-free equilibrium if R0 < 1 . Also, we show that 
the determinant of J1(E0) is given by

(5)

R0 = Ri +Rx where Ri =
β1

µ+ γ1
and

Rx =
αβ2

k̂δ(µ+ γ1)
.

J (E0) =











−µ −β1 0 −
β2

k̂

0 β1 − (µ+ γ1) 0 β2

k̂
0 γ1 −µ 0
0 α 0 −δ











.

J1(E0) =





β1 − (µ+ γ1) 0 β2

k̂
γ1 −µ 0
α 0 −δ



 .

−J1(E0) · X1 = (1−R0) · X2

det J1(E0) = µδ(µ+ γ1)(R0 − 1).

Thus, the matrix J1(E0) has eigenvalues with negative real 
parts if R0 < 1 , which implies the stability of the disease-
free equilibrium. This completes the proof.�  �

Endemic steady state
The endemic equilibrium of system (3) always satisfies

From the third and last equation of (6), we have that

Substituting the expression for x∗ in (7) into the first 
equation of (6) we obtain

Substituting (7) and (8) into the second equation of (6) 
leads to the following fourth order polynomial equation

Solving (9) gives i∗ = 0 which corresponds to the dis-
ease-free equilibrium or

where

We can clearly note that, ν0 > 0 ⇔ R0 < 1 and 
ν0 < 0 ⇔ R0 > 1 . The number of possible positive 
real roots of polynomial (10) are determined using the 
Descartes Rule of Signs. The various possibilities for the 
roots are shown in the presentation below.

(6)
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








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























µ− β1s
∗i∗ − β2

s∗x∗

x∗ + k̂
− µs∗ = 0,

β1s
∗i∗ + β2

s∗x∗

x∗ + k̂
−

�

γ0 + (γ1 − γ0)
b̂

i∗ + b̂

�

i∗ − µi∗ = 0,

�

γ0 + (γ1 − γ0)
b̂

i∗ + b̂

�

i∗ − µr∗ = 0,

αi∗ − δx∗ = 0.

(7)r∗ =
(i∗γ0 + b̂γ1)i

∗

µ(i∗ + b̂)
and x∗ =

αi∗

δ
.

(8)s∗ =
µ(αi∗ + δk̂)

αβ1i∗2 + αβ2i∗ + αi∗µ+ β1δi∗k̂ + δk̂µ
.

(9)i∗
(

ν3i
∗3 + ν2i

∗2 + ν1i
∗ + ν0

)

= 0.

(10)ν3i
∗3 + ν2i

∗2 + ν1i
∗ + ν0 = 0,











































ν0 = µδb̂k̂(µ+ γ1)(1−R0),

ν1 = αb̂γ1(β2 + µ)+ µ(α(b̂− 1)β2 + αb̂µ+ γ0δk̂ + δk̂µ)

+ β1(µ((b̂− 1)δk̂ − αb̂)+ b̂γ1δk̂),

ν2 = α(β2 + µ)(γ0 + µ)+ β1(αb̂γ1 + µ(α(b̂− 1)+ δk̂)+ γ0δk̂),

ν3 = αβ1(µ+ γ0).
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Existence of backward bifurcation
We establish conditions for the existence of backward bifurca-
tion following Theorem 4.1 proven in [24]. We shall make the 
following change of variables: s = x1, i = x2, r = x3, x = x4 , 
so that N =

∑4

n=1
xn . We now use the vector notation 

X = (x1, x2, x3, x4)
T . Then, system (3) can be written in the 

form 
dX

dt
= F(t, x(t)) = (f1, f2, f3, f4)

T , where

Here β2 = ηβ1 , with the following possibilities on the 
value of η ; η = 1 , η ∈ (0, 1) or η > 1 . Let β1 be the bifurca-
tion parameter, R0 = 1 corresponds to

The Jacobian matrix of system (3) at E0 when β1 = β∗
1 is 

given by

System (11), with β1 = β∗
1 has a simple eigenvalue, 

hence the center manifold theory can be used to ana-
lyze the dynamics of system (3) near β1 = β∗

1 . It can 
be shown that J∗(E0) , has a right eigenvector given by 
w = (w1,w2,w3,w4)

T , where

(11)



















































dx1

dt
= µ− β1x1x2 − ηβ1

x1x4

x4 + k̂
− µx1 = f1,

dx2

dt
= β1x1x2 + ηβ1

x1x4

x4 + k̂
−

�

γ0 + (γ1 − γ0)
b̂

x2 + b̂

�

x2 − µx2 = f2,

dx3

dt
=

�

γ0 + (γ1 − γ0)
b̂

x2 + b̂

�

x2 − µx3 = f3,

dx4

dt
= αx2 − δx4.

