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Both theoretical and experimental evidence indicate that synaptic excitation and inhibition

in the cerebral cortex are well-balanced during the resting state and sensory processing.

Here, we briefly summarize the evidence for how neural circuits are adjusted to achieve

this balance. Then, we discuss how such excitatory and inhibitory balance shapes

stimulus representation and information propagation, two basic functions of neural

coding. We also point out the benefit of adopting such a balance during neural coding.

We conclude that excitatory and inhibitory balance may be a fundamental mechanism

underlying efficient coding.

Keywords: stimulus representation, information propagation, excitatory-inhibitory balance, sparse coding, energy

efficiency

INTRODUCTION

Neural information coding is one of the central topics in neuroscience. The brain utilizes some
features of action potential sequences (spike trains) to encode sensory and cognitive information.
The algorithm operating within those features is called neural code. Half a century ago, Perkel
and Bullock noted that a potential neural code must serve at least four functions: stimulus
representation, interpretation, transformation, and transmission (Perkel and Bullock, 1968). In
this review, we will mainly focus on the representation and transmission parts. For the other
aspects of neural coding, please refer to other books (Rieke et al., 1997; Quiroga and Panzeri,
2013). Stimulus representation indicates that the neural activity should be altered by the stimulus
properties needed to be coded, and therefore, the neural code can represent this stimulus (Perkel
and Bullock, 1968; Kumar et al., 2010). Due to its basic role, neural representation has been
extensively studied using experimental and theoretical approaches. Barlow in 1961 proposed a
theoretical framework which hypothesized that the action potentials in the sensory neurons formed
a neural code for efficiently representing sensory information. By efficient Barlow meant that the
code minimized the number of neurons and spikes needed to represent an input signal. This is the
origin of sparse coding or efficient neural coding (Barlow, 1961). Barlow’s model treats the sensory
pathway as a communication channel where neuronal spiking is an efficient code for representing
sensory signals. The spiking code aims to maximize available channel capacity by minimizing the
redundancy between representational units (Simoncelli and Olshausen, 2001). In addition, one of
the major components of a typical neural code is reliable information transmission. The brain is
highly modular, and a successful neural code should be able to be transmitted (propagated) from
one module to another with high fidelity (Perkel and Bullock, 1968; Kumar et al., 2010). The
transmission property of neural coding has also drawn significant attention recently (Diesmann
et al., 1999; Kistler and Gerstner, 2002; van Rossum et al., 2002; Litvak et al., 2003; Vogels
and Abbott, 2005; Kumar et al., 2008, 2010). The balance of excitatory and inhibitory synaptic
membrane currents (E/I balance) received by a neuron underlying its spontaneous firing and/or
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responding to sensory inputs has been widely observed (van
Vreeswijk and Sompolinsky, 1996; Brunel, 2000; Shu et al., 2003;
Wehr and Zador, 2003; Zhang et al., 2003; Froemke et al., 2007;
Murphy and Miller, 2009). Here, E/I balance generally refers to
excitatory-inhibitory balance in terms of either overall global
balance or temporal balance on a fine time scale. Global E/I
balance refers to the bulk measurement of relative contributions
of excitatory and inhibitory synaptic currents received by a
specific neuron. It is called global E/I balance if across a range
of spatio-temporal conditions of interest, the ratio between the
synaptic excitation and inhibition is kept approximately constant
(on a slow time scale). In some situations, even the measurement
of firing rates of excitatory and inhibitory neurons or excitatory
and inhibitory synaptic conductances received by a neuron can
represent E/I balance for individual neurons within the cortical
circuit (Shu et al., 2003; Southwell et al., 2010; Xue et al., 2014;
Froemke, 2015). Temporal balance indicates that the relative
magnitudes of excitatory and inhibitory synaptic currents are
matched in a point-to-point manner on a fast time scale (Okun
and Lampl, 2008; Froemke, 2015; Denève and Machens, 2016).
Global E/I balance is often used to examine pathological or
dysfunctional brain states, whereas temporal E/I balance can be
used to examine the effect of synaptic correlation on spiking
timing to sensory input and stimulus feature selectivity. Both
global and temporal E/I balances enable cortical operation in a
precise manner to represent sensory inputs. The disruption of
the cortical E/I balance has been demonstrated to cause cognitive
dysfunction, such as schizophrenia (Yizhar et al., 2011; Murray
et al., 2014). Because the E/I balance may be the key structure
underlying the neural code and cognition, multiple questions
arise: (1) How is the E/I balance achieved? (2) Why does the
neural system choose such a scenario to function? (3) How
does the E/I balance evolve during neural plasticity and coding?
Specifically, how does the E/I balance influence information
representation and propagation across different areas?

