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Background: Lung adenocarcinoma (LUAD) contains a variety of genomic and
epigenomic abnormalities; the effective tumor markers related to these abnormalities
need to be further explored.

Methods: Clustering analysis was performed based on DNA methylation (MET), DNA
copy number variation (CNV), and mRNA expression data, and the differences in survival
and tumor immune microenvironment (TIME) between subtypes were compared. Further,
we evaluated the signatures in terms of both prognostic value and immunological
characteristics.

Results: There was a positive correlation between MET and CNV in LUAD. Integrative
analysis of multi-omics data from 443 samples determined molecular subtypes, iC1 and
iC2. The fractions of CD8+ T cells and activated CD4+ T cells were higher, the fraction of
Tregs was lower, and the expression level of programmed death-ligand 1 (PD-L1) was
higher in iC2 with a poor prognosis showing a higher TIDE score. We selected PTTG1,
SLC2A1, and FAM83A as signatures of molecular subtypes to build a prognostic risk
model and divided patients into high-risk group and low-risk group representing poor
prognosis and good prognosis, respectively, which were validated in 180 patients with
LUAD. Further, the low-risk group with lower TIDE score had more infiltrating immune
cells. In 100 patients with LUAD, the high-risk group with an immunosuppressive state
had a higher expression of PD-L1 and lower counts of CD8+ T cells and dendritic cells.

Conclusions: These findings demonstrated that combined multi-omics data could
determine molecular subtypes with significant differences of prognosis and TIME in
LUAD and suggested potent utility of the signatures to guide immunotherapy.
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INTRODUCTION

Lung cancer, the second largest cancer in the world, remains the
leading cause of cancer death, with a 5-year survival rate of about
19% for the vast majority of patients in China (1, 2). Lung
adenocarcinoma (LUAD) is the main histological subtype of
lung cancer and shows distinct states at the transcriptome level
and in the cell control network, with unique genetic drivers and
different prognostic characteristics (3, 4). The correlation
between classic driver oncogene mutations and the tumor
immune microenvironment (TIME) according to the presence
of programmed death-ligand 1 (PD-L1) and tumor-infiltrating
lymphocytes (TILs) is close in LUAD (5, 6). The generation of
novel drugs targeting key disease driver mutations has created
optimism for the treatment of LUAD (7). Therefore, it is of great
clinical significance to identify effective tumor markers and study
their role in the development of LUAD for early treatment.

LUAD contains a variety of genomic and epigenomic
abnormalities. DNA methylation (MET) is a form of epigenetic
modification; MET may negatively influence transcription by
impeding the induction of genes needed for epigenetic
reprogramming (8, 9). Recently, it has been reported that the
transcription level of immune infiltration genes such as cytotoxic
Tlymphocyte-associated protein 4 (CTLA4) and granzyme A
(GZMA) seems to be highly correlated with methylation of
specific CpG markers in the promoter region, suggesting a
connection between methylation and immune cell infiltration
(10). Another study showed that specific p53 mutants are related
to the immune subtype of ovarian cancer (11). DNA copy
number variations (CNV) are somatic gene changes that drive
cancer (12). Large amounts of CNV are present in lung cancer
and breast cancer, the BCL2 family of apoptosis regulators and
the NF-kB pathway are enriched among these regions of focal
CNV, and cancer cells depend on the dysregulated expression of
BCL2L1 for survival (13). The CNVmay be enriched for immune
system genes and include genes that may contribute to the
recruitment of immune cells (14).

Advances in high-throughput experimental methods and the
development of joint clustering algorithms make it possible to
cluster multi-omics data to reveal more system-level insights
(15). Recently, integrative multi-omics analysis based on somatic
mutation, copy number aberration, and gene expression profile
has brought a new perspective to the TIME in triple-negative
breast cancer (TNBC) (16, 17). It is necessary to investigate the
TIME of LUAD with significantly altered T cell compartments
and PD-L1-associated immunoediting from this integrative
perspective (18, 19).

At present, the effective tumor markers related to
abnormalities of MET and CNV in LUAD need to be further
explored. In this study, we not only identified subtypes with
different outcomes, different fractions of immune cells, and
different expression levels of immune checkpoints but also
found out that effective signatures could indicate these
differences in outcome and TIME. Finally, the prognostic value
and immunological characteristics of the signatures were
validated in samples of patients with LUAD.
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MATERIALS AND METHODS

TCGA Data Download and Preprocessing
MET data, CNV data, and single-nucleotide polymorphism
(SNP) data of LUAD samples were downloaded from the
TCGA project (http://firebrowse.org/); in addition, mRNA
expression data and clinical information of LUAD samples
were downloaded (https://portal.gdc.cancer.gov/). Mutation
allelic fraction (MAF) data were downloaded for calculation of
tumor mutational burden (TMB) by R-packet “Maftools.”A total
of 443 LUAD samples of all sets of data were used in
subsequent analyses.

The sites with missing values were deleted, and the probes
from the upstream 1,500 bp of transcription start sites (TSS) to
the downstream gene body region were matched to the
corresponding genes in MET data. The region with less than
five probes was filtered out in the CNV data. The mRNA
expression data preprocessing method deleted the genes whose
expression value was greater than 0 in less than 5% samples and
deleted silencing mutation and intron mutation in SNP data.

