
SOFTWARE Open Access

GENAVi: a shiny web application for gene
expression normalization, analysis and
visualization
Alberto Luiz P. Reyes1†, Tiago C. Silva1†, Simon G. Coetzee1, Jasmine T. Plummer1, Brian D. Davis1, Stephanie Chen1,
Dennis J. Hazelett1, Kate Lawrenson2, Benjamin P. Berman1, Simon A. Gayther1† and Michelle R. Jones1*†

Abstract

Background: The development of next generation sequencing (NGS) methods led to a rapid rise in the generation
of large genomic datasets, but the development of user-friendly tools to analyze and visualize these datasets has not
developed at the same pace. This presents a two-fold challenge to biologists; the expertise to select an appropriate
data analysis pipeline, and the need for bioinformatics or programming skills to apply this pipeline. The development
of graphical user interface (GUI) applications hosted on web-based servers such as Shiny can make complex workflows
accessible across operating systems and internet browsers to those without programming knowledge.

Results: We have developed GENAVi (Gene Expression Normalization Analysis and Visualization) to provide a user-
friendly interface for normalization and differential expression analysis (DEA) of human or mouse feature count level
RNA-Seq data. GENAVi is a GUI based tool that combines Bioconductor packages in a format for scientists without
bioinformatics expertise. We provide a panel of 20 cell lines commonly used for the study of breast and ovarian cancer
within GENAVi as a foundation for users to bring their own data to the application. Users can visualize expression
across samples, cluster samples based on gene expression or correlation, calculate and plot the results of principal
components analysis, perform DEA and gene set enrichment and produce plots for each of these analyses. To allow
scalability for large datasets we have provided local install via three methods. We improve on available tools by
offering a range of normalization methods and a simple to use interface that provides clear and complete session
reporting and for reproducible analysis.

Conclusion: The development of tools using a GUI makes them practical and accessible to scientists without
bioinformatics expertise, or access to a data analyst with relevant skills. While several GUI based tools are currently
available for RNA-Seq analysis we improve on these existing tools. This user-friendly application provides a convenient
platform for the normalization, analysis and visualization of gene expression data for scientists without bioinformatics
expertise.
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Background
The rapid decrease in cost and increased access to the
tools needed to generate RNA-Seq data have resulted in
it being widely incorporated into basic science research
[1]. However, tools for those without bioinformatics
expertise to analyze the data have not been developed at

the same pace, and analysis of RNA-Seq data generally
requires some bioinformatics, programming and expert
knowledge, or the purchase of commercially available
software [2]. Providing user-friendly methods for the
normalization, analysis and visualization of gene expres-
sion data can enhance the incorporation of high through-
put genomics into basic science research by those without
necessary expertise. We identified three key features of a
user-friendly RNA-Seq analysis application and designed
an open source application to address these needs;
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– tools should be stable and hosted online,
independent of operating system or internet browser
and not depend on local installation;

– high quality analysis tools should be packaged in a
way that does not require expert knowledge of
programming (such as use of R) but be accessed via
a graphical user interface (GUI);

– the output and results should be downloadable in an
easy to use format for data tables and plots.

The development of analytic tools for RNA-Seq data
has grown considerably, and selecting the correct process-
ing pipeline and normalization strategy has a significant
impact on downstream analysis [3]. It is common for the
initial steps of data processing (quality control, alignment
and feature identification and counting) to be performed
by a core bioinformatics service, often available from core
labs that generate RNA-Seq data at a relatively low cost.
The downstream analysis (normalization, differential ex-
pression and plotting the results of each) often requires
several iterations and can be more efficiently performed
by the researcher who designed the experiment, if they
have the analytic expertise. This scenario presents a two-
fold challenge to biologists; selection of the most appro-
priate data analysis pipeline, which often consists of
multiple independent analytic packages [4], and the need
for sufficient bioinformatics skills to apply this pipeline to
their processed RNA-Seq data.
The development of GUI based software tools can ad-