Recently, more and more studies are conducted to answer
these questions. Here, we briefly summarize the evidence for the
existence of an E/I balance in the cortex and the mechanisms
by which the E/I balance is achieved. We then review the
experimental and computational development on the impact of
the E/I balance on neural coding, especially the processes of
stimulus representation and information propagation.

E/I BALANCE IS UBIQUITOUS IN
CORTICAL CIRCUITS

Over the last decades, E/I balance has been found to exist in many
situations including ongoing spontaneous activity, sensory-
evoked activity, and storage of memories. Synaptic plasticity at
both excitatory and inhibitory synapses is suggested to play a
central role in balancing the excitatory and inhibitory inputs to
a target cell during the training or learning process (Vogels et al.,
2011; Yu et al., 2014). The level of the developed balance depends
on the time scale of the correlation between the excitatory and
inhibitory inputs to the cell, ranging from a global balance, either
without a correlation or with a correlation at a slower time scale,

to a fine-scale balance for strong correlations with a fast time
scale.

Global balance is quantified by using global measures of
excitatory and inhibitory synaptic currents, including measuring
spontaneous or ongoing excitatory and inhibitory postsynaptic
currents (mEPSC and mIPSC) and the field potential, which
is considered a rough signature of the relative timing and
magnitude of excitation and inhibition (Froemke, 2015). In fact,
it is difficult to simultaneously measure excitatory and inhibitory
current inputs on the same neuron. However, researchers
can overcome this challenge by recording the excitatory
and inhibitory currents separately from a target neuron by
using the voltage-clamp recording technique. For voltage-clamp
recordings, cells were progressively moved through a series of
holding potentials, typically from −85 to +10mV, in steps
of 10mV, and held at each potential for a few minutes to
record several trials at each membrane potential. Briefly, average
holding currents were constructed using at least 10 trials per
holding potential, and used to construct current vs. voltage (I–V)
plots. In cortical neurons, the reversal potential of EPSCs is
around 0mV, whereas for GABAA-receptor-mediated IPSCs, it is
around−75mV. The average synaptic currents reverse at around
−35mV (i.e., reverse potential Esynapse) for cortical neurons. The
electrode contained 2M caesium acetate and 50mM QX-314 to
minimize the contribution of K and Na currents. The recorded
synaptic current is defined as

Isyn = gsyn(V − Esyn) (1)

where the total measured synaptic conductance gsyn is composed
of the sum of the excitatory conductance (ge) and inhibitory
conductance (gi) as follows:

gsyn = ge + gi (2)

In addition, the total synaptic current is the sum of the excitatory
synaptic current Ie = ge(V − Ee) and inhibitory synaptic current
Ii = gi(V− Ei),

Isyn = ge(V − Ee)+ gi(V − Ei) (3)

where Ee = 0mV is the reversal potential for excitatory synaptic
current, and Ei = −75mV is the reversal potential for inhibition
for cortical neurons. To solve the above equations, we have

ge =
gi(Ei − Esyn)

Esyn − Ee
, gi = gsyn − ge (4)

This method helps to calculate the trial-by-trial average
conductance of both currents (ge and gi) (Shu et al., 2003; Haider
et al., 2006; Monier et al., 2008). By using this method, Shu
et al. found that the received synaptic conductance values of
ge and gi were always balanced with a certain ratio during the
up state generated by recurrent connection patterns in the in
vitro brain slice (Figure 1A; Shu et al., 2003). Other experimental
results also support the idea that the ratio of gE and gI of a
given neuron remains constant across different conditions and
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FIGURE 1 | Experimental evidence of the E/I balance. (A) Average currents during the up state in recordings clamped at different membrane potentials from in vitro

brain slices (top, red, and blule curves showing the average currents, the green curves showing the raw traces at +30mV), the reversal potential of the average

synaptic currents (middle), and additional conductances during the up state (bottom). Adapted from Shu et al. (2003). (B) Simultaneous in vivo recordings from two

cortical cells. One cell (red) was continuously recorded in a hyperpolarized mode, and the other cell (blue) was switched between depolarized and hyperpolarized

modes (current depicted below the traces). Dashed lines mark the onset of synaptic events. Insets show examples of two events (marked by asterisks). Adapted with

permission from Okun and Lampl (2008). (C) Recordings in humans during awake (left), slow-wave sleep (SWS) (middle), and rapid-eye movement (REM) (right)

states. Top row shows 60-s windows; bottom row shows a 10-s window of the same state. Putative inhibitory neurons (FS cells) are shown in red. Putative excitatory

neurons (RS) are depicted in blue. At the top of each panel, a sample LFP trace (in blue) accompanies the spiking activity. Histograms show the overall activity of the

