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This study presents a novel enhanced exponential class of estimators for population mean under 
RSS by employing data on an auxiliary variable. The suggested estimators’ mean square error 
(MSE) is calculated approximately at order one. The efficiency conditions that make the suggested 
enhanced exponential class of estimators superior to the traditional estimators are found. A 
simulation study using hypothetically drawn normal and exponential populations evaluates the 
execution of the suggested estimators. The findings demonstrate that the suggested estimators 
outperform their traditional equivalents. In addition, real data examples are examined to show 
how the proposed estimators can be implemented in various real life problems.

1. Introduction

The most frequent sampling method used in the establishing of statistical techniques is simple random sampling (SRS). It is 
unlikely to obtain a representative sample of the population by employing SRS if the sample size is insufficient. Numerous other 
sampling techniques like stratified sampling, systematic sampling, and cluster sampling, have been suggested in the literature as 
solutions to this issue. To increase the structure and reduce the possibility of an unrepresentative sample, these designs take into 
account prior knowledge of the underlying population’s structure. In order to obtain the appropriate precision in drawing conclusions, 
[1] created ranked set sampling (RSS) that was intended to bring down the number of measured observations needed. It differs from 
the sampling methods previously discussed in that it does not need any prior knowledge about the structure of the population. This 
method of sampling is helpful in situations whenever ranking of the units of the sample without using their accurate amounts is 
simpler and less expensive than getting their accurate values.

The estimation methods consisting of RSS are often more efficacious than the estimation methods consisting of SRS counterparts. 
In the RSS literature, this problem has been researched for a number of common issues. The population mean computation is one 
of them and a very well known research topic among the survey researchers. Numerous enhanced and modified ratio, product, log, 
and regression type RSS based estimation methods of population mean based on supplementary information are available in the 
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literature. Ref. [2] suggested RSS based traditional ratio estimator of population mean. Ref. [3] investigated RSS based traditional 
regression estimator of population mean. Ref. [4] examined RSS based ratio estimator for mean estimation. Ref. [5] investigated a 
generalised family of mean estimators consisting of RSS. Ref. [6] tested the efficiency of few RSS based ratio cum product category of 
estimators. Ref. [7] developed a generalized ratio cum product category of exponential estimator using RSS. Ref. [8] proposed a RSS 
based generalized class of estimators for mean estimation. Ref. [9] presented a RSS based exponential estimator of population mean. 
Refs. [10] and [11] proposed various RSS based improved classes of mean estimators. Ref. [12] examined a RSS based elevated 
generalized class of exponential ratio category of estimators. Similar to the above studies, many contributors have provided various 
modified and improved estimators for population mean using RSS, including Refs. [13–23].

A substantial work for the population mean estimation consisting of RSS has been done in the literature using ratio, log, and 
product categories of estimators. But, a very few works is available for the population mean estimation taking exponential estimators. 
The goal of this manuscript is to offer a new enhanced exponential class of estimators consisting of supplementary information under 
RSS, and to compare the proposed and existing estimators theoretically as well as empirically using real and artificial populations.

The RSS methodology, notations used, and a brief summary of the existing estimators along with their MSE expressions are 
provided in the next section. Section 3 proposes a generalized exponential class of estimators with its characteristics. Section 4

provides a performance comparison of the proposed and commonly used estimators. Simulation experiment is done in Section 5 to 
strengthen the theoretical results, while some real data sets are analyzed in Section 6. Section 7 conclude this research article.

2. Existing literature

To identify a ranked set sample based on the set with 𝑚 size, one must initially choose 𝑚 simple random samples of 𝑚 size from 
the population. The next step is to order each sample of 𝑚 size in the order of growing magnitude. The procedure of ranking in this 
stage is carried out utilizing a cheap approach that doesn’t involve actual quantification of sample units, such as eye evaluation or 
human judgement. For real quantification, the sample unit from the 𝑖𝑡ℎ sample having judgement ranking 𝑖, (𝑖 = 1, 2, ..., 𝑚) is chosen. 
To get a ranked set sample with 𝑛 = 𝑟𝑚 size, the full procedure may be performed 𝑟 counts (cycles). It is essential to mention that the 
set of 𝑚 size should be maintained low to allow for the requisite informal rankings. Let 𝑍[𝑖]𝑙 represent the 𝑙𝑡ℎ cycle’s 𝑖𝑡ℎ judgement 
order statistic. The final sample is represented by the notation 𝑍[𝑖]𝑙 ∶ 𝑖 = 1, 2, ..., 𝑚; 𝑙 = 1, 2, ..., 𝑟. The accuracies and inaccuracies in the 
ranking procedure are shown by the usage of round and square brackets, respectively, in the subscripts of the variables.

Let’s suppose for the purposes of obtaining the characteristics of numerous well known classes of estimators that 𝛿0 = (𝑦̄[𝑛] −𝑌 )∕𝑌 , 
𝛿1 = (𝑧̄(𝑛) − 𝑍̄)∕𝑍̄ implies that 𝐸(𝛿0) = 𝐸(𝛿1) = 0 and 𝑧̄(𝑛) =

∑𝑚

𝑖=1𝑍(𝑖)∕𝑚𝑟 and 𝑦̄[𝑛] =
∑𝑚

𝑖=1 𝑌[𝑖]∕𝑚𝑟 are, respectively, the sample means of 
the variables 𝑍 and 𝑌 in RSS.

𝐸(𝛿20) = 𝜃𝐶2
𝑦
−𝑊 2

𝑦[𝑖]
(1)

𝐸(𝛿21) = 𝜃𝐶2
𝑧
−𝑊 2

𝑧(𝑖)
(2)

𝐸(𝛿0, 𝛿1) = 𝜃𝜌𝑧𝑦𝐶𝑧𝐶𝑦 −𝑊𝑧𝑦[𝑖]
(3)

where 𝜃 = (𝑚𝑟)−1, 𝐶𝑦 = 𝑆𝑦∕𝑌 , 𝑊 2
𝑦[𝑖]

=
∑𝑚

𝑖=1(𝜇𝑦[𝑖] −𝑌 )2∕𝑚2𝑟𝑌 2, 𝐶𝑧 = 𝑆𝑧∕𝑍̄, 𝑊 2
𝑧(𝑖)

=
∑𝑚

𝑖=1(𝜇𝑧(𝑖) − 𝑍̄)2∕𝑚2𝑟𝑍̄2, 𝑊𝑧𝑦[𝑖]
=
∑𝑚

𝑖=1(𝜇𝑧(𝑖) − 𝑍̄)(𝜇𝑦[𝑖] −

𝑌 )∕𝑚2𝑟𝑍̄𝑌 , 𝜇𝑦[𝑖] = 𝐸(𝑌[𝑖]), and 𝜇𝑧(𝑖) = 𝐸(𝑍(𝑖)). (𝑌 , 𝑍̄) and (𝐶𝑦, 𝐶𝑧) are the population’s mean and coefficient of variation of variables 
𝑦 and 𝑧, respectively.

