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Abstract: Plant breeding conventionally depends on genetic variability available in a species to
improve a particular trait in the crop. However, epigenetic diversity may provide an additional
tier of variation. The recent advent of epigenome technologies has elucidated the role of epigenetic
variation in shaping phenotype. Furthermore, the development of epigenetic recombinant inbred lines
(epi-RILs) in model species such as Arabidopsis has enabled accurate genetic analysis of epigenetic
variation. Subsequently, mapping of epigenetic quantitative trait loci (epiQTL) allowed association
between epialleles and phenotypic traits. Likewise, epigenome-wide association study (EWAS) and
epi-genotyping by sequencing (epi-GBS) have revolutionized the field of epigenetics research in plants.
Thus, quantitative epigenetics provides ample opportunities to dissect the role of epigenetic variation
in trait regulation, which can be eventually utilized in crop improvement programs. Moreover,
locus-specific manipulation of DNA methylation by epigenome-editing tools such as clustered
regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) can
potentially facilitate epigenetic based molecular breeding of important crop plants.
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1. Introduction

Epigenetic modifications modulate gene expression without any change in genomic DNA
sequences that affects multiple aspects of plant growth and development [1]. These epigenetic
modifications mainly involve DNA methylation, histone modification, and small RNA
(sRNA)-mediated modifications [2]. Of these epigenetic modifications, DNA methylation is relatively
well studied. In plants, DNA methylation predominantly occurs in the cytosines (C) of three sequence
contexts: CpG, CpHpG, and CpHpH, where H represents any base other than G (i.e., A/C/T).
DNA methylation at each sequence context is regulated by a particular set of enzymes named
cytosine-5 DNA methyltransferases (C5-MTases) having complementary ‘de novo’ and ‘maintenance’
methylation activities [3,4]. In the de novo methylation process, unmethylated cytosine residues are
methylated, while in methylation maintenance the preexisting methylation patterns are maintained
after DNA replication [5]. Different C5-MTases including Domains Rearranged Methylases (DRMs),
Methyltransferases (METs), and Chromomethylases (CMTs) participate in these processes. The DRMs
are involved in de novo DNA methylation via RNA-directed DNA methylation (RdDM) in all three
DNA sequence contexts [6]. The DRM2, an ortholog of mammalian DNMT3, is involved in CpHpH
methylation of euchromatic regions [7]. The METs are involved in the maintenance of CpG methylation
during DNA replication [8]. The CMTs are involved in the maintenance of CpHpG and CpHpH
methylations. In Arabidopsis thaliana (L.) Heynh (Arabidopsis), CMT2 catalyzes CpHpH methylation,
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while CpHpG methylation is catalyzed by CMT3 and to a lesser extent by CMT2 [9,10]. The roles of
DNA methylation in plant development and responses to environmental stress conditions have been
discussed in detail previously [11].

The recent advances in bisulphite sequencing (BS-Seq) and methylC-sequencing (MethylC-seq)
allow profiling of DNA methylation status across entire genomes within a species [8,12]. Also,
species-level epigenomic diversity in the natural populations of Arabidopsis collected from diverse
locations of the globe has been determined [13]. Whole-genome bisulfite sequencing (WGBS) is
particularly powerful as it constructs the genomic maps of DNA methylation at a single-base resolution
level [14]. WGBS has been utilized in the methylome analysis of several plant species including
model plants Arabidopsis and crop plants Zea mays and Triticum aestivum [15–17]. WGBS analysis in
Arabidopsis has shown that 5.26% of all genomic C bases are methylated and their allocation on the
genome was uneven, for instance, about 24% of CpG context was found to be methylated, which is
followed by CpHpG (6.70%), and CpHpH (1.70%) contexts [15,18]. However, substantial variation in
methylation patterns has been observed between plant species (see Table 1). For instance, CpG context
methylation ranged from 24% (Arabidopsis) to 93% (Cicer arietinum), CpHpG methylation varied
from 3.48% (Triticum aestivum) to 89 % (Cicer arietinum), and CpHpH methylation ranged from 1.36%
(Eucalyptus grandis) to 38% (Cicer arietinum). The CpG methylation is more prevalent and makes the
largest portion of total DNA methylation in plants. Many factors determine the observed variation in
methylation levels in different contexts, which include genome size, architecture, and distinction in the
activity of methylation targeting pathways.