RS (blue) and FS (red) cells. Adapted with permission from Dehghani et al. (2016).

in many systems (Wehr and Zador, 2003; Zhang et al., 2003;
Haider et al., 2006; Xue et al., 2014). Additionally, many studies
have demonstrated that the E/I balance still exists even when
the system is driven by external inputs (Anderson et al., 2000;
Martinez et al., 2002; Tan et al., 2004, 2011;Wilent and Contreras,
2005; Cardin et al., 2007; Wu et al., 2008; Tan and Wehr, 2009;
Runyan et al., 2010; Liu et al., 2011). In fact, using in vivo whole-
cell patch clamp, one can measure the excitatory or inhibitory
conductance magnitude under different stimulus conditions.
Instead of the classical tuning curve for firing rate vs. stimulus,
one can plot the relation of conductance vs. stimulus (Anderson
et al., 2000; Wehr and Zador, 2003; Zhang et al., 2003; Cardin
et al., 2007; Runyan et al., 2010).

To understand the E/I balance on the fine time scale (the
temporal balance), researchers have tried to simultaneously
record the time series of both the excitatory and inhibitory
currents and then obtain the correlation between them. Since
adjacent neurons in the cortex generally receive strongly
correlated synaptic inputs, researchers can record both excitatory
and inhibitory currents separately and simultaneously, each
in a single neuron in a pair of neighboring cells, and the
correlation between the excitatory and inhibitory currents onto
a single cell can be inferred from the correlation between the

time series from the two cells (Okun and Lampl, 2008). Based
on this method, researchers have found that the excitatory
and inhibitory inputs from ongoing spontaneous activity or
sensory-evoked activity are strongly correlated with one another,
with inhibitory currents tracking excitatory currents closely
with a few milliseconds of a delay (Figure 1B; Okun and
Lampl, 2008). More evidence has also shown that a fine-scale
E/I balance exists during oscillations in the gamma and beta
frequencies (Atallah and Scanziani, 2009; Poo and Isaacson,
2009).

Recently, in an interesting study using in vivo recordings with
dense multielectrodes in the neocortex of higher level mammals
(including human and primate), Dehghani and colleagues found
that excitatory and inhibitory ensembles are well-balanced and
co-fluctuate instantaneously in all states of the wake-sleep cycle
(wake, slow-wave sleep, and rapid-eye movement sleep) at
different temporal scales (Figure 1C; Dehghani et al., 2016).

Beyond the temporal view of E/I balance, the spatial properties
of E/I balance are also important in information processing. For
instance, researchers found that local E/I imbalance coexisting
with overall balance facilitates neural network creating novel
features selectivity (Wu et al., 2006). However, we will mainly
focus on temporal E/I balance in the following discussion.
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MECHANISMS TO ACHIEVE E/I BALANCE

To achieve global E/I balance in a dynamic neural network,
several theoretical studies have shown that a neural network
needs to be equipped with the following properties: (1) neurons
in the network should be connected sparsely (the number of
connections per neuron should be much less than the total
number of neurons in the network) and randomly; (2) the
strength of the inhibitory connections should be high enough
to balance network in which feedback excitation and inhibition
could be canceled (van Vreeswijk and Sompolinsky, 1996,
1998; Brunel, 2000). Under such conditions, the average of
the excitatory and inhibitory synaptic currents could be well-
balanced, and the network dynamics could be stable. In such
a balanced network, the membrane potentials and spike trains
of the individual neurons may be highly uncorrelated (van
Vreeswijk and Sompolinsky, 1996, 1998; Brunel, 2000). Beyond
the two aspects mentioned above, synaptic plasticity may also
play a vital role in the formation of the E/I balance (Froemke,
2015).

