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Abstract

The serotonin (5-HT) system densely innervates many brain areas and is important for proper brain development. To
specifically ablate the 5-HT system we generated mutant mice carrying a floxed Munc18-1 gene and Cre recombinase driven
by the 5-HT-specific serotonin reuptake transporter (SERT) promoter. The majority of mutant mice died within a few days
after birth. Immunohistochemical analysis of brains of these mice showed that initially 5-HT neurons are formed and the
cortex is innervated with 5-HT projections. From embryonic day 16 onwards, however, 5-HT neurons started to degenerate
and at postnatal day 2 hardly any 5-HT projections were present in the cortex. The 5-HT system of mice heterozygous for
the floxed Munc18-1 allele was indistinguishable from control mice. These data show that deletion of Munc18-1 in 5-HT
neurons results in rapid degeneration of the 5-HT system and suggests that the 5-HT system is important for postnatal
survival.
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Introduction

The 5-HT system consists of clusters of cell bodies in the

midbrain raphe nuclei, with the largest clusters in the median

raphe nucleus and the dorsal raphe nucleus (DRN). Several brain

areas receive dense 5-HT innervation and 5-HT is released both

synaptically and as volume transmission [1,2]. Due to this and to

the several 5-HT receptor subtypes which are present in the brain,

5-HT has many roles and influences many processes in the brain

[3].

Neurogenesis of 5-HT neurons in the mouse brain occurs in the

ventral rhombencephalon around embryonic day (E) 10 [4]. One

day later, 5-HT neurons begin to synthesize and secrete 5-HT and

start growing out axons. Around birth, target areas such as the

forebrain and the hippocampus are densely innervated with 5-HT

projections. Only after birth, the maturation of the 5-HT network

is completed.

Several studies have addressed the role of 5-HT on the

development of the 5-HT system and brain development. In a

conditional Lmx1b knockout (KO) mouse, almost all 5-HT

neurons fail to survive, resulting in a significant decrease in brain

tissue 5-HT levels [5]. However, these mice do not show an overt

phenotype and survive to adulthood [5]. In contrast, it was shown

that maternal 5-HT is required for embryonic development [6].

Furthermore, in tryptophan hydroxylase 2 (Tph2) KO mice 5-HT

neurons are completely devoid of 5-HT, but the morphology and

neurite distribution of the 5-HT system is not affected and these

mice do show only a subtle behavioural phenotype [7,8,9].

Neonatal depletion of 5-HT by the neurotoxin 5,7-Dihydroxy-

tryptamine results in rather subtle changes in behavioural response

and brain development [10,11].

In this study we silenced the 5-HT system by conditional

deletion of Munc18-1 in 5-HT neurons. Munc18-1 is a

presynaptic protein which is essential for vesicle release and

neurons that lack Munc18-1 have a complete absence of neu-

rotransmitter secretion [12]. Via interactions with Syntaxin1A

and the SNARE complex, Munc18-1 is involved in vesicle

docking and fusion [13]. Munc18-1 knockout mice are born

paralyzed and die immediately after birth [12]. In these mice,

initially synapses are formed and the assembly of the brain is

normal. However, in later stages of brain development there is

massive neuronal cell death and brain degeneration [12]. Since

Munc18-1 knockout mice die immediately after birth, we have

generated Munc18-1lox/lox mutant mice in order to conditionally

delete Munc18-1. Crossing these mice with a L7-Cre line, with

Cre expressed in Purkinje neurons in the cerebellum, resulted in

mice which developed severe ataxia, suggesting a cerebellar

phenotype [14].