Data Processing
The Genomic Identification of Significant Targets in Cancer
(GISTIC) method was used to detect the region of common copy
number variations in all samples, including the horizontal copy
number variation of the chromosome arm and the minimum
common region among samples. The parameters of the GISTIC
method were set as Q ≤ 0.05 as the significance criterion of
change. When determining the peak interval, the confidence
level is 0.95. When analyzing the horizontal variation of the
chromosome arm, the region larger than the length of the
chromosome arm which is 0.98 was used as the standard,
Development of the Broad Institute online analysis tool
GenePattern (https://cloud.genepattern.org/gp/pages/index.jsf)
was analyzed in the corresponding MutSigCV module (20).
Based on GISTIC, the CNV information of each sample was
defined: b > 0.3 was defined as copy number amplification
(Gain), and b < -0.3 was defined as copy number deficiency
(Loss); the methylation level of the samples was also defined: b >
0.6 was defined as high methylation (MetHyper), and b < 0.4 was
defined as low methylation (MetHypo).

The differentially expressed gene (DEG) analysis of mRNA
data was performed using R-packet “Limma” (21). The
screening threshold criteria were |log2—a fold change (FC)| >
1.0 and FDR < 0.05.

Clustering Analysis
First, Pearson correlation coefficients between MET/CNV and
mRNA expression data were calculated. The correlation
coefficients were converted to Z value according to the formula
In(1+r)/(1-r). In the correlation coefficient test, the gene with p <
0.05 is considered to be the MET correlation (METcor) gene or
CNV correlation (CNVcor) gene. In order to filter out
unnecessary genes, we identified DEGs related to prognosis
between 443 tumor samples and 59 healthy samples using
univariate Cox regression analysis. Finally, 343 DEGs were
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included in the METcor gene set and the CNVcor gene set for
subsequent analysis.

Second, we used the R-packet “non-negative matrix
factorization” (NMF) analysis to identify the clusters of tumors
by extracting the characteristics of the samples. METcor/
CNVcor clusters were clustered according to the mRNA
expression data of the METcor/CNVcor gene set; with the
standard “Brunet” method, 50 iterations were employed and
cluster number k was set at 2–5, which were sufficient to achieve
the optimal cluster k = 2 on the basis of cophenetic, dispersion,
and silhouette.

Kaplan–Meier Survival Analysis
Overall survival (OS) is the period between surgical resection and
death or the last follow-up. Disease-free survival (DFS) was the
time to relapse or death from any cause. Progression-free
survival (PFS) was the time between surgical resection and
progression. Survival information was obtained from TCGA
and Tianjin Medical University Cancer Institute and Hospital.
Kaplan–Meier curves were used to assess the differences in
survival with the log-rank test. We calculated sensitivity and
specificity by the ROC method to determine the optimal cutoff
values for the continuous variables. According to the optimal
cutoff value, we divided the cohort into two subgroups.

Evaluation of TIME
The immune cell infiltration features of TIME between TCGA
clusters were analyzed by estimating relative subsets of RNA
transcripts (CIBERSORT), and we compared the fractions of 22
immune cell types (22). The ESTIMATED algorithms were used
to evaluate immune scores, stromal scores, and tumor purity for
each sample. The online tool Tumor Immune Dysfunction and
Exclusion (TIDE) (http://tide.dfci.harvard.edu) was used to
predict the immunotherapeutic responses of each sample based
on the transcriptome profiles.

Integrative Analysis
Integrative analysis based on multi-omics data was performed by
R-packet “iCluster” (23). “iCluster” is designed to type tumors
based on the NMFmethod using a combination ofMET data from
the METcor gene set, CNV data from the CNVcor gene set, and
mRNA expression data from both gene sets. Subsequently, 50
iterations and 10 lambda sample points between 0 and 1 were used
for optimal lambda value screening to identify the optimal MET,
CNV, and mRNA expression data weight values (lambda values).
Considering the number of clusters identified by the METcor/
CNVcor gene set, we chose 2 as the number of clustering k.

Establishment of a Prognostic Risk Model
We selected signatures in three steps. First, we performed
univariate Cox regression analysis then continued with the least
absolute correlation and selection operator (Lasso) regression
analysis. Finally, the results were followed by multivariate Cox
regression analysis. According to the expression of signatures and
the prognosis information, we build the risk model by the
multivariate Cox method and calculated the risk score of each
patient using the R-packet “survival.”
Frontiers in Immunology | www.frontiersin.org 3
Validation in the External Data Set
We download the LUAD dataset GSE31210 from the GEO
database, including 226 samples with complete follow-up data.
Then, we calculated the risk score according to the formula (risk
score = PTTG1 expression level* 0.026624+ SLC2A1 expression
level* 0.005851+ FAM83A expression level* 0.006776) and
divided the cohort to analysis survival.

Tumor Tissue Samples
A total of 180 LUAD patients were enrolled in this study (Tianjin
Medical University Cancer Institute and Hospital, China), and
informed consent was obtained from all patients. The lung
cancer stages were categorized according to the International
Association for the Study of Lung Cancer TNM staging system.
The use of patient information and tissues was approved by the
Ethics Committee of the Tianjin Medical University Cancer
Institute and Hospital.

RT-qPCR
cDNA was synthesized by PrimeScript™ RT Master Mix
(TaKaRa). Quantitative RT-PCR (RT-qPCR) was performed
with primers of PTTG1, SLC2A1, and FAM83A and analyzed
by the comparative Ct value (2-DDCt). Primer sequences of
PTTG1 are forward GACTTTGAGAGTTTTGACCTGC and
reverse GAGACTGCAACAGATTGGATTC. Primer sequences
of SLC2A1 are forward GATGAAGGAAGAGAGTC
GGCAGATG and reverse CAGCACCACAGCGATGAGGATG.
Primer sequences of FAM83A are forward GCTGACTTTA
GTGACAACGAGA and reverse CTCCACCGAGGACAAGA
AG. The RNA samples were derived from the Tianjin cohort; we
mixed 10 adjacent samples as reference and detected the relative
expression level in 41 tumor samples.