dress these challenges by collecting different software
packages within one platform and making complex ana-
lytical tools accessible to scientists without bioinformat-
ics expertise, or access to a data analyst with relevant
skills. Some GUI based applications are currently avail-
able for RNA-Seq analysis [5–10], however we have de-
veloped GENAVi to improve on these existing tools.
GENAVi provides improvements over previously pub-
lished tools in five key areas. We have provided flexible
hosting options that allow users to install locally should
they have the expertise, as well as web hosting that
provides flexible access across browsers. Four data
normalization methods are available to users, providing
increased flexibility for data analysis. The interactive na-
ture of the plots included in GENAVi allows users to ex-
plore the results of their analyses. A broad set of options
for pathway enrichment allows users to design an ana-
lysis most suited to their own hypothesis and dataset
easily and quickly. Finally, the clear, but complete,
reporting available on each of the analysis tabs allows
users to easily record their analysis settings and results
in a single report, supporting reproducible and transpar-
ent analysis. We have used R and Bioconductor packages
that allow the application to be easily maintained and
updated as analytic methods continue to mature for the

normalization and analysis of gene expression data, and
by hosting our software as a Shiny web app the tool is
functional across all computing platforms and operating
systems.

Implementation
Hosting/capacity
GENAVi is a Shiny web app [11] built in an R frame-
work [12] that provides four types of data normalization,
four types of data visualization, differential expression
analysis (DEA) and gene set enrichment analysis using
count level RNA-Seq data. GENAVi is available in three
formats: as a hosted web application that runs within an
internet browser, as a local installation of a Shiny app
that runs from within R, and as a docker image that can
be downloaded and run from within the container.
GENAVi is hosted on the Shiny server, and can most
easily be accessed via web browser and the url https://
junkdnalab.shinyapps.io/GENAVi/ [13]. This hosted ap-
plication can process a counts matrix of 100 samples
(with ~ 40M reads per sample, assigned as counts to
more than 58,000 genes/features) through normalization
and DEA in 22min of compute time. Experiments
including more than one hundred samples should be
run on a local machine with more than 8GB of RAM to
accommodate rlog normalization and perform DEA.
GENAVi can be installed and run locally by executing the
following command in R [shiny::runGitHub (“GENAVi”,
“alpreyes”)]. Alternatively, users can build GENAVi
from this Docker image file that provides the
complete R and Bioconductor environment needed
for the app to function [14].

Gene expression data
GENAVi can be used to analyze the provided RNA-Seq
datasets or users can upload their own mouse or human
RNA-seq data for normalization and analysis. The
application currently provides a panel of cell lines that
are commonly used as models for ovarian and breast
cancer in our research program (listed in Additional file 1:
Table S1 and Additional file 2: Table S2, GEO
(GSE114332)). RNA-Seq was performed according to
methods described in Additional file 4: Text 1. To assess
the quality of our cell line RNA-Seq, we used a custom
quality control script that calls FastQC (version 0.11.5)
and fastqscreen (version 0.6.3) to provide input for
MultiQC (version 1.3). Forty two cell lines from the
Cancer Cell Line Encyclopedia (CCLE) related to ovarian
cancer were collected as .bam files and converted to
fastq using Picard SamToFastq. After review of QC
metrics we aligned each read pair using a custom STAR
script (version 2.5.1b) to Gencode v26 (hg38 build of the
reference human genome). This process produced a bam
file for each sample which we then used for quantification
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of gene-level expression. We next used the featureCounts
function of the subread package (version 1.5.2) to count
the number of reads that mapped to a reference gene [15].
The featureCounts function counts reads against a gen-
omic feature (exons, transcripts or genes) rapidly by apply-
ing chromosome hashing and feature blocking, and can be
used for both single and paired end sequencing [15]. Our
use of the featureCounts function along with the Gencode
v26 annotation file accounted for alternate transcripts of
each gene and collapsed those transcripts to gene
level. The complete code for these scripts is available
as an installable package at https://github.com/
alpreyes/GENAVi.
We maintained two separate matrices for our in

house generated RNA-Seq and those from the CCLE.
Due to differences in library preparation (non-
stranded vs. stranded) that introduce batch effects
that cannot be addressed with normalization, data
from the CCLE and our in-house RNA-Seq should
not be directly compared. A feature counts matrix
and metadata file are available for CCLE ovarian
cancer cell lines as Additional file 5: Table S4 and
Additional file 6: Table S5. The resulting data table
for the panel of 20 cell lines we generated (Additional
file 2: Table S2) had information on the quantified
expression of 58,219 features across our 20 cell lines
and also included gene identification information,
chromosomal position, strand information, and gene
length. This data frame along with its corresponding
metadata table (Additional file 3: Table S3) served as
the foundation for assembling GENAVi.
Users can bring their own human or mouse RNA-Seq