Further, in this section, we go through the estimators available in literature. The variance of the RSS based conventional mean 
estimator 𝑡1 = 𝑦̄[𝑛] is:

𝑉 (𝑡1) = 𝑌 2(𝜃𝐶2
𝑦
−𝑊 2

𝑦[𝑖]
)

The ratio estimator performs best when 𝑦 and 𝑧 have a strong positive correlation given the regression line (𝑦 on 𝑧) following a 
straight line from origin. Taking this advantage into consideration, [2] investigated the conventional RSS based ratio estimator as

𝑡2 = 𝑦̄[𝑛]
𝑍̄

𝑧̄(𝑛)

The 𝑀𝑆𝐸(𝑡2) is presented below as:

𝑀𝑆𝐸(𝑡2) = 𝑌 2
{
(𝜃𝐶2

𝑦
−𝑊 2

𝑦[𝑖]
) + (𝜃𝐶2

𝑧
−𝑊 2

𝑧(𝑖)
) − 2(𝜃𝜌𝑧𝑦𝐶𝑧𝐶𝑦 −𝑊𝑧𝑦[𝑖]

)
}

When the regression between 𝑦 and 𝑧 is linear but the line of regression goes except the origin. In these circumstances, the ratio 
estimator’s effectiveness is extremely poor. The superior choice is the regression estimator in such circumstances. Taking this fact 
into consideration, [3] employed the conventional RSS based regression estimator as

𝑡3 = 𝑦̄[𝑛] + 𝑏(𝑍̄ − 𝑧̄(𝑛))
2

where 𝑏 is a constant known as the regression coefficient.



Heliyon 9 (2023) e20773M. Yusuf, N. Alsadat, O.S. Oluwafemi Samson et al.

The optimum 𝑀𝑆𝐸 for the optimum value of 𝑏(𝑜𝑝𝑡) =𝑅(𝜃𝜌𝑧𝑦𝐶𝑧𝐶𝑦 −𝑊𝑧𝑦[𝑖]
)∕(𝜃𝐶2

𝑦
−𝑊 2

𝑦[𝑖]
) is given by

𝑚𝑖𝑛𝑀𝑆𝐸(𝑡3) = 𝑌 2
{
(𝜃𝐶2

𝑦
−𝑊 2

𝑦[𝑖]
) −

(𝜃𝜌𝑧𝑦𝐶𝑧𝐶𝑦 −𝑊𝑧𝑦[𝑖]
)2

(𝜃𝐶2
𝑧
−𝑊 2

𝑧(𝑖)
)

}
Ref. [4] took inspiration from [2] and examined the ratio estimator under RSS examined by [24] as

𝑡4 = 𝜔𝑦̄[𝑛]
𝑍̄

𝑧̄(𝑛)

where 𝜔 is a constant.

The optimum 𝑀𝑆𝐸 of the estimator 𝑡4 for the optimum value of 𝜔(𝑜𝑝𝑡) = {1 + (𝜃𝜌𝑧𝑦𝐶𝑧𝐶𝑦 −𝑊𝑧𝑦[𝑖]
)}∕{1 + (𝜃𝐶2

𝑧
−𝑊 2

𝑧(𝑖)
)} is presented 

as follows:

𝑀𝑆𝐸(𝑡4)𝑚𝑖𝑛 = 𝑌 2{(𝜔− 1)2 + (𝜃𝐶2
𝑧
−𝑊 2

𝑧(𝑖)
) +𝜔2(𝜃𝐶2

𝑦
−𝑊 2

𝑦[𝑖]
) − 2𝜔(𝜃𝜌𝑧𝑦𝐶𝑧𝐶𝑦 −𝑊𝑧𝑦[𝑖]

)}

Motivated by the works of [25], [26], [27], and [28], [6] examined the following RSS based estimators as

𝑡5 = 𝑦̄[𝑛]

(
𝑍̄ +𝐶𝑧

𝑧̄(𝑛) +𝐶𝑧

)
𝑡6 = 𝑦̄[𝑛]

(
𝑍̄ + 𝛽2(𝑧)
𝑧̄(𝑛) + 𝛽2(𝑧)

)
𝑡7 = 𝑦̄[𝑛]

(
𝑍̄𝐶𝑧 + 𝛽2(𝑧)
𝑧̄(𝑛)𝐶𝑧 + 𝛽2(𝑧)

)
𝑡8 = 𝑦̄[𝑛]

(
𝑧̄(𝑛)𝐶𝑧 + 𝛽2(𝑧)
𝑍̄𝐶𝑧 + 𝛽2(𝑧)

)
𝑡9 = 𝑦̄[𝑛]

{
𝜙

(
𝑍̄𝐶𝑧 + 𝛽2(𝑧)
𝑧̄(𝑛)𝐶𝑧 + 𝛽2(𝑧)

)
+ (1 −𝜙)

(
𝑧̄(𝑛)𝐶𝑧 + 𝛽2(𝑧)
𝑍̄𝐶𝑧 + 𝛽2(𝑧)

)}
where 𝜙 is a constant.