Immunohistochemistry
We selected paraffin-embedded tissue microarray (TMA) for
immunohistochemistry (IHC). IHC was performed as previously
described (24). The appropriate primary antibody was added to
cover the tissue, and slides were incubated at 4°C. Finally, the
sections were stained with DAB Substrate Kit. The images were
captured by DP Manager software (×400 magnification,
OLYMPUS), and the H-score was evaluated by two
independent pathologists.

Primary antibodies include the anti-PTTG1 antibody (PA5-
29399, Invitrogen, USA, 1:400), anti-SLC2A1 antibody (MA5-
11315, Invitrogen, USA, 1:200), anti-FAM83A antibody
(SAB2108978, Sigma, USA, 1:200), anti-CD4 antibody
(ab133616, Abcam, USA, 1:200), anti-CD8 antibody (SP16,
Invitrogen, USA, 1:200), anti-CD20 antibody (EP459Y, Abcam,
USA, 1:200), anti-CD68 antibody (KP1, Invitrogen, USA, 1:100),
and anti-CD11c antibody (EP1347Y, Abcam, USA, 1:200).

Statistical Analysis
The c2 goodness-of-fit test or Fisher’s exact test was used to
analyze categorical data. The t test or one-way ANOVA was used
to analyze continuous data. All analyses were performed using
IBM SPSS (version 21) and GraphPad Prism 8.3.0 software. p <
0.05 was considered to indicate a statistically significant difference.
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RESULTS

Different Outcomes and Different Patterns
of Immune Cell Infiltration and Immune
Checkpoints Between METcor Clusters
In order to facilitate the study of the effect of MET in LUAD, we
conducted clustering analysis based on MET data at first. The
correlation analysis between MET and mRNA expression
calculated in 443 samples from the TCGA cohort
(Supplementary Table 1) showed that the MET level of 7,668
genes was correlated with mRNA expression (p < 0.05). We
further identified the METcor gene set (n = 180) through filtering
of DEGs related to prognosis (Supplementary Table 2). With
the R-packet “NMF”, we set the cluster number k as 2–5
(Supplementary Figure 1A), carried out 50 iterations, and
determined the optimal cluster number k as 2 (Figure 1A).
The principal component analysis (PCA) showed that the
samples were separated into two METcor clusters
(Supplementary Figure 1B), METCorC1 (n = 267) and
METCorC2 (n = 176). The beta values related to the METcor
gene set were shown (Figure 1B). In addition, METCorC1
showed worse prognosis in OS (p = 0.0025) and DFS (p =
0.0058) than METCorC2 (Figures 1C, D).

Next, we evaluated the level of immune cell infiltration in the
METcor clusters. In METCorC1, the total immune score, the
stromal score, and the fraction of DC were lower (p < 0.01;
Figure 1E). In addition, the fractions of CD8+ T cells and
activated CD4+ T cells were higher (p < 0.001), and the
fraction of resting CD4+ T cells was lower (p < 0.001) in
METCorC1, while there was no difference in Tregs between
the two clusters. For macrophage, the fractions of M0 and M1
were higher (p < 0.001) and the fraction of M2 was lower (p <
0.001) in METCorC1. In order to further investigate the TIME of
the METcor clusters, we detected the immune checkpoints
(Figures 1F, G and Supplementary Figures 1C–F) targeted in
clinical immunotherapy of lung cancer. The results showed that
the expression level of programmed death 1 (PD-1), PD-L1,
indoleamine 2,3-dioxygenase 1 (IDO), and lymphocyte-
activating 3 (LAG3) in METCorC1 was higher than in
METCorC2 (p < 0.05), suggesting the deep contribution of
tumor immune evasion in METCorC1. The high score of
TIDE analysis in METCorC1 elucidated the worse outcome
with high level of infiltration by cytotoxic T cells (p < 0.001;
F igu r e 1H ) . Th e s e find ing s s u g g e s t e d t h a t t h e
immunosuppressive status caused by dysfunction of T cells
and the high expression of immune checkpoints may have an
important impact on clinical outcomes.

In the previous study, we used the same method to identify
the CNVcor gene set (n = 160) and determine the CNVcor
clusters (25). Also, we assessed the level of immune cell
infiltration and the expression of immune checkpoints in the
CNVcor clusters. Similarly, the fraction of DC was lower (p <
0.05), and both the fractions of CD8+ T cells and activated CD4+
T cells were higher (p < 0.001) in CNVCorC1 with worse
prognosis (Supplementary Figure 2A). Moreover, there was a
slight difference in PD-1, IDO, LAG3, and hepatitis A virus
Frontiers in Immunology | www.frontiersin.org 4
cellular receptor 2 (TIM3) expression between the two clusters
(p < 0.05), but no difference in PD-L1 and (CTLA4;
Supplementary Figures 2B–G). Consistent with the results of
METcor clusters, T cells of CNVCorC1 with poor outcome
tend to be in a dysfunct ional s ta te (p < 0.001 ;
Supplementary Figure 2H).

Multi-Omics Data Identified Molecular
Subtypes With Distinct TIME
In the process of determining the METcor and CNVcor gene
sets, we found that some genes were co-correlated with both
MET and CNV, and there was overlap between the METcor
clusters and CNVcor clusters (Supplementary Figures 3A–C).
In order to explore the correlation between MET and CNV, we
counted the number of MetHyper, MetHypo, Gain, and Loss
from each sample, respectively (Figure 2A and Supplementary
Table 3). Correlation analysis showed that Gain was positively
correlated with both Loss (r = 0.32, p < 0.001) and MetHyper (r =
0.68, p < 0.001), and Loss was positively correlated with
MetHyper in the meantime (r = 0.26, p < 0.001). Moreover,
there was a strong negative correlation between Gain and
MetHypo (r = -0.89, p < 0.001), and MetHypo was negatively
correlated with both Loss (r = -0.24, p < 0.001) and MetHyper
(r = -0.6, p < 0.001). The results suggest that LUAD patients with
abnormal MET are more likely to be accompanied by CNV
abnormalities. In addition, a recent study reported a similar
phenomenon in ovarian cancer (26). The correlation might be
related to the distribution of METcor genes and CNVcor genes
on the chromosome, and the variations of copy number could
make epigenetic modification more convenient (Supplementary
Table 4). Such findings highlight the clinical need for multi-
omics analysis of MET data and CNV data for early diagnosis
and accurate prognosis predictions in LUAD.