Table 1. Genome size, total number of repeat elements, DNA methylation levels at three sequence
contexts (CpG, CpHpG, and CpHpH) in different plant species, where methylation % indicates
per-site methylation

Species
(Common Name) Family Monocot/Eudicot Genome

Size (Mb)
Repeat

Elements CpG (%) CpHpG (%) CpHpH (%) Reference

Arabidopsis thaliana (Arabidopsis) Brassicaceae Eudicot 135 31,189 24.00 6.70 1.70 [15]

Beta vulgaris (beet) Amaranthaaceae Eudicot 758 656,014 92.00 81.00 18.80 [4]

Brassica oleracea (cabbage) Brassicaceae Eudicot 648 532,987 52.50 22.00 5.11 [4]

Brassica rapa (mustard) Brassicaceae Eudicot 485 218,781 37.20 17.28 4.44 [4]

Cajanus cajan (pigeonpea) Fabaceae Eudicot 833 1,127,729 70.23 54.60 9.87 [19]

Camellia sinensis (tea) Theaceae Eudicot 3100 5,164,785 82.00 70.00 10.00 [20]

Cannabis sativa (canabis) Cannabaceae Eudicot 818 376,401 75.50 65.00 8.72 [4]

Capsella rubella (pink
shepherd’s purse) Brassicaceae Eudicot 219 39,716 32.00 9.90 34.70 [4]

Cicer arietinum (chickpea) Fabaceae Eudicot 738 853,514 93.00 89.00 38.00 [21]

Citrus clementina (clementine) Rutaceae Eudicot 370 205,699 45.83 25.13 8.26 [4]

Cucumis sativus (cucumber) Cucurbitaceae Eudicot 367 57,750 45.88 16.50 4.12 [4]

Eucalyptus grandis (rose gum) Myrtaceae Eudicot 640 689,306 37.12 19.96 1.36 [4]

Fragaria vesca (strawberry) Rosaceae Eudicot 240 129,500 48.35 20.63 2.32 [4]

Glycine max (soybean) Fabaceae Eudicot 1115 38,581 63.20 38.40 4.10 [22]

Gossypium raimondii (cotton) Malvaceae Eudicot 880 489,564 71.97 57.80 13.14 [4]

Lotus japonicus (birdsfoot trefoil) Fabaceae Eudicot 472 160,505 67.75 36.59 8.66 [4]

Malus domestica (apple) Rosaceae Eudicot 742 1,245,768 63.50 44.14 4.57 [4]

Manihot esculenta (cassava) Euphorbiaceae Eudicot 742 258,416 51.53 30.38 1.90 [4]

Medicago truncatula (barrel clover) Fabaceae Eudicot 465 375,003 59.80 16.94 5.09 [4]

Populus trichocarpa (poplar) Salicaceae Eudicot 500 173,230 43.95 26.78 5.01 [4]

Prunus persica (peach) Rosaceae Eudicot 265 95,678 50.18 19.59 3.64 [4]

Ricinus communis (castor bean) Euphorbiaceae Eudicot 323 575,449 64.54 37.94 11.97 [4]

Solanaceae lycopersicum (tomato) Solanaceae Eudicot 907 887,009 84.05 54.84 8.35 [4]

Solanaceae tuberosum (potato) Solanaceae Eudicot 840 404,861 70.90 42.20 15.80 [23]

Vitis vinifera (grape vine) Vitaceae Eudicot 487 449,466 45.95 20.43 1.15 [4]
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Table 1. Cont.

Species
(Common Name) Family Monocot/Eudicot Genome

Size (Mb)
Repeat

Elements CpG (%) CpHpG (%) CpHpH (%) Reference

Brachypodium distachyon
(stiff brome) Poaceae Monocot 352 51,793 49.17 19.17 1.41 [4]

Oryza sativa (rice) Poaceae Monocot 430 447,163 54.70 37.30 12.00 [16]

Panicum hallii (Hall’s panicgrass) Poaceae Monocot 550 154,970 56.28 29.97 2.43 [4]

Panicum virgatum (switchgrass) Poaceae Monocot 1600 1,793,620 53.56 35.74 3.06 [4]

Setaria viridis (green foxtail) Poaceae Monocot 515 372,068 44.49 23.25 1.56 [4]

Sorghum bicolor (sorghum) Poaceae Monocot 730 397,003 84.75 73.25 5.81 [4]

Triticum aestivum (wheat) Poaceae Monocot 17,000 3,968,974 53.30 3.48 1.41 [17]

Zea mays (maize) Poaceae Monocot 2665 1,971,471 86.00 74.00 5.40 [7]