In contrast to requirements for global balance of a network,
Renart et al. proposed a neural network with random and
dense connections (with the number of connections per neuron
comparable to the total number of neurons) to achieve a
more fine-scale E/I balance (Renart et al., 2010) by tuning
the synaptic conductances and connection structure. In such
a network, the excitatory and inhibitory currents received by
each neuron are strongly correlated on a fast time scale. If
excitatory and inhibitory currents cancel each other, then the net
input current will be highly random, resulting in highly variable
neural responses. Boerlin et al. (2013) have demonstrated that
both variable neural responses and balanced excitation/inhibition
are necessary consequences of neural networks that represent
information efficiently in their spike trains. However, the
Boerlin model assumes instantaneous synapses (transmission
without delays) and only achieves balance because of this
assumption. Further work was allowed to relax this assumption
and introduced realistic synapses with synaptic delays (Koren
and Deneve, 2017).With realistic synapses, it is however required
to fine-tune the parameters that weight the cost on spiking. Those
parameters can be interpreted in biological terms as determining
the excitability of the network.

Furthermore, a theoretical study proved that a network with
synaptic plasticity of inhibitory synapses could evolve into a fine-
scale E/I-balanced state with sparse connections (Vogels et al.,
2011), and a later experimental study demonstrated the existence
of this form of synaptic plasticity (D’amour and Froemke, 2015).
Further information about inhibitory synaptic plasticity could be
found in other good summaries (Kullmann et al., 2012; Sprekeler,
2017).

Beyond the theoretical work, experimental studies have
provided some additional insights into the development of E/I
balance (Dorrn et al., 2010; Sun et al., 2010; Tao et al., 2014;
Froemke, 2015). For example, Liu et al. found that the ratio of
the number of the excitatory and inhibitory synapses on the
dendrites of cultured hippocampal neurons remained constant
(Liu, 2004) along different developmental stages, which suggests

that the E/I balance may be related to an anatomical basis. In
addition, sensory experiences at different developmental stages
may play important roles in shaping the final E/I balance level
(Froemke, 2015).

E/I BALANCE AND INFORMATION
REPRESENTATION

One of the fundamental functions of the neural systems is
to represent the sensory information, a process termed neural
coding, and make use of it for guiding action. Representing
neural signals is the process of interpreting prominent features of
external sensory inputs with individual or population neuronal
activity. Experimental and theoretical studies have demonstrated
that action potential generation is an energy-expensive process
(Attwell and Laughlin, 2001; Alle et al., 2009; Yu et al., 2012).
Therefore, efficient coding here can be either defined as maximal
information coding with as few neurons and action potentials
as possible (i.e., minimal cost) while not losing fidelity in the
representation of certain stimulus features (equivalent to sparse
coding as defined by Barlow, 1961) or minimized coding error
during stimulus representation (Denève and Machens, 2016).
Although there is no strict theoretical proof, the minimal coding
error and information maximization or redundancy deduction
are related in some aspects. Intuitively, coding error reduction
means a decrease in noise information, which would increase the
mutual information between the neural response and the input
signal, thus increasing the information coding efficiency. Because
E/I balance is ubiquitous in neural systems, there must be some
strategic benefits of E/I balance for efficient representation.

Here, we summarize the evidence for this as follows.

Irregular Spike Trains and Global E/I
Balance
A typical well-known property of the firing pattern of an
individual neuron recorded in vivo is its irregularity or
stochasticity, which is similar to Poisson-like time sequences.
Revealing how individual neurons establish such irregular firing
patterns is important for understanding the network states
with spontaneous firing and how such states could be used to
represent stimulus inputs. In fact, it has been widely shown
that irregular firing patterns could be achieved by a neuron
with balanced excitatory and inhibitory synaptic inputs on
multiple time scales (Shadlen and Newsome, 1994, 1998; van
Vreeswijk and Sompolinsky, 1996; Amit and Brunel, 1997;
Brunel, 2000). There is an intuitive explanation to why such a
globally balanced network would lead to the irregular firing of a
single neuron. Imagine that there is a neural network where each
neuron is bombarded with noisy, Poisson-distributed synaptic
inputs from both excitatory and inhibitory sources. When the
excitatory input values exceed the inhibitory inputs, then the net
mean positive input would depolarize the neuron to fire quasi-
regularly. However, if the excitatory inputs and inhibitory inputs
cancel each other out in a slow time scale without correlation on
a fast time scale, then the membrane potential of each neuron
would randomly cross the threshold dependent on the fast noise,
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resulting in a spiking pattern with a high level of irregularity
(Denève and Machens, 2016).