The 𝑀𝑆𝐸 of the above estimators are presented as

𝑀𝑆𝐸(𝑡𝑙) = 𝑌 2
{
(𝜃𝐶2

𝑦
−𝑊 2

𝑦[𝑖]
) + 𝛾2

𝑙
(𝜃𝐶2

𝑧
−𝑊 2

𝑧(𝑖)
) − 2𝛾𝑙(𝜃𝜌𝑧𝑦𝐶𝑧𝐶𝑦 −𝑊𝑧𝑦[𝑖]

)
}
, 𝑙 = 5,6,7

𝑀𝑆𝐸(𝑡8) = 𝑌 2
{
(𝜃𝐶2

𝑦
−𝑊 2

𝑦[𝑖]
) + 𝛾28 (𝜃𝐶

2
𝑧
−𝑊 2

𝑧(𝑖)
) + 2𝛾8(𝜃𝜌𝑧𝑦𝐶𝑧𝐶𝑦 −𝑊𝑧𝑦[𝑖]

)
}

𝑀𝑆𝐸(𝑡9) = 𝑌 2{(𝜃𝐶2
𝑦
−𝑊 2

𝑦[𝑖]
) + (1 − 2𝜙)2𝑑23 (𝜃𝐶

2
𝑧
−𝑊 2

𝑧(𝑖)
) + 2(1 − 2𝜙)𝑑3(𝜃𝜌𝑧𝑦𝐶𝑧𝐶𝑦 −𝑊𝑧𝑦[𝑖]

)
}

The optimum 𝑀𝑆𝐸 of the estimator 𝑡9 at 𝜙(𝑜𝑝𝑡) = (𝑑3 + 𝑘)∕2𝑑3 = 𝜙0 is presented as

𝑀𝑆𝐸(𝑡9)𝑚𝑖𝑛 = 𝑌 2

[
(𝜃𝐶2

𝑦
−𝑊 2

𝑦[𝑖]
) + (1 − 2𝜙0)2𝑑23 (𝜃𝐶

2
𝑧
−𝑊 2

𝑧(𝑖)
)

+2(1 − 2𝜙0)𝑑3(𝜃𝜌𝑧𝑦𝐶𝑧𝐶𝑦 −𝑊𝑧𝑦[𝑖]
)

]
where 𝛾5 = {𝑍̄∕(𝑍̄ +𝐶𝑧)}, 𝛾6 = {𝑍̄∕(𝑍̄ + 𝛽2(𝑧))}, 𝛾7 = 𝛾8 = 𝑑3 = {𝑍̄𝐶𝑧∕(𝑍̄𝐶𝑧 + 𝛽2(𝑧))}.

Following [29], [7] adapted the RSS based exponential ratio and product estimators as

𝑡10 = 𝑦̄[𝑛] exp

(
𝑍̄ − 𝑧̄(𝑛)

𝑍̄ + 𝑧̄(𝑛)

)

𝑡11 = 𝑦̄[𝑛] exp

(
𝑧̄(𝑛) − 𝑍̄

𝑧̄(𝑛) + 𝑍̄

)
The MSE of these estimators is presented as

𝑀𝑆𝐸(𝑡10) = 𝑌 2
[
(𝜃𝐶2

𝑦
−𝑊 2

𝑦[𝑖]
) + 1

4
(𝜃𝐶2

𝑧
−𝑊 2

𝑧(𝑖)
) − (𝜃𝜌𝑧𝑦𝐶𝑧𝐶𝑦 −𝑊𝑧𝑦[𝑖]

)
]

𝑀𝑆𝐸(𝑡11) = 𝑌 2
[
(𝜃𝐶2

𝑦
−𝑊 2

𝑦[𝑖]
) + 1

4
(𝜃𝐶2

𝑧
−𝑊 2

𝑧(𝑖)
) + (𝜃𝜌𝑧𝑦𝐶𝑧𝐶𝑦 −𝑊𝑧𝑦[𝑖]

)
]

Further, [7] suggested a RSS based generalized ratio-cum-product exponential estimator as

𝑡12 = 𝑦̄[𝑛] exp

⎧⎪⎪⎨⎪⎪
(

𝑍̄

𝑧̄(𝑛)

)𝛼

− 1(
𝑍̄

𝑧̄(𝑛)

)𝛼

+ 1

⎫⎪⎪⎬⎪⎪

3

⎩ ⎭
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Table 1

List of sub class of the proposed estimator 𝑇 .

Estimators 𝑢 𝑣

𝑇(1) = 𝑘1 𝑦̄[𝑛]

(
𝑍̄

𝑧̄(𝑛)

)𝑘2
exp

(
𝑍̄−𝑧̄(𝑛)
𝑍̄+𝑧̄(𝑛)

)
1 0

𝑇(2) = 𝑘1 𝑦̄[𝑛]

(
𝑍̄

𝑧̄(𝑛)

)𝑘2
exp

{
(𝑍̄+𝐶𝑧 )−(𝑧̄(𝑛)+𝐶𝑧 )
(𝑍̄+𝐶𝑧 )+(𝑧̄(𝑛)+𝐶𝑧 )

}
1 𝐶𝑧

𝑇(3) = 𝑘1 𝑦̄[𝑛]

(
𝑍̄

𝑧̄(𝑛)

)𝑘2
exp

{
(𝛽2 (𝑧)𝑍̄+𝐶𝑧 )−(𝛽2 (𝑧)𝑧̄(𝑛)+𝐶𝑧 )
(𝛽2 (𝑧)𝑍̄+𝐶𝑧 )+(𝛽2 (𝑧)𝑧̄(𝑛)+𝐶𝑧 )

}
𝛽2(𝑧) 𝐶𝑧

𝑇(4) = 𝑘1 𝑦̄[𝑛]

(
𝑍̄

𝑧̄(𝑛)

)𝑘2
exp

{
(𝐶𝑧𝑍̄+𝛽2 (𝑧))−(𝐶𝑧𝑧̄(𝑛)+𝛽2 (𝑧))
(𝐶𝑧𝑍̄+𝛽2 (𝑧))+(𝐶𝑧𝑧̄(𝑛)+𝛽2 (𝑧))

}
𝐶𝑧 𝛽2(𝑧)

𝑇(5) = 𝑘1 𝑦̄[𝑛]

(
𝑍̄

𝑧̄(𝑛)

)𝑘2
exp

{
(𝑍̄+𝜌𝑧𝑦 )−(𝑧̄(𝑛)+𝜌𝑧𝑦 )
(𝑍̄+𝜌𝑧𝑦 )+(𝑧̄(𝑛)+𝜌𝑧𝑦 )

}
1 𝜌𝑧𝑦

𝑇(6) = 𝑘1 𝑦̄[𝑛]

(
𝑍̄

𝑧̄(𝑛)

)𝑘2
exp

{
(𝑍̄+𝛽2 (𝑧))−(𝑧̄(𝑛)+𝛽2 (𝑧))
(𝑍̄+𝛽2 (𝑧))+(𝑧̄(𝑛)+𝛽2 (𝑧))

}
1 𝛽2(𝑧)

𝑇(7) = 𝑘1 𝑦̄[𝑛]

(
𝑍̄

𝑧̄(𝑛)

)𝑘2
exp

{
(𝐶𝑧𝑍̄+𝜌𝑧𝑦 )−(𝐶𝑧𝑧̄(𝑛)+𝜌𝑧𝑦 )
(𝐶𝑧𝑍̄+𝜌𝑧𝑦 )+(𝐶𝑧𝑧̄(𝑛)+𝜌𝑧𝑦 )