DNA methylation together with histone modifications and non-histone proteins delineates
chromatin structure and its accessibility to transcriptional machinery. Thus, it plays an important role
in gene expression regulation, transposon element (TE) silencing, and trait inheritance [24]. In plants,
DNA methylation levels are generally higher at TEs as compared to genic regions. Silencing TEs is
required to maintain genome stability, and it is mediated via RdDM [25]. In spite of having a crucial
role in distinct biological processes, the application of DNA methylation in crop improvement remains
to be fully explored. The epialleles (epigenetic alleles) are loci that differ in chromatin states and
get transmitted to the next generations [26–28]. Epialleles provide an additional source of variation,
which are involved in the regulation of phenotypic diversity. Various stable epialleles affecting floral
morphology [29], flowering time [30], disease resistance [31], pigmentation [32], and leaf senescence [33]
have been reported in different plant species. In Arabidopsis, epigenetic recombinant inbred lines
(epiRILs) have been developed, which show variation and high heritability for traits like flowering
time and plant height as well as stable inheritance of DNA methylation variants [34]. Utilizing this
epiRIL population, epigenetic quantitative trait loci (epiQTL) controlling flowering time and primary
root length were identified that showed high heritability (up to 90%) [35]. Considering that some
epiQTLs are stably inherited and show phenotypic diversity, they are good targets for natural/artificial
selection for crop improvement.

In this review, we first discuss various epialleles controlling phenotypic traits in plants. Second,
the development of epiRILs and epiQTL mapping populations in Arabidopsis and other important crop
plants are described, which can be used for quantitative epigenetic studies to identify epigenetic variants
controlling trait. Finally, locus-specific manipulation of DNA methylation levels by using site-specific
nucleases to generate epialleles is highlighted, which can be utilized for crop trait improvement.

2. Epialleles (Natural and Mutagen Induced)

Although a number of genes/QTLs have been identified in various plants, however,
missing heritability is still a major challenge for researchers and breeders where unknown components
regulate phenotype in addition to genes/QTLs. Epigenetic modifications could be one of the major
causes of missing heritability [36]. Changes in the DNA methylation status of a particular gene may
affect its expression and can be trans-generationally inherited, which leads to trait variation [37].
Such stably inherited epigenetic variants are referred to as epialleles that contribute to phenotypic
variation in plants.

Several epialleles have been reported in the model plant Arabidopsis and crop plants like rice,
maize, field mustard (details are given in Table 2). The first classical example of epiallele was reported
in Arabidopsis and known as clark-kent (clk). It is a natural epimutant with an enhanced number of
stamens and carpels. In this epimutant, hypermethylation of cytosine occurred at flower development
locus SUPERMAN [29]; while hypomethylation of this locus in clk mutants was found unstable
and reverted to the wild type phenotype. A total of seven independent clk mutants were reported
with similar phenotypes. Peloric mutant is another classical example of epialleles found in toadflax
(Linaria vulgaris). Peloric mutants (radial flower) showed different flower symmetry as compared
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to wild type plants (bilateral flower). In this epimutant, hypermethylation occurs at the promoter
of Lcyc gene (homolog of CYCLOIDEA gene of Antirrhinum, responsible for floral symmetry) and
led to the silencing of the gene. This epimutation is stably inherited across the generation over
100 years; however, loss of hypermethylation of the promoter of the Lcyc gene may regain bilateral
floral symmetry of wild type [38]. In tomato, two epialleles were reported that affect fruit ripening
and vitamin E accumulation. Hypermethylation at the promoter of colorless non-ripening (cnr) locus
encoding SBP-box transcription factor (TF) causes ripening defective fruits in tomato [39]. Similarly,
DNA methylation of Vitamin E (VTE3) gene promotor affects its expression that leads to vitamin
E accumulation in tomato fruits [40]. In melon, it was shown that DNA hypermethylation in the
promoter of CmWIP1 (WASP/N-WASP-interacting protein 1) TF causes the transition from male to female
flowers [41]. In the case of rice, six epialleles were reported that affect phenotypes such as dwarf
stature, panicle architecture, leaf angle, seed size, and photosynthetic capacity (Table 2). In Brassica,
the epiallele S locus protein 11/S locus (SP11/SCR locus) was involved in the dominance effect that
regulates the self-incompatibility [42].

Table 2. List of some stable epialleles reported in different plant species

Species Gene/Locus Epigenetic Variation Phenotypic Traits References

Arabidopsis thaliana

SUP (SUPERMAN) Mutagen induced Increased numbers of
stamens and carpels [29]

FWA (Flowering
Wageningen) Mutagen induced Late flowering [30]

PAI2 (Phosphoribosyl
Anthranilate Isomerise) Trans-acting (small RNAs)

Only gene expression
affected; no specific

phenotype
[43]

BAL1 Mutagen induced Dwarfing and elevated
disease resistance [31]

AG (AGAMOUS) Mutagen induced Affect flower structure [44]

BNS (BONSAI) ddm1-induced syndrome Stunted growth [45]

FOLT1(folate transporter 1) Trans-acting (small RNAs) Reduced fertility [46]

QQS (Qua-Quine Starch) Spontaneous Higher starch
accumulation [47]

PPH (Pheophytin
Pheophorbide Hydrolase) Spontaneous Inhibits leaf

senescence [33]