Although such a network architecture would capture the
irregularity of the neural firing pattern, the network behavior
would become very sensitive to even a small perturbation due to
its chaotic dynamics (Shadlen andNewsome, 1998; Brunel, 2000).
This hypothesis suggests a low reliability of the neural network
in response to sensory input, which makes such an E/I-balanced
network represent stimulus features in a poor fidelity.

Response Sparseness and E/I Balance
Action potential generation with actively pumping Na+ ions
out of membrane for resting state recovery is considered to be
energetically expensive (Siesjö, 1978), especially for cold-blooded
animals (Yu et al., 2012). Lennie has estimated the cost of cortical
computation processes in humans and suggests that only <1%
of the total human brain can be substantially active concurrently
(Lennie, 2003). However, this estimation is incorrect because his
calculation is based on neuronal spiking costs in cold-blooded
animals, but the spike process in warm-blooded animals is
much more efficient in terms of energy cost (Alle et al., 2009;
Howarth et al., 2012; Yu et al., 2012; Ju et al., 2016). Even
so, the spiking process is still costly. Laughlin and Sejnowski
suggested that to employ action potentials in neural coding in
an energy-efficient manner, there may be evolutionary pressure
to develop metabolically efficient neural codes (Laughlin, 2003).
It was suggested that energy efficiency can be improved through
the use of sparse coding (Field, 1994; Levy and Baxter, 1996).

Response sparseness is a phenomenon in which only a small
fraction of cells in the network exhibit a transient response to
an input signal (Vinje and Gallant, 2000). This implies a low-
cost response to a stimulus, and such an energy-saving paradigm
greatly extends the coding capacity of a large family of sensory
inputs (Olshausen and Field, 1996; Dhawale et al., 2010; Wolfe
et al., 2010; Koulakov and Rinberg, 2011). E/I balance has been
found to be critical for generating response sparseness in several
neural systems (King et al., 2013; Yu et al., 2013; Zhu and Rozell,
2015). Yu and colleagues implemented a large-scale olfactory
bulb model with mitral and granule cells connected by dendro-
dendritic synapses with regular LTP/LTD synaptic plasticity; they
found that balanced excitation/inhibition in strongly activated
mitral cells leads to a sparse representation of odorant inputs
(Figure 2A; Yu et al., 2013, 2014). They further found that
such a network with synaptic plasticity could always evolve
into a sparsely oscillatory state to represent the input signal
efficiently. During the evolving process, global synaptic excitation
and inhibition gradually reach an optimal balance, with which
the network produces firing patterns with the highest level of
sparseness (Figure 2B; Yu et al., 2014). The optimal level of
synaptic excitation and inhibition could produce the highest level
of sparseness and decorrelation in the network response and
reduce the energy cost (Nawroth et al., 2007). Yu and colleagues
reported network simulation results indicating that higher
sparseness is always associated with more decorrelated responses
(Yu et al., 2014) and continuously learning new experience
could further improve a network’s sparse responses (Zhou et al.,
2016). The decorrelated responses suggest a reduction in the

redundancy of the coding scheme, thus resulting in efficient
coding in an energy-saving manner. Therefore, in some previous
publications, network response sparseness is also referred to
as sparse coding. Such a coding scheme is similar to efficient
coding in some aspects, but efficient coding is not necessarily
accompanied by neural response sparseness.

Interestingly, the formation of response sparseness in such an
olfactory bulb network does not depend on a specific type of
synaptic plasticity, meaning either Hebbian or non-hebbian rules
can both develop the network dynamics into sparseness during
the training process (Migliore et al., 2010; Yu et al., 2013, 2014).
In a recent work by Vogels et al. (2011), the sparsely connected
network endowed with plasticity of inhibitory synapses could
evolve to a sparse response to natural stimuli (Vogels et al., 2011).
In addition, this type of network can accommodate synaptic
memories with activity similar to the background activity; and
same activity can be reactivated by external stimuli (Vogels et al.,
2011).