In view of the positive correlation between MET and CNV,
we combined the data of MET and CNV to perform integrative
analysis and divided the TCGA cohort into two molecular
subtypes (Figure 2B), iCluster 1 (iC1, n = 203) and iCluster 2
(iC2, n = 240). With overlaps between METcor/CNVcor clusters
and iC subtypes, survival analysis showed that OS (p = 0.00089)
and DFS (p = 0.0063) were significantly longer in iC1 compared
with iC2 (Figures 2C, D and Supplementary Figures 3D, E). It
was suggested that the integrative analysis based on gene profile,
epigenetic profile, and mRNA expression profile is capable for
predicting the prognosis in LUAD.

Next, we evaluated the level of immune cell infiltration in the
molecular subtypes. In iC1, the total immune score, the stromal
score, and the fractions of DC, activated NK cells were higher
(p < 0.01; Figure 2E). In addition, the fractions of CD8+ T cells
and activated CD4+ T cells were lower (p < 0.001), and the
fraction of resting CD4+ T cells was higher (p < 0.001) in iC1,
while there was a slight difference in Tregs between the two
subtypes (p < 0.05). For macrophage, the fractions of M0 and M1
were lower (p < 0.001) and the fraction of M2 was higher (p <
0.001) in iC1. The expression level of PD-1, PD-L1, IDO, and
LAG3 in iC2 was significantly higher than in iC1 (p < 0.001;
Figures 2F, G and Supplementary Figures 3F–I), and the TIDE
September 2021 | Volume 12 | Article 723172
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A C

B

D

E

F G H

FIGURE 1 | Different outcomes and different patterns of immune cell infiltration and immune checkpoints between METcor clusters. (A) The clustering results of NMF.
Yellow represents high correlation, and the number of yellow squares represents the number of clusters. (B) Heat map of the beta values related to the METcor gene set.
(C) Survival analysis with the Kaplan–Meier curve showed that the OS rate in METCorC1 was significantly lower than that in METCorC2 (p = 0.0025); (D) the DFS rate in
METCorC1 was significantly lower than that in METCorC2 (p = 0.0058). Significance was determined using the log-rank p test. (E) The fractions of 22 immune cell types,
stromal score, and immune score in METCorC1 and METCorC2. (F, G) Expression level of (F) PD-1 and (G) PD-L1 in METCor clusters. (H) TIDE score in METcor clusters.
*p < 0.05, **p < 0.01, and ***p < 0.001. ns, not statistically significant.
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F G H

D

FIGURE 2 | Multi-omics data identified molecular subtypes with distinct TIME. (A) Scatter distribution of MetHyper/MetHypo/gain/loss frequencies from samples.
The number in the box represents the correlation coefficient of the corresponding position; each dot represents a sample. The Spearman method was used to
calculate the correlation; p < 0.001. (B) The PCA of the two molecular subtypes. The green dots represent the patients in iC1 (n = 203). The red dots represent the
patients in iC2 (n = 240). (C) Survival analysis with the Kaplan–Meier curve showed that the OS rate in iC1 was significantly higher than that in iC2 (p < 0.001);
(D) the DFS rate in iC1 was significantly higher than that in iC2 (p = 0.0063). Significance was determined using the log-rank p test. (E) The fractions of 22 immune
cell types, stromal score, and immune score in iC1 and iC2. (F, G) Expression level of (F) PD-1 and (G) PD-L1 in iC subtypes. (H) TIDE score in iC subtypes.
*p < 0.05, **p < 0.01, and ***p < 0.001. ns, not statistically significant.
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score was lower in iC1 compared with iC2 (p < 0.001;
Figure 2H), suggesting the severely immunosuppressive TIME
in iC2. In conclusion, the molecular subtypes showed significant
differences in TIME, especially the differences in the expression
of immune checkpoints, suggesting the potential value of this
approach in guiding immunotherapy.

In addition, we used Fisher’s exact test and observed 1,704
significantly different genes in MET and 3,362 significantly different
genes in CNV between iC1 and iC2 in order to identify molecular
features of the two subtypes (Supplementary Figures 4A, B).
Further, we investigated the CNV distribution of driver genes
(Supplementary Figure 4C) and the SNP distribution of the top
15 significant genes (Supplementary Figure 4D). We found that
most driver genes of iC1 were more likely to show a Loss status of
CNV, and the TP53 mutation rate (54%) was the highest in
the cohort.

Prognostic Risk Model Built by PTTG1,
SLC2A1, and FAM83A
Then, we conducted the enrichment analysis based on 275 DEGs
in the mRNA expression profile to explore the potential
regulatory mechanism of heterogeneous progression between
the two molecular subtypes (Supplementary Figure 4E). The
Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis
showed that the DEGs were mainly concentrated in apoptosis,
cell cycle, and P53 signaling pathways (Supplementary
Figure 4F). The Gene Ontology (GO) analysis showed that the
DEGs were enriched in terms of nuclear division, spindle, and
microtubule binding (Supplementary Figure 4G). The results
indicated that the differences of biological functions caused by
these pathways between the two subtypes might contribute
to heterogeneity.