HISN6B
(Histidinol-phosphate
aminotransferase 1)

Spontaneous Hybrid incompatibility [48]

Zea Mays

r1 (red1) Spontaneous Reduced pigmentation [49]

b1(booster 1) Spontaneous Reduced pigmentation [50]

pl1 (purple plant 1) Spontaneous Reduced pigmentation [51]

p1 (pericarp color 1) Spontaneous Reduced pigmentation [32]

lpa1(low phytic acid1) Paramutagenic High inorganic phosphate
in seeds [52]

Linaria vulgaris Lcyc (Linaria cycliodea) Spontaneous Floral symmetry;
dorsiventral flower axis [38]

Solanum lycopersicum

CNR (Colorless
non-ripening) Spontaneous Normal fruit

ripening [39]

VTE3 (Vitamin E) Spontaneous Tocopherol accumulation
in fruit [40]
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Table 2. Cont.

Species Gene/Locus Epigenetic Variation Phenotypic Traits References

Oryza sativa

D1 (Drawf1) Spontaneous Dwarf [53]

SPL14 (Squamosa
Promoter binding

protein-Like)
Spontaneous

Panicle branching
and higher grain

yield
[54]

FIE1
(Fertilization-Independent

Endosperm 1)
Spontaneous Dwarf [55]

RAV6 [Related to Abscisic
Acid Insensitive 3

(ABI3)/Viviparous1 (VP1) 6]
Spontaneous Larger lamina inclination

and smaller grain size [56]

AK1 (Adenylate Kinase 1) Spontaneous Defects in photosynthetic
capacity [57]

ESP (Epigenetic Short
Panicle) Spontaneous Short panicle [58]

Elaeis guineensis DEF1 (DEFICIENS) Spontaneous Mantled fruit [59]

Brassica rapa SP11/SCR (S locus protein
11/S locus cystein rich) Trans-acting (small RNAs) Self-incompatibility [42]

Cucumis melo
CmWIP1

(WASP/N-WASP-interacting
protein 1)

Transposon Insertion Sex determination [41]

Another important epigenetic phenomenon is known as paramutation. It was initially observed
in the r1 (red1) locus that regulates anthocyanin pigment biosynthetic pathway in maize [49],
and subsequently found in booster1 (b1), purple plant1 (pl1), and pericarp color1 (p1) loci, which also
regulate anthocyanin pigment biosynthetic pathway [32,50,51], and low phytic acid1 (lpa1-241) that
was involved in phytic acid biosynthesis [52]. Besides spontaneous mutations, small interfering RNA
(siRNA) also plays a vital role in the development of epialleles in plants. In Arabidopsis, silencing of
the folate transporter 1 (AtFOLT1) gene is regulated by siRNAs derived from the truncated copies of
AtFOLT2 locus, which causes reduced fertility [46]. Furthermore, methylation of transposable elements
is also found to affect the phenotype substantially. For instance, hypomethylation of intronic TE
(Karma retro TE) caused abnormal splicing of DEFICIENS (DEF) gene, resulting in parthenocarpy
and reduced yield in oil palm [59]. Moreover, epialleles are well known to control manytraits
including flower/fruit-related traits, sex determination, plant architecture and vitamin accumulation in
different plant species (see Table 2). Epialleles also regulate the homeostasis between euchromatin and
heterochromatin to maintain genome stability, as the loss of heterochromatin would expose genes to
DNA methylation machinery. It was recently, shown that DNA methylation is inversely correlated to
heterochromatin in Arabidopsis [60].

3. Epigenetic Recombinant Inbred Lines (epiRILs)

EpiRILs are referred to as the recombinant inbred lines that differ for DNA methylation patterns
and show no genetic variation. EpiRILs represent an excellent resource to identify the effect of
DNA-methylation on phenotypes [34]. Under changing climatic conditions, epigenetic modifications
could play a crucial role in plant adaptation to environmental stresses [61]. epiRILs developed
in Arabidopsis have been used to explore the effect of environmental factors, which revealed that
stress-induced epigenetic modifications could be heritable and provide phenotypic plasticity to plants
to endure stress [62].