In SERT-Crecre/wt Munc18-1lox/lox mice 5-HT neurons were

initially generated and 5-HT projections innervated the midbrain

and cortex, later followed by degeneration and loss of 5-HT

projections in the cortex. The majority of these mice died within a

few days after birth. These data suggest that the 5-HT system

contributes importantly to postnatal brain development.
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Results

Deletion of Munc18-1 in SERT expressing neurons results
in postnatal lethality

To assess the effect of deletion of Munc18-1 in 5-HT neurons,

we crossed Munc18-1lox/lox mice with SERT-Cre mice, which

express Cre in SERT expressing neurons. These are the 5-HT

neurons in the raphe nuclei, but also some hippocampal neurons

and thalamocortical neurons which express SERT transiently

during development [15,16]. Crossing SERT-Cre mice with

Munc18-1lox/lox mice results in mice in which Munc18-1 is speci-

fically removed in SERT expressing neurons (Fig. 1A). We cross-

ed SERT-Crecre/wt Munc18-1lox/wt mice with SERT-Crewt/wt

Munc18-1lox/wt mice which should result in 12.5% of offspring

which have SERT-Crecre/wt and Munc18-1lox/lox genotypes.

Genotyping 101 mice three weeks after birth revealed that

genotype frequencies were not distributed at Mendelian ratio

(p = 0.027). Only three SERT-Crecre/wt Munc18-1lox/lox mice

were found, whereas based on Mendelian ratio the expected

number of SERT-Crecre/wt Munc18-1lox/lox mice should be 13,

giving a 77% mortality rate in SERT-Crecre/wt Munc18-1lox/lox

mice (Fig. 1B). These three remaining SERT-Crecre/wt Munc18-

1lox/lox mice all died in the fourth postnatal week. This shows that

Munc18-1 deletion in SERT expressing neurons results in

postnatal lethality.

5-HT neurons are initially generated but then quickly
degenerate

To assess the effect of Munc18-1 deletion in 5-HT neurons on

the development of the 5-HT system, we made coronal sections of

paraformaldehyde (PFA) fixed brains at different developmental

stadia and performed immunohistochemistry for 5-HT. As

developmental time points we chose E16, E18 and postnatal day

(P) 2. Expression of SERT, and thus of Cre recombinase, starts at

E11 and the earliest recombination observed in the DRN in

SERT-Cre mice was at E12.5 [16]. Since it will take some days

before all remaining Munc18-1 mRNA and protein is degraded,

we chose E16 as the first time point. We first focused on the 5-HT

cell bodies in the DRN. Immunohistochemistry for 5-HT on

brain slices from E16 SERT-Crecre/wt Munc18-1lox/lox and control

mice showed that in the DRN 5-HT neurons are present and

these showed the characteristic DRN topology (Fig. 2A,B). The

number of 5-HT neurons did not differ from control (con-

trol 312617.67, SERT-Crecre/wt Munc18-1lox/lox 305625.43,

Fig. 2O). However, morphological analysis of the neurons showed

that these were already degenerating, as assessed by the round

morphology and reduced number of primary neurites (Fig 2G,H).

At E18, there was a ,80% decrease in the number of 5-HT

neurons in SERT-Crecre/wt M18lox/lox mice compared to control

(control 358610.82, SERT-Crecre/wt Munc18-1lox/lox 5964.84,

Fig. 2C,D,O). At P2 there were only few 5-HT neurons left in the

DRN (control 364619.68, SERT-Crecre/wt Munc18-1lox/lox

2562.89, Fig. 2E,F,O). At E18 and P2 the remaining 5-HT

neurons in SERT-Crecre/wt Munc18-1lox/lox brain sections dis-

played an altered morphology compared to control 5-HT neurons

(Fig. 2I,J,K,L). 5-HT neurons in control brains had a characteristic

fusiform or ovoid shape and grew out several primary neurites

(Fig. 2M). In contrast, the mutant 5-HT neurons had a rounded

morphology and the majority did not contain primary neurites,

indicative of degenerating neurons (Fig. 2N). This showed that

between E16 and P2 there is a massive degeneration of 5-HT

neurons in the DRN.

5-HT projections innervate the DRN and cortex but are
degenerated at P2

Next, we focused on the innervation of the midbrain and cortex

with 5-HT projections. Midbrain and cortex are the first regions

which are densely innervated with 5-HT projections during

development. We quantified 5-HT projection density first in DRN

midbrain sections at E16, E18 and P2. At E16 the sections from

both control and SERT-Crecre/wt Munc18-1lox/lox mice contained

several 5-HT projections and there was no significant difference in

5-HT innervation density (1.3160.51% and 0.6360.24% respec-

tively, Fig. 3A,B). At E18, in control sections the 5-HT innervation

density was slightly increased compared to E16 (Fig. 3C).