datasets to the application in the form of a counts
matrix. A matrix of genes as rows and samples as col-
umns can be uploaded as a .csv file. We have deposited
example files (featureCounts matrix for newly generated
data and gene count matrix for TCGA breast cancer
samples, with their MetaData) in a publicly available
Google Drive folder (as detailed in the User Guide,
Additional file 4: Text 2) and supplied them as Supple-
mental tables, with detailed instructions on their format
and how to upload them to the app provided within the
vignette and tutorial. All user data is uploaded temporar-
ily, and the data is cleared from the server at the end of
each session. A search bar allows query of the displayed
data table and clicking on genes individually will select
genes for visualization and clustering. A larger number
of genes can be selected simultaneously by uploading a
list of gene names as a text file, or either directly enter-
ing or pasting a list of gene names into the ‘Gene list
filter’ text box, and selected genes will move to the top
of the displayed data table and only these selected genes
will then be displayed in the expression heatmap and
cluster plots.

Normalization of expression data
Four methods of normalization are available with the
Select Transform drop-down menu. The first transform-
ation available is labelled “row normalization” and is
based on row normalizing the expression of each indi-
vidual gene across all samples, resembling a t-score
normalization (Fig. 1a). The second transformation,
logCPM (counts per million) is implemented from the
edgeR package [16]. CPM values are calculated for every
feature in every sample, and these CPM values are then
log2 transformed. The last two transformations GENAVi
utilizes come from the DESeq2 package [17]: the vari-
ance stabilizing transformation (vst) and the regularized
logarithmic transformation (rlog). The vst method
produces transformed expression values similar to those
produced by the log2 transform while also using a
negative binomial model to account for changes in the
variance of genes based on the dynamic range of mean
expression. Lastly, the rlog method transforms raw
counts based on the number of reads in individual sam-
ples (representing noise that can be introduced by differ-
ences in sequencing depth between samples). Since this
transformation is computationally intensive we limited
its use to cases with fewer than 30 samples. We have
selected these four methods for data normalization as
they represent the most robust and widely applied
methods for transforming and normalizing RNA-Seq
data for visualization and analysis. We have not included
the rank-based normalization method, as recent analyses
have found it is not suitable for normalization of large
differences across many features. The technical and
experimental artifacts that can generate very large
differences in gene expression across samples do not
perform well under rank-based normalization [18, 19]. A
thorough review of normalization methods for RNA-Seq
data is provided to users in the application Vignette.

Visualization of normalized expression data
The second feature of GENAVi is the visualization of
gene expression across samples. This is accomplished in
four separate outputs within the “Visualization” tab. The
first two plots can be viewed under the “Expression
plots” subtab. When the user wants to view the expres-
sion of a single gene across all samples and selects this
gene in the data table, a bar plot is generated in the plot-
ting subtab. When the user has selected more than one
gene to view, GENAVi uses the package iheatmapr [20]
to generate an interactive heatmap that displays an
expression matrix of the user-selected genes across all
samples of the data table (Fig. 1a). Under the “Clustering
plots” subtab, the user can view an interactive heatmap
visualizing the Pearson correlation matrix calculated
using either all genes or user-selected genes in the
displayed data table (Fig. 1b). Within the clustering
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heatmap the order of samples along the vertical and
horizontal axes are determined by the Pearson
distance between samples. To allow users to view the
relationships between and across samples with
different sets of genes selected we have also provided
Principal Components Analysis (PCA) using the base
R function prcomp. The user can view either a 2D or
3D PCA plot of the complete or filtered data set, and
using labels or groups provided in the metadata for
each sample can opt to color points by these labels.
This represents an important quality control step in
RNA-Seq data analysis, and allows non-expert users
to identify sample or group outliers quickly. All of
the plots generated can be downloaded as a .png file
and have interactive features allowing zoom, data
point selection and for data values for points to be
displayed when the cursor is hovered over them.
These functions allow the user to explore their
dataset by searching for genes of interest, including
those that are identified in the DEA module of the
app and rapidly generate plots.