In Arabidopsis, at least two different epi-RIL populations have been developed [34,63]. One epi-RIL
population was derived from the crossing of met1 mutant and its isogenic wild type [63]. The met1
mutant is defective in DNA methyltransferase [8,64]. In the F2 and subsequent generations, only wild
type MET1 alleles were selected in order to prevent de novo DNA methylations. In each generation,
progenies were advanced using the single seed descent method. Similarly, another epi-RIL population
was derived from the crossing of ddm mutant and its isogenic wild type [34]. The ddm mutant
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is defective in the DDM locus that encodes nucleosome-remodeling ATPase required to maintain
C methylation [65,66]. Due to the utilization of isogenic lines in crossing, these epiRILs have no
genetic variations; however, epigenetic variations are maximum. Schematic representation of the
development of epiRILs is given in Figure 1. The following points need to be considered while studying
transgenerational epigenetic variations.
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suggested that epigenetic modification was involved in the regulation of polygenic traits also. 
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Figure 1. Construction of epiRILs (hypomethylated population) for quantitative epigenetics. In the
left side, the scheme for the construction of hypomethylated population using demethylating agent
5-AzaCytidine is shown. On the right side, scheme for construction of epiRILs with stable inheritance
by crossing of two parents (wild-type and epimutator parents (met1 or ddm1)) with different epigenetic
states is shown. The green and red circles that overlay the genome sequence illustrates the different
epigenetic states of the two parents.

3.1. Persistence of Epigenetic Modification in the epiRILs

Epigenetic modifications are heritable and maintained across several generations as revealed from
epiRILs developed by the crossing of mutants (met1 or ddm1) with its isogenic wild types [67,68]. In the
ddm epiRILs, epigenetic loci targeted by small RNAs were extensively remethylated, while nontargeted
loci remained unmethylated [69]. In contrast, Flowering Wageningen (FWA) epiallele associated with
flowering time became methylated in the subsequent generations despite being targeted by small
RNA [34,63]. The mechanism underlying remethylation process and the role of small RNAs in
remethylation remain unclear. However, a recent study provides mechanistic insights on the formation
and transmission of epialleles and suggested that histone and DNA methylation marks are critical
in determining the ability of RdDM target loci to form stable epialleles [70]. High levels of active
histone mark H3K4me3 at specific loci prevent recruitment of the RdDM machinery, whereas high
levels of H3K18ac enable ROS1 (Repressor of Silencing 1) to access specific loci, therefore antagonizing
RdDM-mediated re-establishment of DNA methylation.
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3.2. Phenotypic Variation and Stability in the epiRILs

Continuous variations for different traits observed in the abovementioned two epi-RILs suggested
that epigenetic modification was involved in the regulation of polygenic traits also. Although two
epi-RILs differed for different traits. For instance, epiRILs derived from met1 mutant showed variation
for biotic (bacterial pathogen) and abiotic stress (salt) tolerance [63]; however, in the case of epiRILs
derived from ddm1 mutant, variation can be clearly seen for morphological traits like flowering time
and plant height [34].

The stability of phenotypic characters in the above two epiRILs is quite different. Phenotypes in
met1 derived epiRILs are very unstable, and several lines were unable to advance to F8 generation due
to abnormal development and infertility [63]. Unlike, ddm1 derived epiRILs were found highly stable
and more than 99% lines advanced to F8 generations without any abnormality [34].

To explain phenotypic instability, Reinder et al. [63] studied the methylation pattern in met1-derived
epiRILs. They found that some cytosine methylation sites were highly segregating even in F8/F9

generations and suggested that some methylations sites are very unstable and cannot be fixed by
repeated selfing. Furthermore, several ectopic and hypomethylations were observed that were different
from any of the parental genotypes, suggesting de-novo methylations may be a possible reason for
the phenotypic and epigenetic instability across generations in met1 derived epiRILs [63]. In contrast,
in ddm1-derived epiRILs, cytosine remethylation seems to be the reason for nonparental cytosine
methylation [69].

3.3. Epigenetic Basis of Heterosis

Heterosis is a phenomenon where F1 hybrid shows enhanced phenotypes than their respective
parents. Heterosis has extensively been exploited as a potential breeding strategy for crop improvement.
The importance of heterosis, its application in plant breeding, and molecular mechanisms underlying
heterosis have been discussed elsewhere [71–74]. Many genetic factors contribute to the heterotic
phenotype; however, epigenetic interactions between two parental alleles also play a critical role in
heterosis [75,76]. Hybrids of Arabidopsis derived from two genetically similar but epigenetically
diverse ecotypes C24 and Ler showed more than 250% enhanced biomass over parents advocated
the importance of epigenetics in heterosis [77]. Out of three different cytosine methylation contexts,
the highest alteration was observed at CpG site; however, CpHpH and CpHpG methylations slightly
increased in hybrids than parental genotypes [75]. Furthermore, 75% methylation changes were
observed in TEs, and more than 95% methylation increase was observed in siRNA generating
regions [75]. In Arabidopsis, hybrids derived from Col-wt (female parent) and 19 epiRILs (male
parents) showed positive and negative heterosis for six growth-related traits. DNA methylation
profiling of hybrids and parents identified epiQTLs associated with heterosis and suggested that
DMRs present in the parental genotypes are responsible for heterosis [74]. The above results provide
evidence that epigenetic components act as critical determinants of heterosis, which can be exploited
for crop improvement.