However, in SERT-Crecre/wt Munc18-1lox/lox sections the 5-HT

innervation density was decreased compared to control (control

2.3260.86%, SERT-Crecre/wt Munc18-1lox/lox 0.3160.27%,

Fig. 3D).

At P2 only few 5-HT projections were left in SERT-Crecre/wt

Munc18-1lox/lox sections (control 1.660.41%, SERT-Crecre/wt

Munc18-1lox/lox 0.3360.14%, Fig. 3E,F). Next, we focused on the

5-HT innervation density in the cortex. This revealed that already

at E16 there was a reduction in 5-HT innervation density in

SERT-Crecre/wt Munc18-1lox/lox sections (control 3.2761.14%,

SERT-Crecre/wt Munc18-1lox/lox 0.6560.19%, Fig. 3G,H). At

E18 and P2 the reduction in 5-HT innervation density was

augmented, with only very few 5-HT projections left at P2 in the

cortex (E18 control 1.7360.45%, SERT-Crecre/wt Munc18-1lox/lox

0.3660.18%, P2 control 1.7860.52%, SERT-Crecre/wt Munc18-

1lox/lox 0.1960.04%, Fig. 3I,J,K,L). Quantification showed that in

the midbrain sections the 5-HT innervation density was reduced to

,20% at E18 and P2 (Fig. 3M). In the cortex, the 5-HT innervation

density was reduced to ,20% at E16 and E18 and ,10% at P2

(Fig. 3N).

Figure 1. Postnatal lethality in SERT-Crecre/wt Munc18-1lox/lox

mice. (A) Genotype of the conditional knockout mice. Crossing SERT-
Cre with Munc18-1lox/lox mice results in deletion of Munc18-1 only and
specifically in SERT expressing neurons, whereas all other neurons still
express Munc18-1. (B) Genotyping mice after weaning at three weeks of
age revealed that only few SERT-Crecre/wt Munc18-1lox/lox mice survived
up to three weeks.
doi:10.1371/journal.pone.0028137.g001

Loss of 5-HT Cells and Postnatal Lethality in Mice
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In summary, deletion of Munc18-1 in 5-HT neurons resulted in

rapid degeneration of 5-HT cell bodies and the absence of 5-HT

projections in the postnatal brain.

Development of the 5-HT system is not affected in
SERT-Crecre/wt Munc18-1lox/wt mice

Finally, we investigated whether deletion of one allele of

Munc18-1 in SERT expressing neurons affected the number of 5-

HT cell bodies in the DRN, or the 5-HT fiber density in the DRN

and cortex. Analysis of midbrain sections from control and SERT-

Crecre/wt Munc18-1lox/wt (hz) mice showed that 5-HT neurons

were distributed in the characteristic DRN topology, and control

and hz were indistinguishable (Fig. 4A,B). 5-HT cell bodies in both

control and hz had a fusiform or ovoid shape (Fig. 4C,D).

Quantification of the number of 5-HT cell bodies in the DRN

revealed no difference between control and hz (control

364614.78, hz 361615.01, Fig. 4I). Likewise, the 5-HT

projection density in the midbrain and cortex were similar

(midbrain control 4.3860.93%, hz 4.6760.55%; cortex control

2.1860.35%, hz 2.8760.99%, Fig. 4E–H,J). Thus, deletion of one

allele of Munc18-1 does not affect 5-HT neuronal survival, 5-HT

neurite outgrowth or 5-HT projection density.

Discussion

In this study, we showed that SERT-Crecre/wt Munc18-1lox/lox

mice display a postnatal lethality phenotype, accompanied by a

rapid degeneration of the 5-HT system. Inactivation of one allele

of Munc18-1 in SERT expressing neurons does not affect 5-HT

cell number or 5-HT innervation density.