(12)
β1 = β∗

1 =
δk̂(γ1 + µ)

αη + δk̂
.

J∗(E0) =











−µ − β∗
1 0 −

ηβ∗
1

k̂

0 − µ+ β∗
1 − γ1 0

ηβ∗
1

k̂
0 γ1 − µ 0
0 α 0 − δ











(13)
w1 = −δ(γ1 + µ), w2 = µδ, w3 = δγ1, w4 = µα.

ν3 > 0

ν2 > 0 ν2 < 0

ν1 > 0 ν1 < 0 ν1 > 0 ν1 < 0

ν0 > 0 ν0 < 0 ν0 > 0 ν0 < 0 ν0 > 0 ν0 < 0 ν0 > 0 ν0 < 0

(R0 < 1) (R0 > 1) (R0 < 1) (R0 > 1) (R0 < 1) (R0 > 1) (R0 < 1) (R0 > 1)

i
∗ 0 1 2 1 2 3 3 1

Further, the left eigenvector of J∗(E0) , associ-
ated with the zero eigenvalue at β1 = β∗

1 is given by 
v = (v1, v2, v3, v4)

T , where

We compute a and b in order to apply Theorem  4.1 in 
[24]. For system (11), the associated non-zero partial 

derivatives of F at the disease-free equilibrium are as 
follows:

It thus follows that

(14)v1 = v3 = 0, v2 = αη + δk̂ , v4 = η(γ1 + µ).

∂2f1

∂x1∂x2
=

∂2f1

∂x2∂x1
= −β∗

1 ,
∂2f1

∂x1∂x4
=

∂2f1

∂x4∂x1
=

−ηβ∗
1

k̂
,

∂2f1

∂x2
4

=
2ηβ∗

1

k̂2
,

∂2f2

∂x1∂x2
=

∂2f2

∂x2∂x1
= β∗

1 ,

∂2f2

∂x1∂x4
=

∂2f2

∂x4∂x1
=

ηβ∗
1

k̂
,

∂2f2

∂x2
2

=
2(γ1 − γ0)

b̂
,

∂2f2

∂x2
4

= −
2ηβ∗

1

k̂2
,

∂2f3

∂x2
2

= −
2(γ1 − γ0)

b̂
,

∂2f1

∂x2∂β
∗
1

= −1,

∂2f1

∂x4∂β
∗
1

=
−η

k̂
,

∂2f2

∂x2∂β
∗
1

= 1,
∂2f2

∂x4∂β
∗
1

=
η

k̂
.

a = v2w1w2

∂2f2

∂x1∂x2
+ v2w1w4

∂2f2

∂x1∂x4

+ v2w
2
2

∂2f2

∂x2
2

+ v2w
2
4

∂2f2

∂x2
4

=
µθ2(αη + δk̂)

b̂k̂2

(

b̂
∗ − b̂

)

,

(

b̂
∗ =

θ1

θ2

)

,
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with

Note that if b̂ < b̂∗ then a > 0 and a < 0 if b̂ > b̂∗ . Lastly,

We thus have the following result

Theorem  3  If b̂ < b̂∗ , then system (3) has a backward 
bifurcation at R0 = 1.

We observe from the results above that a backward 
bifurcation occurs at R0 = 1 if and only if b̂ < b̂∗ is satis-
fied. From this, we can deduce that when the hospital 

θ1 = 2(γ1 − γ0)δ
2
k̂
2µ > 0 and

θ2 = β∗
1

(

2α2ηµ+ γ1δ
2
k̂
2 + δ2k̂2µ+ αγ1δηk̂ + αδηk̂µ

)

> 0.

b =
µ(αη + δk̂)2

k̂
> 0.