In order to simplify the clustering of molecular subtypes, we built
a prognostic risk model based on the signatures of molecular
subtypes and evaluated it in terms of both prognostic value and
immunological characteristics. We performed univariate Cox,
Lasso, and multivariate Cox regression analysis based on 275
DEGs (Supplementary Figures 5A–C). Three genes, PTTG1,
SLC2A1, and FAM83A, were screened out as signatures of
molecular subtypes (p < 0.05). According to the expression of
signatures and the prognosis information, we calculated the risk
score of each patient (risk score = PTTG1 expression level* 0.026624 +
SLC2A1 expression level* 0.005851 + FAM83A expression level*
0.006776) and divided the patients into high-risk group (n = 133) and
low-risk group (n = 301) according to the optimal cutoff value
(Figures 3A, B and Supplementary Table 5). The risk scores of
stage IV patients were higher than those of stage I patients, which
tended to increase with stage (p < 0.001; Figure 3C). Survival analysis
showed that in the TCGA cohort, the high expression groups of
signatures had poor prognosis (p < 0.0001; Figures 3D–F), and the
survival time of patients in the high-risk groupwas shorter than that in
the low-risk group (p < 0.0001; Figure 3G). Next, the prognostic
value of the risk score was evaluated. ROC analysis showed that
the prediction ability of risk score at the 3-year survival status was
superior to that of the clinical stage (AUC=0.710 versus AUC=0.703,
p < 0.001), while it was weaker than that of the clinical stage at 5 years
Frontiers in Immunology | www.frontiersin.org 7
(AUC = 0.651 versus AUC = 0.679, p < 0.001; Figures 3H, I).
Multivariate Cox regression analysis showed that the risk score was
independent and significantly correlated with prognosis (p < 0.001;
Figure 3J). In addition, we constructed a nomogram consisting of
independent prognostic factors; there were great OS rates at 1, 3, and 5
years for younger patients, lower stage, and lower risk
score (Figure 3K).

In addition, we compared the distribution of CNV and SNP
between risk subgroups and found that there was no significant
difference in CNV and SNP of TP53/KRAS aberrations between
risk subgroups (Supplementary Figures 5D, E). Furthermore,
the gene mutation frequency of the DNA damage repair (DDR)
pathway was low. There was no DDR pathway gene in the 15
genes with the most significant SNP, and the mutation rate of
PTEN with the lowest mutation frequency was only 2%. Gene Set
Enrichment Analysis (GSEA) showed that cell cycle (NES = 2.28,
FDR < 0.001) and P53 signaling pathway (NES = 1.99, FDR =
0.009) were correlated with the high-risk group (Supplementary
Figures 5F, G). These findings were similar to the previous
KEGG analysis, suggesting that the heterogeneity of the mRNA
expression between the risk subgroups may be an important
factor affecting the progression.

Validation of the Prognostic Risk Model in
the LUAD Cohort
Survival analysis from the external dataset (n = 226) showed
significant differences in clinical outcomes between subgroups
(p < 0.001), consistent with the TCGA cohort (Figure 4A and
Supplementary Table 6). The ROC analysis showed that AUC
values of the risk score for 3 years and 5 years OS were 0.691 and
0.713, respectively (Figure 4B). In addition, RT-qPCR was used
to verify the predictive ability of the model at the mRNA level
in the Tianjin cohort (n = 41), and there were significant
differences in survival between subgroups (p = 0.014;
Figure 4C and Supplementary Table 7). ROC analysis showed
that the risk score was a better predictor of prognosis than
TNM at 3 years (AUC = 0.733 versus AUC = 0.659, p < 0.001)
and 5 years (AUC = 0.705 versus AUC = 0.702, p < 0.001;
Supplementary Figures 6A, B).

In order to further validate the prognostic value of the
prognostic risk model at the protein level, 180 samples of
LUAD patients from the Tianjin Cancer Hospital were
enrolled in this study (Table 1 and Supplementary Table 8).
Immunohistochemical staining of PTTG1, SLC2A1, and
FAM83A was performed on the paraffin-embedded continuous
sections (Figure 4D). The survival analysis showed that OS was
significantly longer in the low expression group compared with
the high expression group (p < 0.0001; Supplementary
Figures 6C–E). Next, we recalculated the risk score for each
patient at the protein level (risk score = PTTG1 expression level *
0.005561 + SLC2A1 expression level * 0.008432 + FAM83A
expression level * 0.008010) and divided the patients into the
high-risk group (n = 87) and low-risk group (n = 93; Figure 4E).
The OS (Figure 4F) of the high-risk group was significantly
worse than that of the low-risk group (p < 0.0001; Table 2). The
distribution of risk scores increased with clinical stage, and
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FIGURE 3 | Prognostic risk model built by PTTG1, SLC2A1, and FAM83A. (A) Heat map of PTTG1, SLC2A1, and FAM83A in the TCGA cohort (upper figure).
Distribution of risk score (middle figure), and OS (lower figure). (B) The risk score in the high-risk group (n = 133) and low risk group (n = 301). (C) Distribution of risk
scores classified by stage. (D, G) Kaplan–Meier curves for OS by expression of (D) PTTG1, (E) SLC2A1, (F) FAM83A, and (G) risk subgroups in the TCGA cohort.
Significance was determined using the log-rank p test. (H, I) Time-dependent ROC curves measuring the predictive value of the risk score and stage at (H) 3 years
and (I) 5 years in the TCGA cohort. (J) Forest plot showing the independent prognostic factors for OS in the TCGA cohort (multivariate Cox regression analysis).
(K) Nomogram for predicting 1-, 3-, and 5-year overall survival in the TCGA cohort. Mean with 95% CI; **p < 0.01, and ***p < 0.001.
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FIGURE 4 | Validation of the prognostic risk model in the LUAD cohort. (A) Kaplan–Meier curves for OS by risk subgroups in the GSE31210. (B) Time-dependent
ROC curves measuring the prognostic value of the risk score at 3 and 5 years in the GSE31210. (C) Kaplan–Meier curves for OS by risk subgroups in the mRNA
level from the Tianjin cohort. (D) Representative IHC images for staining of signatures in 180 samples of patients with LUAD (Olympus, ×400 magnification, bar = 50
mm). (E) Heat map of PTTG1, SLC2A1, and FAM83A in the Tianjin cohort (upper figure). Distribution of risk score (middle figure), and OS (lower figure). (F) Kaplan–
Meier curves for OS by risk subgroups in the Tianjin cohort. (G, H) Time-dependent ROC curves measuring the prognostic value of the risk score and stage at (G) 3
years and (H) 5 years in the Tianjin cohort. (I) Forest plot showing the independent prognostic factors for OS in the Tianjin cohort (multivariate Cox regression
analysis). (J) Nomogram for predicting 1-, 3-, and 5-year overall survival in the Tianjin cohort. *p < 0.05 and ***p < 0.001.
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patients with advanced tumor were more at risk (p < 0.01;
Supplementary Figures 6F, G). Further, ROC analysis showed
that risk score was a better predictor of prognosis than clinical
stage at 3 years (AUC = 0.811 versus AUC = 0.774, p < 0.001)
and 5 years (AUC = 0.826 versus AUC = 0.753, p < 0.001) in the
Tianjin cohort (Figures 4G, H). Multivariate Cox regression
analysis showed that risk score, age, and clinical stage of patients
also were independent prognostic factors in this cohort (p <
0.001; Figure 4I). Moreover, the nomogram listed the three
independent prognostic factors, and OS rates at 1, 3, and 5 years
can be effectively predicted based on the scores related to each
variable (Figure 4J). In conclusion, the prognostic value of the
prognostic risk model built by PTTG1, SLC2A1, and FAM83A
was credible.