Crossing Munc18-1lox/lox mice with SERT-Cre mice results in

deletion of Munc18-1 from SERT expressing cells. It was shown

previously that crossing SERT-Cre mice with loxSTOPlox-EYFP

mice results in .99% of 5-HT neurons in the DRN which are

EYFP positively labelled [15]. However, SERT is also transiently

expressed in some other brain regions during development, such as

the thalamocortical neurons [16,17]. In SERT-Cre ROSA-

loxSTOPlox-LacZ double positive mice, strong LacZ expression

was not only observed in the DRN, but also in the thalamus,

cingulate cortex and in the CA3 region of the hippocampus

[15,16]. Therefore, in SERT-Cre Munc18-1lox/lox mice also in

some non-5-HT neurons Munc18-1 will be deleted. Genotyping

sacrificed mice at E16 or E18 revealed that there were more

SERT-Crecre/wt Munc18-1lox/lox mice than expected, showing

that these mice do not die during embryonic development.

However, genotyping mice three weeks after birth showed that the

Figure 2. Rapid degeneration of 5-HT neurons in SERT-Crecre/wt Munc18-1lox/lox mice. We compared the number of 5-HT cell bodies in the
DRN in control and SERT-Crecre/wt Munc18-1lox/lox mice at E16, E18 and P2. (A-F) At E16, in both control mice (A) and SERT-Crecre/wt Munc18-1lox/lox

(lox/lox) mice (B) the 5-HT cell bodies are distributed in the DRN topology. At E18 and P2, however, in midbrain sections from SERT-Crecre/wt Munc18-
1lox/lox brains (D, F respectively) only few 5-HT neurons are present compared to control sections (C, E respectively). (G-L) Zooming in on 5-HT cell
bodies shows that in control sections at E16 (G), E18 (I) and P2 (K) the cell bodies grow out several neurites and have a fusiform or ovoid morphology.
However, remaining 5-HT cell bodies in SERT-Crecre/wt Munc18-1lox/lox sections at E16 (H), E18 (J) and P2 (L) have a round morphology with hardly any
neurites. (M,N) Blow up of some 5-HT cell bodies in control and SERT-Crecre/wt Munc18-1lox/lox mice sections shows the differences in 5-HT cell body
morphology. (O) Analysis of the number of 5-HT cell bodies in the sections showed that there is no difference at E16, but at E18 and P2 there is a
decrease of 80% to 90% in the number of 5-HT cell bodies in SERT-Crecre/wt Munc18-1lox/lox sections. Scale bars: 200 mm in F, 50 mm in L and 20 mm in
N. Data shown are mean 6 standard error of the mean (SEM). * p,0.05.
doi:10.1371/journal.pone.0028137.g002

Loss of 5-HT Cells and Postnatal Lethality in Mice
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majority of SERT-Crecre/wt Munc18-1lox/lox mice had died, and

the remaining SERT-Crecre/wt Munc18-1lox/lox mice died within

the fourth postnatal week.

Previously we showed that in Munc18-1 KO mice the neuromus-

cular junction initially develops, but at later stages most of the motor

neuronal cell bodies in the spinal cord degenerate [18]. In analogy

with this, in the absence of regulated secretion the hypothalamo-

neurohypophysial system is initially normally formed, but in later

stages of development degenerates [19]. This is consistent with our

observation that Munc18-1 is dispensable for initial generation and

outgrowth of 5-HT neurons, but required for their survival.

Since also in some other neurons Munc18-1 is deleted, it is

unclear whether the observed phenotypes can be attributed to the

degeneration of the 5-HT system. In Tph2 KO mice, 5-HT

neurons are completely devoid of 5-HT, yet there are no alterations

in 5-HT neuron morphology and 5-HT neurite distribution [7].

Although these mice can survive into adulthood, approximately

50% does not survive the first four weeks and surviving mice have

growth retardation [8]. Additionally, in a conditional Lmx1b KO

mouse, 5-HT neurons are initially formed but almost all central 5-

HT neurons fail to survive and brain 5-HT levels are reduced to

,10% [5]. Remarkably, these mice display normal locomotor

behaviour and show no abnormalities in gross brain morphology.