}
𝐶𝑧 𝜌𝑧𝑦

𝑇(8) = 𝑘1 𝑦̄[𝑛]

(
𝑍̄

𝑧̄(𝑛)

)𝑘2
exp

{
(𝛽2 (𝑧)𝑍̄+𝜌𝑧𝑦 )−(𝛽2 (𝑧)𝑧̄(𝑛)+𝜌𝑧𝑦 )
(𝛽2 (𝑧)𝑍̄+𝜌𝑧𝑦 )+(𝛽2 (𝑧)𝑧̄(𝑛)+𝜌𝑧𝑦 )

}
𝛽2(𝑧) 𝜌𝑧𝑦

where 𝛼 is a constant to minimize the MSE of the estimator 𝑡12. The optimum 𝑀𝑆𝐸 of the estimator 𝑡12 at 𝛼(𝑜𝑝𝑡) =
2(𝜃𝜌𝑧𝑦𝐶𝑧𝐶𝑦 −𝑊𝑧𝑦[𝑖]

)∕(𝜃𝐶2
𝑧
−𝑊 2

𝑧(𝑖)
) is presented as

𝑀𝑆𝐸(𝑡12)𝑚𝑖𝑛 = 𝑌 2

[
(𝜃𝐶2

𝑦
−𝑊 2

𝑦[𝑖]
) −

(𝜃𝜌𝑧𝑦𝐶𝑧𝐶𝑦 −𝑊𝑧𝑦[𝑖]
)2

(𝜃𝐶2
𝑧
−𝑊 2

𝑧(𝑖)
)

]
Ref. [8] took inspiration from [30] and suggested a RSS based generalized class of estimators as

𝑡13 = Δ
(

𝑎𝑍̄ + 𝑏

𝑎𝑧̄(𝑛) + 𝑏

)𝑝

+ (1 −Δ)
(
𝑎𝑧̄(𝑛) + 𝑏

𝑎𝑍̄ + 𝑏

)
where Δ is a constant and 𝑝 is a real constant to develop numerous estimators. The optimum 𝑀𝑆𝐸 of the estimator 𝑡13 at Δ(𝑜𝑝𝑡) =
−(𝜃𝜌𝑧𝑦𝐶𝑧𝐶𝑦 −𝑊𝑧𝑦[𝑖]

)∕(𝜃𝐶2
𝑧
−𝑊 2

𝑧(𝑖)
) is presented as

𝑀𝑆𝐸(𝑡13)𝑚𝑖𝑛 = 𝑌 2

[
(𝜃𝐶2

𝑦
−𝑊 2

𝑦[𝑖]
) −

(𝜃𝜌𝑧𝑦𝐶𝑧𝐶𝑦 −𝑊𝑧𝑦[𝑖]
)2

(𝜃𝐶2
𝑧
−𝑊 2

𝑧(𝑖)
)

]
Following [31], [9] suggested a RSS based exponential estimator as follows

𝑡14 = 𝑦̄[𝑛] exp

[
𝑍̄

{𝑍̄ +𝜙(𝑧̄(𝑛) − 𝑍̄)}
− 1

]
where 𝜙 is an optimizing scalar to be used to minimize the MSE expression. The optimum 𝑀𝑆𝐸 of the estimator 𝑡14 at 𝜙(𝑜𝑝𝑡) =
(𝜃𝜌𝑧𝑦𝐶𝑧𝐶𝑦 −𝑊𝑧𝑦[𝑖]

)∕(𝜃𝐶2
𝑧
−𝑊 2

𝑧(𝑖)
) is presented as

𝑀𝑆𝐸(𝑡14)𝑚𝑖𝑛 = 𝑌 2

[
(𝜃𝐶2

𝑦
−𝑊 2

𝑦[𝑖]
) −

(𝜃𝜌𝑧𝑦𝐶𝑧𝐶𝑦 −𝑊𝑧𝑦[𝑖]
)2

(𝜃𝐶2
𝑧
−𝑊 2

𝑧(𝑖)
)

]

3. Proposed class of estimators

Inspired by the works discussed in the last Section, we propose a novel enhanced exponential class of estimators for 𝑌 in RSS as 
follows:

𝑇 = 𝑘1𝑦̄[𝑛]

(
𝑍̄

𝑧̄(𝑛)

)𝑘2
exp

{
(𝑢𝑍̄ + 𝑣) − (𝑢𝑧̄(𝑛) + 𝑣)
(𝑢𝑍̄ + 𝑣) + (𝑢𝑧̄(𝑛) + 𝑣)

}
where 𝑘𝑗 , 𝑗 = 1, 2 are constants to optimize the MSE, while 𝑢 and 𝑣 are real values or some known population parameters of the 
supplementary variables like coefficient of variation 𝐶𝑧, coefficient of kurtosis 𝛽2(𝑧), standard deviation 𝑆𝑧, etc. Few sub class of the 
proposed estimator are given in Table 1. We write the suggested estimator 𝑇 utilizing the notations provided in (1)-(3) as

𝑇 = 𝑘1𝑌 (1 + 𝛿0)(1 + 𝛿1)−𝑘2 exp{−𝜆𝛿1(1 + 𝜆𝛿1)−1}

where 𝜆 = 2{𝑢𝑍̄∕(𝑢𝑍̄ + 𝑣)}.

Adapting Taylor’s series expansion and neglecting the term with power more than 2, we get

𝑇 = 𝑘1𝑌 (1 + 𝛿0)
{
1 − 𝑘2𝛿1 +

𝑘2(𝑘2 + 1)
2!

𝛿21 − ...