Note that the above approaches assumed sparse network
connection, i.e., neurons receive few connections K compared
to the size of the network N, so that K<<N. Such a
sparse connectivity usually leads to uncorrelated excitation and
inhibition, resulting in random fluctuations as input to neurons
within network. Indeed, achieving efficient representation of
input signal does not require network to be sparsely connected.
Recent theoretical works investigated network with dense
connections. In such a scenario, excitation and inhibition
received in a neuron are strongly correlated while neuronal
output spike trains are highly uncorrelated. Such a balanced
network could represent information with minimal coding error
in their spikes (Boerlin et al., 2013). To ensure the network
performance with optimal E/I balance, two general mechanisms
are required: (1) synaptic plasticity is a necessary condition to
adjust the tight balance of synaptic excitation and inhibition,
which can efficiently mediate the delicate response tuning
necessary to selectively filter intense sensory input, condensing
it to the network-sparse responses (Finelli et al., 2008; Boerlin
et al., 2013; Froemke, 2015), and (2) neurons fire a spike
only if it improves the representation of dynamical variables.
When a network satisfies these conditions, it evolves naturally
to achieve the objective representation of a time-varying input
with a minimum number of spikes with maximal efficiency
(Boerlin et al., 2013; Denève andMachens, 2016). In the following
work, they further revealed that the maximally efficient network
is right at the transition from synchronous to asynchronous
network states (Koren and Deneve, 2017). Moreover, there
is a tight relationship between coding efficiency and energy
efficiency; it was observed that there is a “sweet spot” at
which the maximal coding efficiency coincides with a rather
low number of spikes (Boerlin et al., 2013; Koren and Deneve,
2017). Beyond using dense connections to implement an E/I-
balanced network, their work also proposes the possibility that
irregular firing could be used to efficiently represent stimulus
in a population code strategy (Boerlin et al., 2013; Koren and
Deneve, 2017). Deneve and Machens proposed a spike code
strategy at the population level to employ irregular spikings in
efficient coding of input signals (Denève and Machens, 2016).
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FIGURE 2 | The correlation of firing sparseness and mitral cell spiking in a large-scale olfactory bulb model. (A) Schematic representation of balanced and unbalanced

excitation and inhibition in the MC–GC circuit. Three activated middle MCs (solid black triangles) receive strong input from glomeruli (solid deep green color); through

back-propagation of APs in their lateral dendrites, they distribute the excitation (red) through reciprocal synapses, activating lateral inhibition in the surrounding MCs

through the reciprocal inhibitory synapses. This mode of excitation and inhibition is balanced, and these MCs are called MC type I. The activated GCs (small blue

spheres) deliver lateral inhibition to other surrounding MCs with weak or no excitatory inputs, making their reciprocal synapses unbalanced. These MCs are called MC

type II. MCs that do not receive lateral inhibition are MC type III. (B) The MC network sparseness level as a function of reciprocal inhibitory weight to excitation weight

ratio ginh/gex for the cases of different gMax
inh with a fixed gMax

ex = 0.5 nS and different gMax
ex with a fixed gMax

inh = 0.3 nS. (C) Same in B but shows the mitral cell spiking

correlation. Adapted from Yu et al. (2014).

In their theory, a non-zero input stimulus causes membrane
depolarization (so-called decoding error) of individual neurons
first in the population code. As soon as one of the neurons hits
the spike thresholds and fires, the estimated decoding errors
decrease through fast recurrent inhibition driven by the spiking
neuron. This results in an efficient spike code at the population
level through tight E/I balance. Indeed, the large-scale mitral-
granule olfactory bulb model simulated by Yu and colleagues has
implemented such a coding process for efficient representation of
input odors (Yu et al., 2014).

Using single-compartment computational models with
stochastic voltage-gated ion channels, Sengupta et al. (2013)
calculated information content under either E/I-balanced or
unbalanced conditions. They found that balanced synaptic
currents evoke fewer spikes per second than the unbalanced
conditions but with more information content in a single spike
(bits/spike) in the balanced conditions. The total informative
rate is similar in the two conditions (Sengupta et al., 2013). These
results strongly support the hypothesis that E/I balance can
promote both coding efficiency and energy efficiency.

Indeed, maximizing the ratio of the coding capacity to energy
cost has been suggested to be one of the key principles chosen
by the nervous system to evolve under selective pressure, and
the metabolic energy efficiency demands of the nervous system
could be sufficiently large to influence the design, function and
evolution of the brain (Niven and Laughlin, 2008). A recent
theoretical work revealed a general rule for population coding
in which the neuronal number should be sufficiently large to
ensure reliable information transmission that is robust to the
noisy environment but small enough tominimize energy cost (Yu
et al., 2016). Experiments in cortex cultures, anesthetized rats,
and awake monkeys, as well as computer models, have shown
that balanced excitation/inhibition (E/I) could lead to a critical
dynamic of avalanches in the cortical neural network (Shew et al.,
2009; Poil et al., 2012; Yang et al., 2012). Networks with different
E/I balance could results in distinct network activity dynamics.
Networks with low E/I balance show wave-like propagation over
short distances. Networks with intermediate E/I balance often
display patterns that are able to span long distances in the
network. Networks with high E/I balance have high network