Recently, it was shown that these mice have severe apnea and have

a ,20% mortality rate during the neonatal period, although the

majority of these mice survive beyond P28 [20,21].

Apparently, even the absence of central 5-HT synthesis or an

almost complete removal of 5-HT neurons does not result in a

severe (postnatal) lethality phenotype. Thus, although several of

these mice display high (postnatal) mortality, the pheno-

types observed are not as severe as in the SERT-Crecre/wt

Munc18-1lox/lox mice.

On the other hand, mice which lack GAP43 display disrupted

barrel cortex formation and thalamocortical connections fail to

form. These mice display a postnatal lethality phenotype, with

50% of homozygotes which die between P0 and P2, and .95% of

homozygotes which die before P21 [22]. Although these mutant

mice display a reduced 5-HT innervation in the cortex and

hippocampus, they have no significant difference in the number of

5-HT neurons, and other areas such as the piriform cortex and

amygdale receive normal 5-HT innervation [23]. Thus, based on

these data it is unclear whether the postnatal lethality phenotype

observed in this study is attributable to a degeneration of

thalamocortical or 5-HT neurons. It would be very interesting

to delete the Munc18-1 gene specifically in 5-HT neurons using

the Pet-Cre transgenic line, in which expression of Cre is restricted

to 5-HT neurons [24]. This approach could be used to investigate

whether the phenotype we observed could indeed be attributed to

degeneration of the 5-HT system rather than degeneration of

thalamocortical neurons.

In conclusion, deletion of both alleles of Munc18-1 in SERT

expressing neurons results in a rapid degeneration of the 5-HT

system and postnatal lethality.

Materials and Methods

Laboratory animals
Generation and characterization of SERT-Cre mice has been

described previously [15]. Briefly, immediately upstream of the

Figure 3. Degeneration of 5-HT projections in DRN and cortex.
(A–F) At E16 in the midbrain containing the DRN, there was no
difference in 5-HT projection density between control (A) and SERT-
Crecre/wt Munc18-1lox/lox (lox/lox) (B) mice. In control sections at E18 (C)
and P2 (E) several 5-HT projections were present. However, in SERT-
Crecre/wt Munc18-1lox/lox sections at E18 (D) and P2 (F) only very few 5-
HT projections are left. (G–L) In the cortex already at E16 there is a
reduction in 5-HT projection density in sections from SERT-Crecre/wt

Munc18-1lox/lox (H) mice compared to control (G). At E18 (J) and P2 (L),
in cortical sections from SERT-Crecre/wt Munc18-1lox/lox mice only very
few remaining 5-HT projections are present, in contrast to E18 (I) and P2
(K) control cortical sections. (M) Quantification of the 5-HT projection
density in the DRN revealed that at E16 there is no difference, but at E18
and P2 5-HT projection density is reduced to ,20%. (N) In cortical

sections, at E16 and E18 the 5-HT projection density is reduced to
,20% and at P2 the 5-HT projection density is reduced to ,10%. Scale
bar 50 mm in L. Data shown are mean6SEM * p,0.05.
doi:10.1371/journal.pone.0028137.g003

Loss of 5-HT Cells and Postnatal Lethality in Mice
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SERT translational start codon a cassette containing Cre and a

FRT-flanked neomycin cassette was inserted. To generate con-

ditional Munc18-1 mice [14], floxed Munc18-1 mice were

generated by insertion of LoxP sites flanking the second exon

using homologous recombination. To obtain SERT-Crecre/wt

Munc18-1lox/lox mice, SERT-Crecre/wt Munc18-1lox/wt mice were

crossed with SERT-Crewt/wt Munc18-1lox/wt mice. Pregnant

females were sacrificed by cervical dislocation. Mouse embryos

were obtained by caesarean section of pregnant females from

timed matings. To investigate the effect of deletion of Munc18-1

in the 5-HT system on the development of the 5-HT system,

SERT-Crecre/wt Munc18-1lox/lox mice were used. SERT-Crewt/wt

Munc18-1lox/lox, SERT-Crewt/wt Munc18-1lox/wt, or SERT-

Crecre/wt Munc18-1wt/wt littermates were not different from

SERT-Crewt/wt Munc18-1wt/wt mice and were used as controls.