}{
1 − 𝜆𝛿1

(
1 − 𝜆𝛿1 +

3
2
𝜆2𝛿21

)}
4

After simplifying the above equation, we get
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𝑇 − 𝑌 = 𝑌

[
𝑘1

{
1 + 𝛿0 − 𝑘2𝛿1 − 𝜆𝛿1 − 𝑘2𝛿0𝛿1 − 𝜆𝛿0𝛿1 +

𝑘2(𝑘2 + 1)
2

𝛿21 + 𝑘2𝜆𝛿
2
1 +

3
2
𝜆2𝛿21

}
− 1

]
(4)

The bias of the estimator 𝑇 approximated to the 1𝑠𝑡 degree can be determined after applying the expectation on both sides of (4) as

𝐵𝑖𝑎𝑠(𝑇 ) = 𝑌

[
𝑘1

{
1 − (𝑘2 + 𝜆)(𝜃𝜌𝑧𝑦𝐶𝑧𝐶𝑦 −𝑊𝑧𝑦[𝑖]

)

+
{

𝑘2(𝑘2+1)
2 + 𝑘2𝜆+

3
2𝜆

2
}
(𝜃𝐶2

𝑧
−𝑊 2

𝑧(𝑖)
)

}
− 1

]
The MSE of the estimator 𝑇 to 1𝑠𝑡 degree of approximation can be obtained by squaring and taking expectation on both sides of (4)

as

𝑀𝑆𝐸(𝑇 ) = 𝑌 2

⎛⎜⎜⎜⎜⎜⎝
1 + 𝑘21

[
1 + (𝜃𝐶2

𝑦
−𝑊 2

𝑦[𝑖]
) + {𝑘2(2𝑘2 + 1) + 4𝜆2 + 4𝑘2𝜆}(𝜃𝐶2

𝑧
−𝑊 2

𝑧(𝑖)
)

−4(𝑘2 + 𝜆)(𝜃𝜌𝑧𝑦𝐶𝑧𝐶𝑦 −𝑊𝑧𝑦[𝑖]
)

]

−2𝑘2

[
1 +

{
𝑘2(𝑘2+1)

2 + 𝑘2𝜆+
3
2𝜆

2
}
(𝜃𝐶2

𝑧
−𝑊 2

𝑧(𝑖)
)

−(𝑘2 + 𝜆)(𝜃𝜌𝑧𝑦𝐶𝑧𝐶𝑦 −𝑊𝑧𝑦[𝑖]
)

]
⎞⎟⎟⎟⎟⎟⎠

Further, the 𝑀𝑆𝐸(𝑇 ) may be written as

𝑀𝑆𝐸(𝑇 ) = 𝑌 2 (1 + 𝑘21𝑍1 − 2𝑘1𝑍2
)

where

𝑍1 = 1 + (𝜃𝐶2
𝑦
−𝑊 2

𝑦[𝑖]
) + {𝑘2(2𝑘2 + 1) + 4𝜆2 + 4𝑘2𝜆}(𝜃𝐶2

𝑧
−𝑊 2

𝑧(𝑖)
) − 4(𝑘2 + 𝜆)(𝜃𝜌𝑧𝑦𝐶𝑧𝐶𝑦 −𝑊𝑧𝑦[𝑖]

) ,

𝑍2 = 1 +
{

𝑘2(𝑘2+1)
2 + 𝑘2𝜆+

3
2𝜆

2
}
(𝜃𝐶2

𝑧
−𝑊 2

𝑧(𝑖)
) − (𝑘2 + 𝜆)(𝜃𝜌𝑧𝑦𝐶𝑧𝐶𝑦 −𝑊𝑧𝑦[𝑖]

) .

Minimizing the 𝑀𝑆𝐸(𝑇 ) against 𝑘1 provides 𝑘1(𝑜𝑝𝑡) as

𝑘1(𝑜𝑝𝑡) =
𝑍2
𝑍1

Putting the values of 𝑘1(𝑜𝑝𝑡) in the 𝑀𝑆𝐸(𝑇 ), we obtain

𝑀𝑆𝐸(𝑇 )𝑚𝑖𝑛 = 𝑌 2

(
1 −

𝑍2
2

𝑍1

)
Note: The optimization of 𝑘1 and 𝑘2 simultaneously is very typical. Therefore, putting 𝑘1 = 1 in the estimator 𝑇 and minimize the 
𝑀𝑆𝐸(𝑇 ) against 𝑘2 provides the optimum value of 𝑘2 as

𝑘2(𝑜𝑝𝑡) = −𝜆+
(𝜃𝜌𝑧𝑦𝐶𝑧𝐶𝑦 −𝑊𝑧𝑦[𝑖]

)

(𝜃𝐶2
𝑧
−𝑊 2

𝑧(𝑖)
)

4. Algebraic comparisons

The execution of the proposed estimators is done by the algebraic comparison of the MSEs of the proposed estimators and the 
commonly used estimators. The proposed estimators outperform the commonly used estimators under the below algebraic conditions.

𝑀𝑆𝐸(𝑇 ) <𝑀𝑆𝐸(𝑡1)

𝑍2
2

𝑍1
> 1 − (𝜃𝐶2

𝑦
−𝑊 2

𝑦[𝑖]
)

𝑀𝑆𝐸(𝑇 ) <𝑀𝑆𝐸(𝑡2)

𝑍2
2

𝑍1
> 1 − (𝜃𝐶2

𝑦
−𝑊 2

𝑦[𝑖]
) − (𝜃𝐶2

𝑧
−𝑊 2

𝑧(𝑖)
) + 2(𝜃𝜌𝑧𝑦𝐶𝑧𝐶𝑦 −𝑊𝑧𝑦[𝑖]

)

𝑀𝑆𝐸(𝑇 ) <𝑀𝑆𝐸(𝑡3)

𝑍2
2

𝑍1
> 1 − (𝜃𝐶2

𝑦
−𝑊 2

𝑦[𝑖]
) +

(𝜃𝜌𝑧𝑦𝐶𝑧𝐶𝑦 −𝑊𝑧𝑦[𝑖]
)2

(𝜃𝐶2
𝑧
−𝑊 2

𝑧(𝑖)
)

𝑀𝑆𝐸(𝑇 ) <𝑀𝑆𝐸(𝑡4)

𝑍2
2

𝑍1
>

{
1 − (𝜔− 1)2 − (𝜃𝐶2

𝑧
−𝑊 2

𝑧(𝑖)
) −𝜔2(𝜃𝐶2

𝑦
−𝑊 2

𝑦[𝑖]
) + 2𝜔(𝜃𝜌𝑧𝑦𝐶𝑧𝐶𝑦 −𝑊𝑧𝑦[𝑖]

)
}

5

𝑀𝑆𝐸(𝑇 ) <𝑀𝑆𝐸(𝑡𝑙)
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𝑍2
2

𝑍1
> 1 − (𝜃𝐶2

𝑦
−𝑊 2

𝑦[𝑖]
) − 𝛿2

𝑖
(𝜃𝐶2

𝑧
−𝑊 2

𝑧(𝑖)
) + 2𝛿𝑖(𝜃𝜌𝑧𝑦𝐶𝑧𝐶𝑦 −𝑊𝑧𝑦[𝑖]