Frontiers in Neuroscience | www.frontiersin.org 6 February 2018 | Volume 12 | Article 46

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Zhou and Yu Synaptic Balance for Efficient Neural Code

activity, but have little spatial coherence in their activity patterns.
The critical-state dynamics (which is characterized by the inverse
power-law distribution of neuronal avalanches) of avalanches and
oscillations jointly emerge in a neuronal network model when
excitation and inhibition is well-balanced. Neuronal avalanche is
generally defined as an active activity or event emerging from a
silence state and ending with a silence or inactive state (Beggs
and Plenz, 2003). The number of metastable states (Haldeman
and Beggs, 2005) and the dynamic range to the input stimuli
(Shew et al., 2009), as well as the information capacity and
transmission (Beggs, 2008; Shew et al., 2011) of the cortical neural
networks, could be maximized at the critical point (Shew et al.,
2009; Poil et al., 2012; Yang et al., 2012). Here, information
capacity means the potential or limits on maximum information
that can be transferred or coded by a neural parameter (e.g.,
firing rate or spike timing) of neural systems, which could help
us to understand how sensory and other information is being
processed in the brain (Barlow, 1961; Bialek, 1987; Rieke et al.,
1997). Of particular interest are usually the optimal conditions
under which the information between stimuli and responses is
maximized (Barlow, 1961; Atick, 1992).

The developed E/I balance within brain circuits during rest,
learning, and memory states may be beneficial for the brain
to maintain an optimal state based on the theory of criticality.
A large E/I ratio leads to a super-critical state whereby the
neurons are highly activated and spikes among neurons are
highly correlated. However, a small E/I ratio leads to a sub-critical
state whereby the overall neural activity level drops and the spikes
among neurons are random and not correlated (Yang et al., 2012).
For information processing, highly correlated spikes reduce
entropy in the former case, and in the latter case, the reduced
correlation increases entropy, but this increase is counteracted by
the concurrent drop in total information, resulting in maximal
information transmission at a moderate E/I ratio (Shew et al.,
2011). However, energy expenditure increases monotonically as
the E/I ratio increases due to the increasing overall neural activity
level. Therefore, a relatively large information transmission while
relatively low energy cost, is expected to be maximized around an
optimal E/I ratio (Poo and Isaacson, 2009; Yu et al., 2014; Denève
and Machens, 2016).

Decorrelation and E/I Balance
The correlations among the spiking trains of all individual
neurons in a network in response to sensory input can either
help or harm the information transfer (Averbeck et al., 2006).
More specifically, if positive signal correlations (i.e., neurons with
similar selectivities of stimulus features) are linked to positive
noise correlation, this would harm the information transfer.
On the contrary, neurons have opposite stimulus selectivities,
positive noise correlation help the information transfer. In
many cases, correlations will not influence the information
transfer (see for example, a theoretical study by Moreno-Bote
et al., 2014). To overcome the spiking correlation problem
induced by correlated presynaptic input, Renart et al. (2010)
built a densely connected neural network with excitatory and
inhibitory currents canceling each other on a fast time scale
(fine-scale balance). By using such mechanism, they showed

that, theoretically, a fine-scale balanced network could generate
an asynchronous state of population activity with a low mean
spiking correlation despite correlated inputs (Renart et al., 2010).
In the same study described above, Yu and colleagues found the
E/I balance-induced sparse representation of odorant inputs was
accompanied by a decorrelated state of mitral cell firing patterns,
and the maximal decorrelation value existed at the optimal
level for synaptic excitation and inhibition for the sparseness
(Figure 2C; Yu et al., 2014). In another interesting experimental
work, researchers manipulated the excitation/inhibition ratio
(E/I ratio) to obtain an optimal E/I ratio that maximized the
information capacity by trading off between a lower correlation
state (induced by low E/I ratio) and moderate activity (induced
by a relatively high E/I ratio) (Shew et al., 2011).