SERT-Cre mice were genotyped as has been previously described

[15]. For genotyping of Munc18lox/lox mice the following primers

were used: 59-ttggtggtcgaatgggcaggtag-39, 59-cctgtatgggtactgttcgtt-

cactaaaata-39 and 59-ttctgaacttgaggccagtctgagacacag-39. These

studies were approved by the institutional ethical committee of

the VU University (Protocol FGA 06-11-2). Animals were housed

and bred according to institutional and Dutch guidelines.

Immunohistochemistry
For immunohistochemical analysis of 5-HT, embryonic mouse

brains were dissected and immediately fixed by immersion in 4%

PFA in phosphate buffered saline (PBS, pH 7.4). For analysis of

5-HT neurons and projections in adult brains, mice were

anaesthetized and transcardially perfused with 4% PFA in PBS.

For post-fixation, brains were incubated in 4% PFA in PBS

overnight. For cryoprotection, brains were incubated in increasing

concentrations of sucrose. Subsequently, coronal slices of 40 mm

were made. For immunohistochemistry, brain slices were first

incubated in blocking buffer containing PBS supplemented with

Figure 4. In SERT-Crecre/wt Munc18-1lox/wt mice number of 5-HT cell bodies and 5-HT innervations are not affected. (A-D) Midbrain
sections containing the DRN from control (A) and hz (B) mice shows that 5-HT neurons are distributed in the characteristic DRN topology. Zooming in
on 5-HT cell bodies show that both in control (C) and hz sections (D) these neurons have a fusiform or ovoid morphology and grow out several
neurites. (E–H) 5-HT projection density is not different between control and hz mice in the midbrain containing the DRN (E and F respectively) or in
cortical sections from control and hz mice (G and H respectively). (I) Number of 5-HT cell bodies per section does not differ between control and hz.
(J) 5-HT projection density in midbrain containing DRN and cortical sections is not different between control and hz. Scale bars: 200 mm in B, 50 mm in
D and H.
doi:10.1371/journal.pone.0028137.g004

Loss of 5-HT Cells and Postnatal Lethality in Mice
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0.5% Triton X-100 and 10% normal goat serum for two hours.

Subsequently, slices were incubated overnight with primary

antibodies in PBS containing 0.5% Triton X-100 at 4uC under

gentle agitation. The next day, the slices were washed three times

two hours in PBS and incubated with secondary antibodies in PBS

for one hour under gentle agitation. Finally, slices were washed

again three times two hours in PBS and mounted in Dabco

Mowiol for analysis. All procedures were performed at room

temperature unless otherwise stated. Polyclonal anti-5-HT

(1:1000) (Immunostar/Diasorin) was used as the primary antibody,

and as a secondary antibody GAR-546 (1:1000) was used

(Invitrogen). To analyze number of 5-HT cell bodies in DRN

sections, at least three sections per experimental group were

imaged using a CLSM 510 microscope. Number of 5-HT cell

bodies was manually counted in the slices. For analysis of 5-HT

fiber density in DRN and cortex Z-stacks of at least three positions

per group was made. To analyze the 5-HT fiber density, the Z-

stacks were projected in a single image and binarized. The 5-HT

fiber density was quantified as the area in the image occupied by

5-HT projections compared to the total area.

Statistical analysis
Data were analyzed using SPSS 17.0. For analysis of number of

5-HT cell bodies in DRN and 5-HT projection density in DRN

and cortex, data was analyzed using the independent samples t-

test. To analyze whether observed genotype frequencies differed

significantly from a Mendelian ratio, a one-way chi-square test was

performed. Data shown are mean6SEM. Significance level was

set at p,0.05.
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