Differential expression analysis
GENAVi enables the user to perform and visualize
differential expression analysis using the DESeq2 work-
flow [17]. Under the “Differential Expression Analysis”
tab, the user can upload a metadata file which is then
used to group samples in the displayed data table based
on experimental design and conditions. Next, the user
specifies the group to be used as baseline for all differen-
tial expression comparisons as well as any covariates in
the experimental design provided within the metadata.
The result of the DEA is displayed in a table resembling
the DESeq2 results table, as well as an interactive
volcano plot that can be customized through drop-down
menus (Fig. 2a). This module of the application allows
complex analysis models to be generated easily in a GUI,
providing analytic tools to researchers without R or
bioinformatics expertise.

Gene set enrichment analysis
Finally, GENAVi allows users to perform gene set
enrichment analysis to identify functional profiles of the

Fig. 1 GENAVi provides a GUI for gene expression normalization and differential expression analysis. a) Expression Heatmap of differentially
expressed genes in ovarian cancer cell lines. b) Clustered heatmap identifies similarities in samples based on selected genes. Normal precursor
cells are clustered separately from cancer cell lines. c) Principal Component Analysis (PCA) plot shows sample clustering based on selected genes.
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differentially expressed genes (Fig. 2). A thorough guide
to gene pathway analysis describing these tools is
available as an online resource from Yu et al. [21]. Under
the “Enrichment analysis” tab, the user can upload the
DEA analysis results and select between performing an
Over Representation Analysis (ORA) [22] or a gene set
enrichment analysis (GSEA) [23]. We provide five data-
bases of annotated gene sets that can be used for the
enrichment analysis; Molecular Signatures Database -
MSigDB [24], WikiPathways [25], Kyoto Encyclopedia of
Genes and Genomes (KEGG) [26] and Gene Ontology
(GO) [27, 28]. This analysis can be computationally
intensive, depending on the file size used as input, how-
ever a progress bar allows the user to track the analysis.
We have provided an additional dataset of RNA-Seq
count level data for breast cancer samples from The
Cancer Genome Atlas processed using TCGABiolinks
[29] that is suitable for the exploration of DEA and
GSEA functionalities provided by GENAVi. Briefly, we
select the luminal and basal subtypes from African

American patients to generate a modest sized “real
world” example of DEA between two groups with appro-
priate samples as a model for users. The code used
within TCGA Biolinks to access and download the count
level HTSeq data from TCGA is available at the GEN-
AVi project github repository [30].

Reporting and reproducibility of analysis
To provide complete reporting of the session in which
analysis is performed a report can be generated on each
of the four analysis tabs of the application. This report
(generated as an html file) records the analysis
performed by reporting the options selected within the
R Shiny session. The libraries used and commands
required to perform the analysis as selected through the
GUI are provided, along with interactive tables and fig-
ures that are generated during the analysis. Additionally
the report provides the complete list of packages and
their versions used within the session to perform the
analysis, allowing users to maintain an easy to view and

Fig. 2 GENAVi offers rapid DEA using DESeq2 and gene set or pathway enrichment analysis for biological interpretation of analysis results. a)
volcano plot showing results of DEA performed using a subset of TCGA breast cancer cases. b) Results of gene set enrichment can be plotted in
several ways, including as a dot plot (left) or a ridgeline plot (right) to identify over represented biological pathways in DEA results
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store record of their analysis and results. This option is
available via the Generate Report option on each tab,
and reports are downloaded.