)

𝑀𝑆𝐸(𝑇 ) <𝑀𝑆𝐸(𝑡8)

𝑍2
2

𝑍1
> 1 − (𝜃𝐶2

𝑦
−𝑊 2

𝑦[𝑖]
) − 𝛿24(𝜃𝐶

2
𝑧
−𝑊 2

𝑧(𝑖)
) − 2𝛿4(𝜃𝜌𝑧𝑦𝐶𝑧𝐶𝑦 −𝑊𝑧𝑦[𝑖]

)

𝑀𝑆𝐸(𝑇 ) <𝑀𝑆𝐸(𝑡9)

𝑍2
2

𝑍1
> 1 − (𝜃𝐶2

𝑦
−𝑊 2

𝑦[𝑖]
) − (1 − 2𝜙0)2𝑡23(𝜃𝐶

2
𝑧
−𝑊 2

𝑧(𝑖)
) − 2(1 − 2𝜙0)𝑡3(𝜃𝜌𝑧𝑦𝐶𝑧𝐶𝑦 −𝑊𝑧𝑦[𝑖]

)

𝑀𝑆𝐸(𝑇 ) <𝑀𝑆𝐸(𝑡10)

𝑍2
2

𝑍1
> 1 − (𝜃𝐶2

𝑦
−𝑊 2

𝑦[𝑖]
) − 1

4
(𝜃𝐶2

𝑧
−𝑊 2

𝑧(𝑖)
) + (𝜃𝜌𝑧𝑦𝐶𝑧𝐶𝑦 −𝑊𝑧𝑦[𝑖]

)

𝑀𝑆𝐸(𝑇 ) <𝑀𝑆𝐸(𝑡11)

𝑍2
2

𝑍1
> 1 − (𝜃𝐶2

𝑦
−𝑊 2

𝑦[𝑖]
) − 1

4
(𝜃𝐶2

𝑧
−𝑊 2

𝑧(𝑖)
) − (𝜃𝜌𝑧𝑦𝐶𝑧𝐶𝑦 −𝑊𝑧𝑦[𝑖]

)

𝑀𝑆𝐸(𝑇 ) <𝑀𝑆𝐸(𝑡12)

𝑍2
2

𝑍1
> 1 − (𝜃𝐶2

𝑦
−𝑊 2

𝑦[𝑖]
) +

(𝜃𝜌𝑧𝑦𝐶𝑧𝐶𝑦 −𝑊𝑧𝑦[𝑖]
)2

(𝜃𝐶2
𝑧
−𝑊 2

𝑧(𝑖)
)

𝑀𝑆𝐸(𝑇 ) <𝑀𝑆𝐸(𝑡13)

𝑍2
2

𝑍1
> 1 − (𝜃𝐶2

𝑦
−𝑊 2

𝑦[𝑖]
) +

(𝜃𝜌𝑧𝑦𝐶𝑧𝐶𝑦 −𝑊𝑧𝑦[𝑖]
)2

(𝜃𝐶2
𝑧
−𝑊 2

𝑧(𝑖)
)

𝑀𝑆𝐸(𝑇 ) <𝑀𝑆𝐸(𝑡14)

𝑍2
2

𝑍1
> 1 − (𝜃𝐶2

𝑦
−𝑊 2

𝑦[𝑖]
) +

(𝜃𝜌𝑧𝑦𝐶𝑧𝐶𝑦 −𝑊𝑧𝑦[𝑖]
)2

(𝜃𝐶2
𝑧
−𝑊 2

𝑧(𝑖)
)

5. Simulation study

To check the validity of the theoretical conclusions, a simulation experiment is carried out utilising artificially created populations. 
The artificial populations are generated by using the models given by [32] and recently used by [11,20–23]. The steps to perform 
the simulation study are described below:

Step 1. Generate a normal population and an exponential population both of 𝑁 = 600 size. The observations on 𝑍 and 𝑌 variables 
are created by the models 𝑌 = 9.8 +

√
(1 − 𝜌2

𝑧𝑦
) 𝑌 ∗ + 𝜌𝑧𝑦

(
𝑆𝑦∕𝑆𝑧

)
𝑍∗ and 𝑍 = 9.2 +𝑍∗ with 𝑋∗ ∼𝑁(23, 33) and 𝑌 ∗ ∼𝑁(9, 17) for 

normal population, while 𝑋∗ ∼𝐸𝑥𝑝(0.06) and 𝑌 ∗ ∼𝐸𝑥𝑝(0.09) for exponential population.

Step 2. Quantify 𝑛 = 12 ranked set samples with number of cycles 𝑟 = 4 and set size 𝑚 = 3 from the populations drawn in Step 1 by 
adopting 𝑅𝑆𝑆 method.

Step 3. Obtain the essential statistics.

Step 4. Rerun the steps 1-3, 20,000 counts and obtain 𝑀𝑆𝐸 and 𝑃𝑅𝐸 using the expressions given in (5) and (6).

𝑀𝑆𝐸(𝑇𝑖) =
1

20,000
∑20,000

𝑖=1 (𝑡1 − 𝑌 )2

1
20,000

∑20,000
𝑖=1 (𝑇𝑖 − 𝑌 )2

(5)

𝑃𝑅𝐸 =
𝑀𝑆𝐸(𝑡1)
𝑀𝑆𝐸(𝑇𝑖)

× 100 (6)

It is worthwhile to note that various correlation coefficient 𝜌𝑧𝑦 = 0.3, 0.5, 0.7, 0.9 values are taken to study the characteristics of the 
proposed estimators. The simulation results for every population are listed in Tables 2–3 in form of 𝑀𝑆𝐸 and 𝑃𝑅𝐸 for several values 
of 𝜌𝑧𝑦.

The important simulation findings are given in the following points:

• The simulation outcomes of Table 2 obtained using the normal population demonstrate that the members 𝑇(1), 𝑇(2),...,𝑇(8) of 
the proposed estimators 𝑇 attain the lesser MSE and higher PRE for each value of 𝜌𝑧𝑦 and perform better than the competing 
estimators such as unbiased estimator 𝑡1, traditional ratio estimator 𝑡2, traditional regression estimator 𝑡3, [4] estimator 𝑡4, [6]
6

estimator 𝑡5, 𝑡6,...,𝑡9, [7] estimators 𝑡10, 𝑡11, 𝑡12, [8] estimator 𝑡13 and [9] estimator 𝑡14.
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Table 2

Simulation findings using artificially created normal population.