Comparison of TIME Between
Risk Subgroups
Next, we evaluated the level of immune cell infiltration in the risk
subgroups of the TCGA cohort. In the low-risk group, the total
immune score, the stromal score, and the fraction of DC were
higher (p < 0.05; Figure 5A). In addition, the fractions of CD8+ T
cells and activated CD4+ T cells were lower (p < 0.05), and both
the fractions of resting CD4+ T cells and Tregs were higher (p <
0.05) in the low-risk group. For macrophage, the fractions of M0
and M1 were lower (p < 0.01) in the low-risk group, while there
was no difference in M2 between the two subgroups. Then, we
detected the expression of immune checkpoints. The results
showed that the expression level of PD-L1 in the high-risk
group was significantly higher than in the low-risk group (p <
0.01), but there was no difference in PD-1 and other immune
checkpoints (Figures 5B, C and Supplementary Figures 7A–D).
Frontiers in Immunology | www.frontiersin.org 10
TIDE analysis showed that the low-risk group may have better
immunotherapy responses, and the risk score was correlated with
the TIDE score (Figure 5D and Supplementary Figure 7E). These
findings suggested that the risk subgroups could partially represent
the immunological characteristics of the molecular subtypes.

In addition, we compared and analyzed the association
between risk score and TMB/tumor purity. We found higher
TMB and tumor purity in the high-risk group (p < 0.01), the risk
score was correlated with TMB and tumor purity (p < 0.01), and
the risk score had better prognostic ability than TMB and tumor
purity (risk score AUC = 0.638, tumor purity AUC = 0.569, TMB
AUC = 0.501), suggesting the potent utility of this model for
clinical individualized treatment (Figures 5E–G and
Supplementary Figures 7F, G).

To validate the differences of TIME between the risk
subgroups, we detected the expression of immune cell markers
and microenvironment in LUAD samples. In this study, staining
of CD8+ T cells (CD8), DC (CD11c), B cells (CD20), CD4+ T
cells (CD4), and TAM (CD68) was used to show the infiltrating
landscape of immune cells, which accounted for the largest five
immune cell proportions in the TIME (Figure 5H and
Supplementary Table 9). The results showed that CD8+ T
cells infiltrated less in the high-risk group (p < 0.05), and the
risk score was negatively correlated with CD8+ T cell counts (r =
-0.2387, p = 0.0435); DC also infiltrated less in the high-risk
group (p < 0.05), and the risk score was negatively correlated
with DC counts (r = -0.2630, p = 0.0290); the expression of PD-
L1 was higher in the high-risk group and the risk score was
positively correlated with the expression of PD-L1 (r = 0.2427,
p = 0.0359). In addition, there was no difference in the
infiltration of B cells, CD4+ T cells, and macrophage between
TABLE 1 | Clinical parameters and their association with the risk score in the Tianjin cohort.

Clinical parameters N (%) PTTG1 p-value SLC2A1 p-value FAM83A p-value Risk score p-value

Low High Low High Low High Low High

Age (years)
<65 132 (73.3) 58 74 0.305 59 73 0.892 95 37 0.673 71 61 0.345
≥65 48 (26.7) 17 31 22 26 33 15 22 26

Gender
Males 79 (43.9) 33 46 0.980 30 49 0.094 49 30 0.017* 35 44 0.080
Females 101 (56.1) 42 59 51 50 79 22 58 43

Clinical stage
I 98 (54.4) 45 53 0.128 59 39 <0.0001*** 82 16 <0.0001*** 65 33 <0.0001***
II 24 (13.3) 12 12 8 16 14 10 9 15
III 58 (32.3) 18 40 14 44 32 26 19 39

T classification
T1 95 (52.8) 43 52 0.632 57 38 <0.0001*** 74 21 0.118 60 35 0.001***
T2 63 (35.0) 24 39 20 43 38 25 28 35
T3 16 (8.9) 5 11 2 14 12 4 2 14
T4 6 (3.3) 3 3 2 4 4 2 3 3