4. Development of Epigenetically Modified Population by Chemical Agents

The generation of epigenetic mutants like met1 or ddm1 is still not very common in non-model
plants. Therefore, chemical agents can be used to induce epigenetic modifications that may serve
the purpose to study the effect of epigenetics on quantitative traits. Several chemical compounds
are known to induce epigenetic modifications—including DNA methylation, histone modification,
etc.—with different modes of action [78]. For instance, chemicals like 5-Azacytidine (5-AzaC), 5-Aza
2′deoxycytidine, and Zebularine inhibit the methyltransferase activity and lead to the reduction of
transfers the methyl group from S-adenosylmethionine (SAM) to the cytosine ring. Mutagenesis
with these chemicals would lead to the development of hypomethylated population. On the other
hand, some chemicals act as histone deacetylase inhibitors and increase the histone acetylation and
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reactivate the silent genes. Chemicals like trichostatin-A (TSA), Helminthosporium carbonum (HC)
toxin, nicotinamide, diallyl disulfide sodium butyrate etc. are good examples of histone deacetylase
inhibitors. Besides these, some chemicals—like sulfamethazine (SMZ), ethionine, and dihydroxypropyl
adenine (DHPA)—hamper the supply of methyl groups. These chemicals decrease the folate pool and
cause methyl deficiency.

The availability of a wide range of chemical mutagens would be a great asset to create epigenetically
modified populations in plants. A successful example of the adoption of chemical methods to develop
a hypomethylated population in Brassica, where epialleles were developed by using 5-AzaC, and this
hypomethylated population showed variability for different phenotypic traits [79].

Transgenerational inheritance of some phenotypes has also been demonstrated. When compared
to untreated controls, BraRoAZ population (hypomethylated population of B. rapa line R-o-18) showed
a decrease immuno-staining of 5mC on pachytene chromosomes. Furthermore, methylation sensitive
amplified polymorphism (MSAP) showed high divergence as well as variability. High phenotypic
variability was also observed for different seed related characters like yield, protein content, oil content,
erucic acid, linoleic acid, and palmitic acid. Each line in the BraRoAZ population represented a unique
combination of hypomethylated epialleles. Thus, efforts should be made for the development of
epigenetically modified populations using chemical agents in other crops.

5. Development of User-Friendly Epigenetic Markers

Epigenetic markers are important to study quantitative epigenetics and identify epialleles
associated with traits of interest. Several epigenetic markers have been identified to be involved in
biological and molecular functions in plants [36,80–82]. However, utilization of these methylation
marks into crop breeding programs is still lacking. Developing a cost-effective and easy genotyping
platform for identifying and selecting desirable epiallele is needed in crop plants. For the identification
of epialleles, three major approaches are available and widely used in the case of human (i) bi-sulfite
sequencing PCR (BSP), (ii) methylation-specific PCR (MSP), and (iii) chop-PCR [83,84]. The first two
approaches require bi-sulfite conversion of non-methylated cytosine to uracil. Bisulfite conversion
is a very important and crucial step in these methods. Classical bisulfite conversion approaches
involve lots of effort and time, even though conversion efficiency and yield are less. With advancement
in technologies, now commercial kits are available with high yield and more than 99% conversion
efficiency [85]. These kits also facilitate the rapid conversion within 3–4 h. An exhaustive comparison of
different commercially available kits for bisulfite conversion efficiency and cost-effectiveness has been
published elsewhere [86]. In BSP, after bisulfite conversion, the targeted region is PCR amplified and
then sequenced to identify the epialleles. However, in MSP, sequencing is not required, and the targeted
region is amplified with methylation-specific primer pairs to distinguish epialleles. In chop-PCR,
genomic DNA is partially digested with methylation-sensitive restriction enzymes (MSREs) followed by
PCR amplification of the targeted region. Furthermore, quantitative measurement of DNA methylation
can be done through MethylLight and methylation-sensitive high-resolution melting (MS-HRM).

Although the development and utilization of epigenetic markers are very much successful in
humans [87], however, this area of research lags behind in the case of plants. Therefore, there is
an urgent need to develop online platforms and databases to assess f of epigenetic markers with
full description.