𝜌𝑧𝑦

estimators

0.3 0.5 0.7 0.9

𝑀𝑆𝐸 𝑃𝑅𝐸 𝑀𝑆𝐸 𝑃𝑅𝐸 𝑀𝑆𝐸 𝑃𝑅𝐸 𝑀𝑆𝐸 𝑃𝑅𝐸

𝑡1 80.42 100.00 80.42 100.00 80.42 100.00 80.42 100.00

𝑡2 113.18 71.05 99.20 81.06 89.04 90.31 81.74 98.38

𝑡3 72.41 111.05 70.44 114.16 67.63 118.90 64.01 125.64

𝑡4 106.15 75.76 92.73 86.72 83.05 96.83 76.24 105.48

𝑡5 109.93 73.15 97.20 82.73 87.67 91.73 80.61 99.77

𝑡6 105.26 76.40 93.86 85.68 85.20 94.39 78.61 102.29

𝑡7 104.22 77.16 92.74 86.71 84.22 95.48 77.85 103.30

𝑡8 130.19 61.77 130.60 61.57 133.07 60.43 138.80 57.94

𝑡9 73.28 109.75 71.35 112.71 68.60 117.23 65.04 123.65

𝑡10 84.91 94.71 79.73 100.86 75.64 106.31 72.10 111.54

𝑡11 99.71 80.65 101.26 79.41 103.38 77.79 106.72 75.35

𝑡12 72.41 111.05 70.44 114.16 67.63 118.90 64.01 125.64

𝑡13 72.41 111.05 70.44 114.16 67.63 118.90 64.01 125.64

𝑡14 72.41 111.05 70.44 114.16 67.63 118.90 64.01 125.64

𝐓(𝟏) 65.03 123.66 63.19 127.27 60.69 132.50 57.43 140.01

𝐓(𝟐) 65.11 123.50 63.27 127.10 60.78 132.32 57.53 139.77

𝐓(𝟑) 65.07 123.59 63.22 127.20 60.73 132.42 57.48 139.91

𝐓(𝟒) 65.27 123.21 63.46 126.72 61.00 131.84 57.78 139.17

𝐓(𝟓) 65.07 123.59 63.23 127.18 60.74 132.40 57.49 139.87

𝐓(𝟔) 65.24 123.27 63.41 126.82 60.93 131.98 57.71 139.34

𝐓(𝟕) 65.08 123.58 63.24 127.16 60.75 132.37 57.51 139.84

𝐓(𝟖) 65.05 123.63 63.20 127.23 60.71 132.46 57.46 139.95

The bold values in the Table indicate those with the least MSE and highest PRE.

Table 3

Simulation findings for artificially created exponential population.

𝜌𝑧𝑦

estimators

0.3 0.5 0.7 0.9

𝑀𝑆𝐸 𝑃𝑅𝐸 𝑀𝑆𝐸 𝑃𝑅𝐸 𝑀𝑆𝐸 𝑃𝑅𝐸 𝑀𝑆𝐸 𝑃𝑅𝐸

𝑡1 20.18 100.00 20.18 100.00 20.18 100.00 20.18 100.00

𝑡2 25.72 78.43 23.10 87.32 21.06 95.81 19.51 103.43

𝑡3 18.06 111.68 17.37 116.13 16.55 121.92 15.58 129.44

𝑡4 25.09 80.41 22.53 89.55 20.53 98.25 19.03 105.99

𝑡5 25.45 79.27 22.92 88.03 20.92 96.44 19.38 104.12

𝑡6 24.07 83.81 22.00 91.68 20.28 99.49 18.79 107.38

𝑡7 22.99 87.75 21.20 95.16 19.68 102.52 18.31 110.15

𝑡8 27.74 72.74 28.96 69.66 30.40 66.36 32.32 62.43

𝑡9 18.29 110.33 17.60 114.65 16.78 120.23 15.83 127.46

𝑡10 20.80 96.99 19.68 102.49 18.72 107.76 17.79 113.37

𝑡11 23.85 84.59 24.58 82.08 25.42 79.37 26.65 75.71

𝑡12 18.06 111.68 17.37 116.13 16.55 121.92 15.58 129.44

𝑡13 18.06 111.68 17.37 116.13 16.55 121.92 15.58 129.44

𝑡14 18.06 111.68 17.37 116.13 16.55 121.92 15.58 129.44

𝐓(𝟏) 17.44 115.67 16.77 120.32 15.97 126.33 15.03 134.24

𝐓(𝟐) 17.44 115.65 16.77 120.30 15.97 126.31 15.03 134.20

𝐓(𝟑) 17.44 115.66 16.77 120.31 15.97 126.32 15.03 134.23

𝐓(𝟒) 17.47 115.48 16.80 120.07 16.01 126.01 15.08 133.78

𝐓(𝟓) 17.44 115.65 16.77 120.30 15.97 126.30 15.03 134.20

𝐓(𝟔) 17.46 115.57 16.78 120.19 15.99 126.17 15.06 133.98

𝐓(𝟕) 17.45 115.63 16.77 120.27 15.98 126.27 15.04 134.15

𝐓(𝟖) 17.44 115.66 16.77 120.31 15.97 126.32 15.03 134.23

The bold values in the Table indicate those with the least MSE and highest PRE.

• The simulation outcomes of Table 3 obtained using the exponential population demonstrate that the members 𝑇(1), 𝑇(2),...,𝑇(8) of 
the proposed estimators 𝑇 attain the lesser MSE and higher PRE for each value of 𝜌𝑧𝑦 and perform better than the competing 
estimators such as unbiased estimator 𝑡1, traditional ratio estimator 𝑡2, traditional regression estimator 𝑡3, [4] estimator 𝑡4, [6]

estimators 𝑡5, 𝑡6,...,𝑡9, [7] estimators 𝑡10, 𝑡11, 𝑡12, [8] estimator 𝑡13 and [9] estimator 𝑡14.
• The outcomes of Tables 2–3 demonstrate that when the values of the correlation coefficient rises, the MSE and PRE of the 

members of the suggested estimators reduce and grow, respectively.
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Table 4

Parameters of real data sets.

Parameters Data sets

1 2 3 4

𝑌 4514.89 966.95 5182.63 36.65

𝑍̄ 4591.07 26441.72 285.00 14604.49

𝑆𝑧 6315.21 45402.78 270.53 34064.88

𝑆𝑦 6099.14 2389.77 1835.65 116.80

𝜌𝑧𝑦 0.95 0.71 0.91 0.22

𝑁 69 204 80 124

𝑛 12 12 12 12

𝑚 3 3 3 3

𝑟 4 4 4 4

6. Applications

The applications of the proposed estimators are presented through four different real data sets which are discussed below.