N classification
N0 113 (62.8) 51 62 0.227 63 50 0.001*** 92 21 <0.0001*** 68 45 0.003**
N1 14 (7.8) 7 7 5 9 9 5 8 6
N2 53 (29.4) 17 36 13 40 27 26 17 36

Smoke
No smoking 114 (63.3) 49 65 0.638 61 53 0.003** 93 21 <0.0001*** 65 49 0.059
Smoking 66 (36.7) 26 40 20 46 35 31 28 38
Septe
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Bold values indicate statistical significance p < 0.05.
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the risk subgroups (Figure 5I and Supplementary Figure 7H).
Due to the limited samples in the LUAD cohort, the patterns of
immune cell infiltration could not completely correspond to the
TCGA cohort. In conclusion, the risk subgroups showed
significantly different TIME, a high-risk group with an
immunosuppressive microenvironment expressed a high level
of PD-L1, and the low-risk group with an immunoreactive
microenvironment had a high level of immune cell infiltration.
DISCUSSION

Genome instability is clearly an enabling characteristic that is
causally associated with the acquisition of hallmark capabilities;
some clonal expansions may well be triggered by non-mutational
changes affecting the regulation of gene expression (27).
Genomics and epigenetics work together to regulate gene
expression; cells undergo further genetic diversification that
enables tumor progression, relapse, and resistance to therapy
(28). Recent advances have revealed intratumoral heterogeneity
in cell states, epigenetic profiles, and interactions with the tumor
microenvironment, and these axes of potentially heritable
intratumoral variation may provide additional cues for cancer
Frontiers in Immunology | www.frontiersin.org 11
evolution (29). Thus, the integration of multiple layers of
information for individual cancer cells can therefore help
identify new mechanisms underlying and clinically relevant
definitions for tumor heterogeneity, candidate treatment
targets, and tumor biomarkers (30).

In this study, we integrated the MET, CNV, and mRNA
expression data in 443 samples with LUAD from the TCGA
project, confirming the dysregulation of mRNA expression caused
by MET and CNV aberrations (Figure 6). Furthermore, we found
that the TP53 mutation rate (54%) was the highest in the cohort.
TP53 is a driver gene of LUAD revealed by large-scale genomic
studies, and TP53 is one of the most common somatic mutations
regulating cell cycle and apoptosis (31, 32). Amplification of TP53
made p53 activation upon transcriptionally downregulated genes
for many central cell cycle proteins which achieved cell cycle arrest
(33). Enrichment analysis of DEGs showed that the P53 signaling,
the cell cycle, and apoptosis pathways were enriched, suggesting that
tumor cells of iC2 may have stronger proliferation and anti-
apoptotic ability. The results further revealed the potential
mechanism of the heterogeneity between iC1 and iC2. We
hypothesized that the P53 signaling pathway may be involved in
the regulation of the biological function of heterogeneous tumors
between the two subtypes of LUAD.
TABLE 2 | Univariate survival analysis of clinical parameters and the risk score with PFS and OS in the Tianjin cohort.

Clinical parameters n PFS p-value OS p-value

Hazard ratio Hazard ratio
(95% CI) (95% CI)

Age (years)
<65 132 1.299 0.227 1.336 0.282
≥65 48 (0.825~2.046) (0.760~2.348)

Gender
Males 79 0.846 0.403 0.732 0.212
Females 101 (0.568~1.261) (0.443~1.208)

Clinical stage
I+II 122 3.304 <0.0001*** 4.834 <0.0001***
III 58 (2.067~5.281) (2.710~8.623)

Tumor
T1 95 2.300 <0.0001*** 2.408 0.0005***
T2+T3+T4 85 (1.536~3.444) (1.460~3.971)

Lymph node
N0 113 2.954 <0.0001*** 4.387 <0.0001***
N1+N2 67 (1.913~4.562) (2.557~7.527)

Smoke
No smoking 114 1.091 0.675 1.364 0.221
Smoking 66 (0.721~1.652) (0.810~2.298)

PTTG1
Low 75 3.936 <0.0001*** 3.798 <0.0001***
High 105 (2.654~5.837) (2.316~6.228)

SLC2A1
Low 81 4.105 <0.0001*** 8.024 <0.0001***
High 99 (2.758~6.110) (4.890~13.17)

FAM83A
Low 128 2.943 <0.0001*** 3.909 <0.0001***
High 52 (1.809~4.785) (2.175~7.025)

Risk score
Low 93 5.519 <0.0001*** 10.96 <0.0001***
High 87 (3.638~8.372) (6.597~18.20)
Septemb
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FIGURE 5 | Comparison of TIME between risk subgroups. (A) The fractions of 22 immune cell types, stromal score, and immune score in the high-risk group
(n = 133) and low-risk group (n = 301) of the TCGA cohort. (B, C) Expression level of PD-1 (B) and PD-L1 (C) in risk subgroups of the TCGA cohort. (D–F) Value of
(D) TIDE, (E) TMB, and (F) tumor purity in risk subgroups of the TCGA cohort. (G) Time-dependent ROC curves measuring the predictive value of the risk score,
TMB, and tumor purity in the TCGA cohort. (H) Representative IHC images for staining of CD8+ T cell, CD11c+ DC, CD20+ B cell, CD4+ T cell, CD68+ macrophage,
and PD-L1 classified by risk score in 100 samples of LUAD patients from Tianjin (Olympus, ×400 magnification, bar = 50 mm). (I) The counts of CD8+ T cell, DC,
B cell, CD4+ T cell, and macrophage and the expression level of PD-L1 in the Tianjin cohort. High-risk group (n = 52) and low risk group (n = 48). Mean with 95% CI;
*p < 0.05, **p < 0.01, and ***p < 0.001. ns, not statistically significant.
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Subsequently, we found differences in immune characteristics
between subtypes. Professional killer cells include NK and CD8+
T cells, which represent some of the most effective immune
defense mechanisms against cancer cells; stromal CD8+ T cell
density has independent prognostic impact in resected NSCLC
and is a good candidate marker (34, 35). Tregs can suppress the
activation of the immune system, maintain immune tolerance to
Frontiers in Immunology | www.frontiersin.org 13
self-antigens, and contribute to immunosuppression of
antitumor immunity, which is critical for tumor immune
evasion in epithelial malignancies, including lung cancer (36).
Accumulating evidence suggests that PD-1/PD-L1-targeting
antibodies are effective for treating many types of human
cancer including NSCLC (37, 38). However, the status of PD-
L1 expression on tumor cells alone is not sufficient to identify
A