6. Quantitative Epigenetic Models for Complex Trait

Several statistical methods exist to detect epigenetic variations and their impact on the phenotype
or epiQTLs [36,80–82]. The significance and accuracy of epiQTLs identification are affected by several
factors like recombination, transgressive segregation, instability of epialleles, and parent off origin effect.
These factors may create confounding effects during epiQTLs analysis and result in false positives or
false negatives. To deal with these interrupting factors, Johannes and Colome-Tatche [81] suggested
that population derived from crossing between isogenic lines (dissimilar for epigenetic marks) are
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the most suitable material. Tal et al. [80] derived covariances between kinship due to epigenetic
transmissibility and environmental effect. They modeled the number of chances for epigenetic reset
between generations and environmental induction, and estimated the heritable epigenetic variance
and epigenetic transmissibility. Furthermore, multiple testing is the major drawback of quantitative
genetics because it can give several false positives. Jaffe et al. [88] developed a statistical model to
deal with multiple testing corrections during genome-wide identification of epigenetic variability.
These models can be useful to study the missing heritability contributed by epigenetic variation [81,89],
but did not consider the phenotypic variation contributed by epigenetic variation. Wang et al. [90]
suggested a model to estimate phenotypic variation explained by epigenetic variation and their effects
on phenotypic values and also the interaction of epigenetic and genetic effects (additive and dominant).
This model also predicts the proportion of genetic variation contributed by epigenetic modifications.

7. EpiQTLs and Epigenome-Wide Association Study (EWAS)

As discussed, epigenetic markers are stably inherited across generations and are randomly
present in the genome with high frequency. These features allow the exploitation of epigenetic
markers in the identification of epiQTLs. Unlike QTLs, epiQTLs are epigenomic loci where no
polymorphism for the DNA nucleotide sequence occurs but they differ for cytosine methylation
levels, and these differential methylation patterns regulate phenotypic variation of quantitative
traits. In Arabidopsis, Cortijo et al. [35] identified major epiQTLs explaining 60–90% heritability for
quantitative traits like root length and flowering time using ddm1-derived epi-RILs. These epiQTLs
were found reproducible and useful for artificial selection. Furthermore, 99.9% epialleles were
found stable; and based on the inheritance and recombination events epigenotype map (E-map) was
constructed using mutagenic accumulation lines [26]. Another study in Brassica identified epiQTLs
for seven agronomic traits using methylation-sensitive amplified fragment length polymorphism
(MS-AFLP) and retrotransposon epimarkers [91]. High stability of epigenetic marks was found at
different developmental stages, environmental conditions and transgenerational levels. In Sorghum,
by implementing MSAP genotyping approach, 122 methylation polymorphic loci were generated to
construct E-map, which harbored methylation hotspots [92]. In soybean, co-segregation of differentially
methylated regions (DMRs) in RILs allowed the identification of methylQTL (QTLs associated with
DNA methylation) [93]. Thus, the stable inheritance of epialleles across generations makes it a potential
regulator of phenotypic variations in crops where genetic variation is negligible [26].

Like genome-wide association studies (GWAS), epigenome-wide association study (EWAS) may
prove a worthwhile approach to explore the impact of the epigenetic modifications on phenotype
where genome-wide epimarkers are available (Figure 2). EWAS is based on linkage disequilibrium (LD)
mapping, which utilizes natural populations and historic recombination events and can thus accomplish
high-resolution mapping. A number of EWAS studies have been conducted in humans, which identified
that epigenetic modifications are associated with several human diseases like Parkinson’s disease [94],
coronary artery disease [95], Alzheimer’s disease [96], and Type 2 diabetes [97]. Moreover, to gather the
extensive knowledge generated through EWAS in humans, EWAS Atlas has also been developed [98].
However, there is a limited number of EWAS performed in plants, and so far, a single EWAS study
identified epigenetic modification associated with a mantled abnormality in oil palm [59]. By using
somatic clones (diverse for mantled abnormality and oil yield), a locus MANTLED was identified where
hypomethylation in LINE retrotransposon leads the alternate splicing and premature termination.
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Linkage mapping and LD mapping have their own importance and limitations. To overcome
limitations, integrated genetic mapping by combining linkage and linkage-disequilibrium is
recommended. Recently, an integrated linkage and linkage-disequilibrium mapping was conducted
for the identification of epiQTLs in plants [99]. Using 550 F1s and 435 natural germplasm accessions,
manyepiQTLs (163 epiQTLs) were found to be associated with growth and wood properties in Populus.
Furthermore, 23 causal genes present within epiQTL regions showed cause and effect relationship as
revealed by the coregulation of eQTN (expression quantitative trait nucleotide) and eQTM (expression
quantitative trait methylation) [99].