Data set 1: The first data set is chosen from [33], page no. 652 having amount of fish caught by marine recreational fisherman 
during 1995 (study variable 𝑌 ) and the amount of fish caught by marine recreational fisherman during 1993 (auxiliary variable 
𝑍).

Data set 2: The second data set is chosen from [34], where the study variable 𝑌 is chosen as the apple production level and the 
auxiliary variable 𝑍 is chosen as the apple trees’ quantity in 204 villages of the region of Black sea in Turkey in 1999.

Data set 3: The third data set is taken from [35], page no. 228, where the study variable is taken as the output for 80 factories in a 
particular area, while auxiliary variable 𝑍 is considered as the numbers of working persons for 80 factories in that area.

Data set 4: The fourth data set is taken from [36], page no. 662-665, based on 1983 population in millions (as study variable 𝑌 ) 
and import (in millions of U.S. dollar) in 1983 (auxiliary variable 𝑍).

Table 4 provides the data sets’ descriptive statistics.

Using the descriptive statistics of data sets 1-4 reported in Table 4, the 𝑀𝑆𝐸 and 𝑃𝑅𝐸 of various estimators are tabulated 
utilizing the below mentioned mathematical expressions:

𝑃𝑅𝐸 =
𝑀𝑆𝐸(𝑡1)
𝑀𝑆𝐸(𝑇𝑖)

× 100

The findings of real data 1-4 reported in Table 5 show that the members 𝑇(1), 𝑇(2),...,𝑇(8) of the proposed estimator 𝑇 attain 
the least MSE and highest PRE and perform better than the competing estimators such as unbiased estimator 𝑡1, traditional ratio 
estimator 𝑡2, traditional regression estimator 𝑡3, [4] estimator 𝑡4, [6] estimator 𝑡5, 𝑡6, ..., 𝑡9, [7] estimators 𝑡10, 𝑡11, 𝑡12, [8] estimator 𝑡13
and [9] estimator 𝑡14.

7. Conclusion

In this research article, a novel enhanced exponential class of estimators have been proposed for population mean estimation 
utilizing 𝑅𝑆𝑆. The mathematical expression of the 𝑀𝑆𝐸 of the proposed estimators is found out to the approximation of degree 
one. The algebraic comparison has been performed to provide efficiency conditions under which the suggested estimator is found to 
be superior than the existing estimators. The performance of the suggested estimators has been assessed using a broad simulation 
study based on hypothetically drawn normal and exponential populations. Moreover, the applicability of the proposed estimators 
has been shown by examining several actual data sets, and the findings have been discussed. Based on the simulation and real data 
findings, the following observations have been made: (i). From the findings of Table 2 and Table 3 consisting of a simulation study 
using artificially made populations, the sub class 𝑇(𝑖), 𝑖 = 1, 2, ..., 8 of the suggested estimators 𝑇 have been found to be rewarding 
as compared to the reviewed estimators. (ii). From the results of Table 2 and Table 3, it has been noted that the 𝑀𝑆𝐸 decreases 
as 𝜌𝑧𝑦 increase and vice versa according to 𝑃𝑅𝐸. (iii). From the numerical findings of Table 4 consisting of real data, the sub class 
𝑇(𝑖), 𝑖 = 1, 2, ..., 8 of the suggested estimators 𝑇 perform superior than the commonly used estimators.

Thus, the suggested class of estimators provides a convincing argument for its merit.
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Table 5

Numerical findings using real data sets.

𝜌𝑧𝑦

estimators

Data set 1 Data set 2 Data set 3 Data set 4

𝑀𝑆𝐸 𝑃𝑅𝐸 𝑀𝑆𝐸 𝑃𝑅𝐸 𝑀𝑆𝐸 𝑃𝑅𝐸 𝑀𝑆𝐸 𝑃𝑅𝐸

𝑡1 3061362.00 100.00 465868.00 100.00 258894.00 100.00 1122.86 100.00

𝑡2 275050.70 1113.01 101008.60 461.21 878911.00 29.45 934.97 120.09

𝑡3 262430.10 1166.54 35175.32 1324.41 44829.60 577.50 921.68 121.82

𝑡4 274814.10 1113.97 71428.94 652.21 873649.90 29.63 628.07 178.77

𝑡5 274930.90 1113.50 101021.90 461.15 870588.80 29.73 934.95 120.09

𝑡6 274711.70 1114.39 101077.10 460.90 858296.10 30.16 934.89 120.10

𝑡7 274803.80 1114.01 101048.50 461.03 857210.50 30.20 934.93 120.10

𝑡8 12214929.00 25.06 1150070.00 40.50 3381529.00 7.65 1946.18 57.69

𝑡9 262445.70 1166.47 95709.95 486.74 44880.70 576.84 996.51 112.67

𝑡10 871344.70 351.33 243499.90 191.32 95591.87 270.83 949.45 118.26

𝑡11 6845104.00 44.72 768112.80 60.65 1368817.00 18.91 1455.21 77.16

𝑡12 262430.10 1166.54 35175.32 1324.41 44829.60 577.50 921.68 121.82

𝑡13 262430.10 1166.54 35175.32 1324.41 44829.60 577.50 921.68 121.82

𝑡14 262430.10 1166.54 35175.32 1324.41 44829.60 577.50 921.68 121.82

𝐓(𝟏) 256333.40 1194.28 32178.61 1447.75 42429.46 610.17 534.14 210.21

𝐓(𝟐) 256341.40 1194.25 32178.27 1447.77 42458.45 609.75 534.15 210.21

𝐓(𝟑) 256335.50 1194.28 32178.57 1447.75 42441.75 609.99 534.14 210.21

𝐓(𝟒) 256350.00 1194.21 32177.60 1447.80 42504.59 609.09 534.15 210.21

𝐓(𝟓) 256339.00 1194.26 32178.47 1447.76 42457.41 609.77 534.14 210.21

𝐓(𝟔) 256356.20 1194.18 32176.88 1447.83 42500.86 609.14 534.17 210.20

𝐓(𝟕) 256337.50 1194.27 32178.53 1447.76 42458.89 609.75 534.14 210.21

𝐓(𝟖) 256334.80 1194.28 32178.59 1447.75 42441.31 610.00 534.14 210.21

The bold values in the Table indicate those with the least MSE and highest PRE.
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