C

B

D

FIGURE 6 | Overview of the study design. (A) Clustering analysis of METcor/CNVcor gene sets by NMF. (B) Identification and analysis of molecular subtypes.
(C) Signatures of molecular subtypes built the prognostic risk model, which was validated in multiple cohorts. (D) Distinct TIME of risk subgroups was validated by IHC.
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patients who might respond to PD-1/PD-L1 blockade
immunotherapy; mismatch repair and the presence of tumor-
infiltrating lymphocytes including CD8+ T cell and Tregs in
tumor samples could also influence the immune response (39,
40). TIDE was a computational method used to model two
primary mechanisms of tumor immune evasion: the induction of
T cell dysfunction in tumors with high infiltration of cytotoxic T
lymphocytes (CTL) and the prevention of T cell infiltration in
tumors with a low CTL level (41). Compared with single
detection of the PD-L1 expression level or infiltration of CD8
+T cells, TIDE is more comprehensive to evaluate the response of
patients to immunotherapy. With the lower TIDE score,
immunotherapy of immune checkpoint inhibitors (ICIs) may
be beneficial to iC1.

In order to screen out personality signatures that could
represent heterogeneous molecular subtypes, DEGs in the
mRNA expression profile between the two subtypes were
processed by Cox and Lasso algorithms. Finally, PTTG1,
SLC2A1, and FAM83A were selected as signatures to build a
prognostic model. Physiological PTTG1 properties include
securin activity and DNA damage/repair regulation (42, 43).
Tumorigenic mechanisms for PTTG1 action involve cell
transformation and aneuploidy, apoptosis, and tumorigenic
microenvironment feedback (44). The main function of
SLC2A1 is to supply the cell with glucose by facilitated
diffusion of glucose molecules across the plasma membrane,
which is a key protein in the cellular energy metabolism pathway
and could mediate metabolic deregulation (45, 46). A stable
metabolism was required for T cell differentiation and effector
function; metabolic deregulation could cause T cell dysfunction
(47, 48). FAM83A as MET signature shows a significant
correlation to tumor mutation burden and DNA damage
response pathways (49, 50). DNA repair deficiency can trigger
a more robust and long-lasting immune response, and strong
TIL infiltration with tumor eradication with the presence of
frameshift-mutated neoantigens, mutational landscape, and
mismatch-repair deficiency are related to the immune response
as candidate biomarkers for ICI immunotherapy (51, 52). The
three genes PTTG1, SLC2A1, and FAM83A have different
functions, and the prognostic risk model established by
complementary advantages integrated their respective
characteristics. The expression of signatures led to individual
differences in prognostic risk. In order to provide a quantitative
method for clinicians to predict the prognosis of LUAD patients,
we constructed a nomogram using independent prognostic risk
factors including risk scores. The nomogram generates an
individual probability of a clinical event by integrating diverse
prognostic and determinant variables and meets our desire for
clinically integrated models and fulfill our drive toward
personalized medicine (53).

Interestingly, the differences in immune cell infiltration
between the high-risk group and low-risk group were very
similar to the differences between the two molecular subtypes.
The total immune score and the fraction of DC were higher in
the low-risk group compared with the high-risk group. More
recently, as a novel definition of cancer, immune scores
Frontiers in Immunology | www.frontiersin.org 14
implicated at all stages a complex and dynamic interaction
between tumor cells and the immune system, allowing TIME
to be used to represent immune parameters related to patient
survival (54). DC play key roles in the initiation and regulation of
innate and adaptive immune responses and influence immunity
and tolerance in cancer settings, and there is currently much
interest in modulating DC function to improve cancer
immunotherapy (55, 56). Circulating monocytes give rise to
mature macrophages and are also heterogeneous themselves
(57). In this study, we detected CD68 as an indicator of TAM,
including M1 and M2 macrophages, which are difficult to
characterize due to their heterogeneity (58). In fact, we also
stained the infiltration of NK cells (CD56) in the TIME, but since
NK cells were mainly distributed in the peripheral blood, we
could not detect their infiltration. Moreover, the risk score was
correlated with TIDE score, TMB, and tumor purity, suggesting
that the high-risk group may be associated with T cell
dysfunction, higher TMB, and higher tumor purity. Immune
cell infiltration caused low purity and high TMB with
neoantigens, which can bring long-lasting clinical benefits.
However, there are limitations for using TMB to identify
potential patients; the response rate in patients with tumors
that have TMB-H (≥20 mutations/Mb) is only 45% (59, 60).
These findings indicated that the risk score is strongly associated
with immune cell infiltration; a high-risk score indicates poor
prognosis and poor immune cell infiltration. The patients in the
low-risk group have a lower expression of PD-L1, infiltrating
more immune cells. Therefore, immunotherapy targeted at PD-
L1 may be beneficial to patients in the low-risk group.

In conclusion, we found an integrative perspective to identify
subtypes; signatures of subtypes may be useful indicators for
predicting prognosis, and patients in the low-risk group may
benefit more from immunotherapy, thus facilitating personalized
management in LUAD.
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