Identification of epiQTLs by using any of the methods mentioned above, high-density
epi-genotyping is a significant challenge. However, with the advancement in sequencing
technologies, high-density epi-genotyping is now possible. Different techniques like epigenetic based
restriction-site associated DNA sequencing (epiRADseq), bisulfite-converted restriction site-associated
DNA sequencing (bsRADseq), epi-genotyping by sequencing (epi-GBS) [100–102] are available for
high-density epi-genotyping. Each of these methods has its advantages and limitations. For instance,
epiRADseq is as cheap as compared to bsRADseq; however, it utilizes HpaII methylation-sensitive
restriction enzyme, thus it is restricted to only limited sites. The bsRADseq covers all the context
of cytosine methylations, but it requires a reference genome for downstream analysis, therefore it is
not suitable for non-reference based organisms. Epi-GBS is a cost-effective and less time-consuming
approach. Although the cost of epi-GBS can further be reduced by using single hemi-methylated
adapters [103]. Moreover, Epi-GBS can also be applied to plants where a reference genome is not
available. A successful example of utilization epi-GBS for identification of DMRs is available in the
case of almond where epi-GBS identified more than 7000 methylated fragments and among these
677 fragments were differentially methylated. Furthermore, the methylation state of some gene-coding
sequences was found to be associated with flower bud dormancy [104].
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As mentioned earlier, several epialleles have been reported in plants, and huge opportunities
still exist to explore it further in various plant species. Thus, we strongly recommend that EWAS
should be performed in crop plants, which will contribute to improving our understanding of
epigenetic mechanisms regulating phenotypic traits, and also expedite crop improvement programs
through epibreeding.

8. Epigenome Editing Using Site-Specific Nucleases

Several tools are reported that allow site-specific manipulation of DNA methylation/demethylation
using programmable DNA-binding proteins [zinc finger (ZFs) proteins and CRISPR-dCas9]
in plants [105]. In Arabidopsis, it was shown that ZF fused with RdDM component
SU(VAR)3-9 HOMOLOG 9 (SUVH9) was able to cause target methylation to the FWA promoter.
It caused FWA silencing via heritable methylation and led to the late-flowering phenotype [106].
Recently, Gallego-Bartolome et al. [107] tested the capability of several other RdDM components
(i.e., RNA-dependent RNA polymerase 2 (RDR2), Sawadee Homeodomain Homolog 1 (SHH1),
Microrchidia 1 (MORC1), MORC6, Defective in Meristem Silencing 3 (DMS3), and RNA-Directed
DNA Methylation 1 (RDM1)) to promote targeted DNA methylation at FWA locus when fused with
ZF. This study provides a theoretical framework that can be utilized to design efficient targeted
DNA-methylation programs in plants. In addition to ZF nucleases, CRISPR-dCas9 was also used to
target DNA methylation in plants [108]. Recently developed CRISPR-Cas9-SunTag system having the
catalytic domain of tobacco DRM has been used to target a FWA locus that showed heritable DNA
methylation in Arabidopsis [108]. Besides DNA methylation, targeted DNA demethylation has also
been performed by fusing Ten-Eleven Translocation 1 (TET1) to both ZF and CRISPR-Cas9-SunTag
systems in Arabidopsis [109]. The DNA demethylation achieved at the FWA promoter was found highly
specific and heritable in nature. Further development of these tools for targeted DNA methylation
and demethylation in plants other than Arabidopsis will open up new avenues to study locus-specific
effects of DNA methylation and could be used for the generation of new epialleles.

Epigenome editing techniques utilizing CRISPR system have significant potential for crop
improvement. However, in a recent international survey it has been found that consumers equate
CRISPR/Cas to traditional genetically modified organisms (GMO) [110]. Notably, CRISPR technique
introduce changes to DNA intrinsic to the target species, while traditional genetic modification
introduces foreign DNA from a different species (i.e., transgenic) or another cultivar of the same species
(i.e., cisgenic) [111]. Importantly, DNA-free delivery of CRISPR-Cas9 ribonucleoproteins might be
considered non-GM crops. This would open the door for the development and commercialization of
superior crops in various countries even where GM crops are unacceptable.

9. Conclusions and Future Prospects

Strengthening crop improvement programs is crucial to feed the global population. Utilization
of epigenetic information at the epiQTLs and epialleles level may provide new prospects for crop
improvement as existing breeding methods primarily focus on genetic and ignore epigenetic aspects.
The advancement of new sequencing technologies like BS-seq (bisulphite sequencing) and MethylC-seq
(methylC-sequencing) can help to delineate the epigenetic basis of trait determination. This information
will eventually enhance the inclusion of epigenetic methods in crop improvement. Furthermore,
loci-specific DNA methylation patterns can be achieved in plant genomes by fusion of catalytic
domains of de novo DNA methylation or demethylation enzymes with nucleases (i.e., zinc finger
nucleases (ZFNs), and clustered regularly interspaced short palindromic repeats/dCRISPR-associated
protein 9 (CRISPR–dCas9 systems)). These systems have been employed to engineer epigenomes of
mammalian cell lines [112,113] and plants [108,109]. Epigenome engineering will not only help in the
functional validation of DNA methylation patterns regulating phenotypic traits but will also help to
generate desirable traits by creating epigenomic diversity and can accelerate crop improvement by
epibreeding [106].
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