bed-population ratio, b̂ is below the critical threshold b̂∗ , 
then the number of hospital beds available to the popula-
tion are below capacity and thereby lead to some individu-
als failing to access treatment. In such a case the prevalence 
of cholera infection remains high leading to a backward 
bifurcation, see Fig. 1. The existence of a backward bifurca-
tion is also illustrated through numerical example by cre-
ating bifurcation diagram around R0 = 1 (Fig. 1). To draw 
a bifurcation curve (the graph of i∗ as a function of R0 ),  
we fix µ = 0.03; β1 = 0.2; β2 = 0.1; k̂ = 0.9; b̂ = 0.1; 
γ0 = 0.006; γ1 = 0.13; α = 0.282; δ = 0.5 . For this case 
we have that b̂∗ = 0.1676 > b̂ . The solid lines denote sta-
ble states and the dotted lines denote unstable states.

Remark  When the model exhibits backward bifurca-
tion, reducing R0 below unit is not sufficient to control 
the cholera epidemic.

Results and discussion
Numerical simulations
We perform some numerical simulations of system (3) to 
support our theoretical findings.

Estimation of parameters
Parameter values used for numerical simulations are 
given in Table 1.

Numerical results
Using the parameter values from Table  1, we obtain 
R0 < 1 for the initial conditions s(0) = 0.80 , i(0) = 0.15 , 
r(0) = 0.05 , x(0) = 0.40.

The limited resource parameter b, is varied in Fig.  2. 
It is shown that as b is increased, the infection popula-
tion decrease. This means that increasing b, that is, when 

0 0.5 1 1.5
0

0.05

0.1

0.15

0.2

0.25

0.3

Reproduction number R
0

In
fe

ct
ed

 p
o

p
u

la
ti

o
n

 s
iz

e 
i*

(t
)

Fig. 1  The figure showing a backward bifurcation. The solid lines 
denote stable states and the dotted lines denote unstable states

Table 1  Parameter values used in numerical simulations

Parameters Description Range Sample value Unit References

µ Natural death rate of humans 5.00e
−2–6.00e−2 0.00524/0.06 day−1 Assumed

β1 Effective contact rate between individuals 0.057–0.100 0.060/0.107 day−1 Assumed

β2 Per capita contact rate for humans and the 
contaminated environment

0.2073–0.2213 0.2143/0.22 day−1 [9]

k̂ Half-saturation constant 10
5–109 10

5/106 Cells L −1 [8]

γ0 Minimum recovery rate of human – (0.015, . . . ) - Assumed

γ1 Maximum recovery rate of human – (γ0, 0.09) – Assumed

b̂ Hospital bed-population ratio – (0, 20) – [20]

δ Bacterial net death rate – 30 day−1 [17]

α Shedding rate 1–150 50 Cells mL−1 per-
son−1 day−1

[8, 9]
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hospital-beds are increased during an outbreak, there is a 
high chance that the disease will not persist.

Conclusions
A deterministic compartmental model with a nonlinear 
recovery rate was formulated to study and analyze the 
impact of available resources of the health care system on 
the transmission dynamics of Cholera. The recovery rate 
accounts for the number of available hospital beds per 
10,000 population represented by the parameter b̂ which 
is the critical index reflecting the resources of the health 
care system available to the public. Compared with previ-
ous cholera models, the work contained in this study is 
the first attempt to model the impact of limited resources 
of the health care system on the spread of cholera, with 
particular emphasis on the hospital beds.

It was shown that the disease free steady state is locally 
asymptotically stable whenever R0 < 1 and unstable 
otherwise. Inclusion of a non linear recovery rate has 
resulted in the existence of multiple endemic equilibria 
and the model exhibiting the phenomenon of backward 
bifurcation. The classical R0-threshold is not the key 
to control disease spread within a population. This was 
shown to result, in particular when the parameter b̂ is low 
enough below b̂∗ . However, the cases of cholera infec-
tion decrease if there are a sufficient number of hospital 
beds, that is, when b̂ > b̂∗ . Therefore, in order to eradi-
cate the disease in a community, effort must be targeted 
to increasing hospital resources.

Limitations
Like in any model development, the model is not with-
out limitations. The model can be extended by inclu-
sion of other control measures such as vaccination and 
disinfection.

Abbreviations
WHO: World Health Organization; MoHCC: Ministry of Health and Child Care; 
HBPR: hospital bed-population ratio.
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