E/I BALANCE AND INFORMATION
PROPAGATION

Because the brain is highly modular, and spiking activity may
carry a lot of neural information, it is important that the spiking
activity can be transmitted from one module to another with
high fidelity. Indeed, Perkel and Bullock (1968) noted that one
of the major components of a typical neural code should be the
inclusion of reliable information transmission or information
propagation. The identification of the conditions under which
spiking activity can propagate with high fidelity has attracted the
attention of many theoretical researchers in the recent decade
(Diesmann et al., 1999; Kistler and Gerstner, 2002; van Rossum
et al., 2002; Litvak et al., 2003; Kumar et al., 2008, 2010).
Researchers usually address the propagation topic using a model
of a cascade of neural assemblies in which a single neuron can
participate at multiple levels (termed a feedforward network).
To construct a more biologically oriented neural network,
theoretical works tend to embed a feedforward sub-network
into a larger recurrent neural network. However, neurons in the
feedforward sub-network receive stronger correlated excitation
than the rest of the recurrent network. This may destabilize the
activity of the recurrent network. To solve this defect, Aviel et al.
added inhibitory neurons into the subset network to balance the
extra excitation (Aviel et al., 2003).

Researchers have identified two modes of spiking activity
propagation: the asynchronous mode (rate code, with
information about the stimulus is carried and propagated
in the firing rate of a neuron or the average of population activity;
van Rossum et al., 2002; Litvak et al., 2003; Vogels and Abbott,
2009) and synchronous mode (temporal code, with information
about the stimulus is carried and propagated by the precise
timing of action potentials; Aertsen et al., 1996; Diesmann et al.,
1999; Gewaltig et al., 2001; Litvak et al., 2003; Kumar et al.,
2008). For a network with a feedforward configuration, the firing
rates at each layer could be stabilized to a constant level after
an initial increase (Figure 3A; Litvak et al., 2003). The network
inhibition that precisely balanced with excitation plays a key
role in modulating the mean firing rate level. Small deviations
from the precise balance would result in a large fluctuation in the
firing rate at each layer (Figure 3B; Litvak et al., 2003). Litvak
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FIGURE 3 | Propagation of firing rate in a multilayer feedforward network. (A) Average firing rate of different layers in the precisely balanced network. (B) Average firing

rate of different layers in the feedforward network with small deviations from the precise balance. (C) Raster plot showing the firing pattern of excitatory neurons in

different layers in a feedforward network with balanced firing rates between excitation and inhibition. Adapted with permission from Litvak et al. (2003).

et al. showed that the population synchrony could be formed
after a few layers and then propagate stably through many layers
in such a feedforward network with the excitation firing rate
balanced with the inhibitory firing rate (Figure 3C; Litvak et al.,
2003).

Beyond the fidelity of information propagation, the regulation
of the spiking activity is also important for neural coding. A
given module of the neural system has the potential to respond
to several different signal pathways. To accomplish a single task,
some mechanisms must exist to selectively block or boost some
signal pathways. Recently, Vogels et al. showed that a detailed
balance of excitation and inhibition in the target feedforward
network group could be a potential gating mechanism; there
information transmission can be gated “on” by adjusting the
excitatory and inhibitory gains to upset this detailed balance
(Vogels and Abbott, 2009).

CONCLUSION

Stimulus representation and information propagation are two
basic functions of neural coding. E/I balance, which is
acknowledged as a fundamental paradigm for many brain
functions, has been demonstrated to play a fundamental role
in shaping the neural coding process. On one hand, the E/I
balance can significantly increase the coding efficiency and

energy efficiency to extend the coding capacity by promoting
a sparse representation and signal decorrelation. Intuitively,
an E/I ratio that is too high leads to excitatory dominance,
resulting in high correlation (low level of coding efficiency)
and activity (high level of energy consumed); however, an E/I
ratio that is too low leads to suppressed activity with low
information content. Therefore, the tradeoff between these two
aspects requires the balance of the excitatory and inhibitory
currents. On the other hand, based on recent theoretical studies,
the E/I balance also plays a vital role in determining the fidelity
of spiking activity propagation and gating of the multiple signal
pathways. More experimental investigations are expected to test
theoretical hypotheses and predictions in the near future. As
discussed above, the implementations and functions of the two
types of E/I balance, global balance and fine-scale balance, are
different from one another. More studies are also needed to
demonstrate the exact differences between the effects of these two
types of balance on neural coding.

Here, we mainly discussed the roles of E/I balance in neural
coding, while many additional studies have focused on the role
of E/I balance in other brain functions, e.g., the formation of
memories (Vogels et al., 2011; Lim and Goldman, 2013) and the
information storage process. More studies are expected to clarify
the effects of E/I balance in memory formation and examine
how the information storage process benefits from the E/I
balance.
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