Results
We have developed a user-friendly GUI based Shiny web
application to host our own catalog of RNA-seq data and
provide a platform for those without bioinformatics ex-
pertise to analyze their own data. We performed a search
for open source RNA-Seq analysis tools that did not re-
quire any programming expertise to run (either in R or at
the command line), used stable and maintained estab-
lished packages in R or Bioconductor and that operate
through a GUI that are currently active. Six tools satisfied
these four criteria; START [5], iDEP [31] [6], DEBrowser
[32], DEGUST [8], DEIVA [33], and DEApp [34]. Each of
these tools have some similar functionality to one another,
and to GENAVi, however GENAVi improves on their
functions in a number of ways (Table 1). We split the
comparison of functions into four categories: Hosting,
User Data, Normalization, and Outputs. Hosting refers to
the various platforms from where these applications can
be used, User Data refers to the upload and prefiltering of
low count features of user data. Normalization refers to
both the use of packages as well as the number of
normalization available within each app; an “NA” in this
category indicates that the application does perform some
normalization but does not allow users to toggle between
different normalization schema. Outputs refers to the dif-
ferent types of plots and tables produced by each app as
well as the nature of these as interactive or downloadable.
The greatest improvement offered by GENAVi is the

flexibility in data normalization approaches available.
The use of appropriate normalization prior to data
visualization is important for the correct interpretation
of RNA-Seq data. We offer four normalization methods,
and provide a detailed explanation of each in the
application user guide (Additional file 4: Text 2) to assist
non-expert users. While four of these tools were devel-
oped using the shiny framework, only START and
DEApp are hosted at a URL and also offer the possibility
to launch from within R locally. This functionality allows
GENAVi to be installed and hosted locally with a single
line of code, or by a bioinformatician who would like to
host GENAVi on a local server for collaborators or cus-
tomers of a core laboratory who are biologists. GENA-
Vi’s greatest differential in this area is its’ availability as a
docker image which makes it the best solution in terms
of scalability, as it could be easily deployed on different
operating systems for very large projects, since all de-
pendencies are already configured in the docker image.
By making GENAVi available in these three forms, we
allow our application to have the compute power needed
to process user data of varying magnitude.

GENAVi offers the greatest flexibility in data
normalization approaches, which we believe to be an im-
portant functionality. The use of appropriate normalization
prior to data visualization is important for the correct in-
terpretation of RNA-Seq data, and we have addressed this
in the application user guide (Additional file 4: Text 2) to
assist non-expert users. While the applications listed above
perform some normalization of RNA-seq data, few allow
users to toggle between different options and view their ef-
fects on clustering and gene expression between samples.
We believe this to be an important advantage of our tool.
While we do relieve the user of some difficult software im-
plementation decisions, the choice of normalization for
clustering is dependent on the nature of data uploaded.
Therefore the user needs the ability to choose different
normalization methods to visualize and analyze their data
throughout their workflow. Lastly, GENAVi offers more
flexibility for data visualization than other available tools.
While similar packages allow the user to search and select
individual genes to visualize, they do not provide the subset
of most variable genes, or as many options for selecting
multiple genes. This offers a significant improvement for
the plotting of quality control and analysis results, which
may require the selection of hundreds or thousands of
genes for visualization by cluster plot. A summary of the
relevant functions discussed above as well as other features
benchmarked between the tools is shown in Table 1.
To further compare the functions offered in GENAVi

with similar tools, we processed the RNA-Seq count
level data from the panel of 20 cell lines through each,
and benchmarked functions and runtimes for compar-
able analysis steps such as performing DEA and
GSEA. When comparing the DEA functions of each
tool we observed that the four tools that perform
complex models (including covariates and batch cor-
rection) analysis times were closely matched, and took
between 1 min 30 s and 2 min 30 s. We also noted
that one of the comparable tools, DEIVA [33], does
not perform complex DEA analysis, but requires the
upload of DESeq2 results and is then able to visualize
these results. Upload of our releatively small dataset
(20 samples) took approximately 10 min, while upload
of externally generated results from the same file to
GENAVi required less than a minute. Only two of
the comparable tools offer GSEA (iDEP, and DEBrow-
ser), and this process required between 30 s and 1
min 30 s depending on specific parameters used.
In performing a thorough comparison of tools with

some shared functionality we observed an additional
strength in the design and use of GENAVi; the simple
user interface requires a small amount of training des-
pite utilizing complex analysis approaches. Additionally,
we noted the advantage of a single upload of count level
data and complete analysis pipeline means that GENAVi
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requires the least amount of processing and formatting
of input files. The simple but complete reporting of
the code underlying the R session as a single html file
within each analysis tab of the application that
includes interactive tables and figures also provides a
useful improvement over other available tools. It
allows users to easily record the analysis settings
selected by the user and combines these with the
results of this analysis. This report has the added
benefit of giving unexperienced users exposure to the
code required to perform the analyses they have de-
signed within the GUI, potentially providing them
with a starting point to take their analyses directly to
R should they wish to extend their analysis with

additional Bioconductor packages. While processing
our dataset through these six tools, we concluded that
our software presented the most accessible user
interface by separating analysis steps into distinct
tabs. Although other tools separate different plots and
outputs, only START, DEBrowser, and DEApp break
apart entire analysis steps into distinct locations
within their respective GUIs. We believe this to be a
major advantage of GENAVi as it intends to facilitate
researchers without bioinformatics expertise to utilize
an RNA-seq analysis pipeline. A summary of the
relevant functions discussed above as well as other
features benchmarked between the tools is shown in
Table 1.

Table 1 A summary of comparisons between GENAVi and tools with shared functionality

GENAVi START iDEP DEBrowser DEGUST DEIVA DEApp

Hosting

GUI Yes Yes Yes Yes Yes Yes Yes

URL hosted Yes Yes Yes No Yes Yes Yes

Active Yes Yes Yes Yes Yes Yes Yes

run from R Yes Yes No Yes No No Yes

Open source Yes Yes Yes Yes Yes Yes Yes

Docker Yes No Yes No No No No

User data

Upload Yes Yes Yes Yes Yes Yes Yes

Prefiltering Yes No Yes Yes Yes No Yes

Bulk Feature Selection Yes No No No No Yes No

Normalization

Normalization Yes Yes Yes Yes No No Yes

Methods Available 4 2 3 3 NA NA NA

Visualization

Interactive expression heatmap Yes Yes Yes Yes No No No

Interactive correlation heatmap Yes No Yes Yes No No No

Volcano Plot Yes Yes Yes Yes Yes Yes No

Interactive PCA plotting Yes Yes Yes Yes No No Yes

2D and 3D PCA plotting Yes No No No No No No

DEA

DEA with packages Yes No Yes Yes Yes No Yes

Complex model Yes Yes Yes Yes No No Yes

lfc shrinkage Yes No No No No No No

Pathway Analysis

ORA Yes No No No No No No

GSEA ranking method Yes No Yes Yes No No No

Enrichment Analysis Yes No Yes Yes No No No

Reproducible Analysis and Documentation

Session and code report Yes No Yes No Yes No No

Complete analysis report Yes No Yes No No No No
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Conclusions
We have developed GENAVi as a user-friendly GUI
based application to enhance the ability of researchers
without bioinformatics expertise to incorporate high
throughput RNA-Seq data into their research. By provid-
ing four options for data normalization, PCA, DEA and
gene set enrichment paired with a range of visualization of
RNA-Seq data options our goal is to enable researchers to
perform their own data analysis and visualization.
Additionally, we have offered a variety of ways to host
GENAVi that will allow more expert users to scale our
tool to meet the needs of their own RNA-seq analysis
should they have very large experiments or wish to host
the application locally.

Availability and requirements
Project Name: GENAVi.
Project home page: https://junkdnalab.shinyapps.io/

GENAVi/
Operating Systems: Platform independent.
Programming language: R.
Other requirements: internet connection, internet

browser.
License: GNU GPL version 3.
Any restrictions to use by non-academics: Not

applicable.

Additional file

Additional file 1: Table S1. List of cell lines used to generate RNA-Seq
data to provide a resource for breast and ovarian cancer research.
(XLSX 10 kb)

Additional file 2: Table S2. A featureCounts matrix of breast and
ovarian cancer cell line panel. (XLSX 8428 kb)

Additional file 3: Table S3. A metadata table describing the samples in
breast and ovarian cancer cell line panel to be used for DEA within
GENAVi. (XLSX 9 kb)

Additional file 4: Text 1. Cell Culture Methods, RNA Isolation, Library
Preparation, and Sequencing. Text 2. GENAVi User Guide. (DOCX 9534 kb)

Additional file 5: Table S4. A featureCounts matrix of CCLE ovarian
cancer cell lines. (XLSX 14556 kb)

Additional file 6: Table S5. A metadata table describing CCLE ovarian
cancer cell lines. (XLSX 9 kb)
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