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Natural products are used widely for preventing intimal hyperplasia (IH), a common cardiovascular disease. Four different cells
initiate and progress IH, namely, vascular smoothmuscle, adventitial and endothelial cells, and circulation or bonemarrow-derived
cells. Vascular smoothmuscle cells (VSMCs) play a critical role in initiation anddevelopment of intimal thickening and formation of
neointimal hyperplasia. In this review, we describe the different originating cells involved in vascular IH and emphasize the effect
of different natural products on inhibiting abnormal cellular functions, such as VSMC proliferation and migration. We further
present a classification for the different natural products like phenols, flavonoids, terpenes, and alkaloids that suppress VSMC
growth. Abnormal VSMC physiology involves disturbance in MAPKs, PI3K/AKT, JAK-STAT, FAK, and NF-𝜅B signal pathways.
Most of the natural isolate studies have revealed G1/S phase of cell cycle arrest, decreased ROS production, induced cell apoptosis,
restrained migration, and downregulated collagen deposition. It is necessary to screen optimal drugs from natural sources that
preferentially inhibit VSMC rather than vascular endothelial cell growth to prevent early IH, restenosis following graft implantation,
and atherosclerotic diseases.

1. Introduction

Intimal hyperplasia (IH) is a fibroproliferative disorder
observed in vascular pathogenesis particularly in vessel anas-
tomotic stenosis, atherosclerosis, blockage of vessel grafts,
angioplasty, and in-stent restenosis [1]. IH is characterized
by enhanced cell migration, proliferation, and differenti-
ation that cause narrowing of the tunica intima. Several
cells are associated with initiation and progression of IH,
namely, vascular smooth muscle cells (VSMCs) [2], vascular
adventitial cells [3], vascular endothelial cells (VEC) [4],
and circulating bone marrow-derived cells [5]. These cells

have different origins but may contribute to IH formation.
For example, endothelial cells may undergo endothelial-to-
mesenchymal transition (EndMT) acquiring a fibroprolif-
erative mesenchymal phenotype whereas adventitia-derived
stem cellsmaymigrate to the intimal lesion site and differenti-
ate into fibroblasts. VSMCs play a critical role in the initiation
and development of intimal thickening and formation of
neointimal hyperplasia [6, 7].

Many herbal medicines sourced from plants or foods
have been used to prevent cardiovascular disease over
the millennia. For example, green tea contains various
flavanols that have antioxidative [8, 9], anti-inflammatory
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[10], antimicrobial [11], and hypolipidemic [9] effects. This
pharmacological profile helps prevent atherosclerotic plaque
formation caused by inflammation and oxidative stress.
Red wine, another commonly enjoyed beverage, has long
been believed to be rich in polyphenols [12], which act
as powerful antioxidants. These assist in preventing lower
density lipoprotein oxidation in heart disease and attenuat-
ing development of atherosclerotic disease in the hamster
model [13, 14]. Resveratrol (3,5,4-trihydroxy-trans-stilbene),
a typical polyphenol extracted from red wine, has been
proven to inhibit proliferation of VSMCs in vitro [15]. Many
natural compounds have been reported to be active and to
have potential utility as clinical medicines. Tanshinone is an
isolate from Salvia miltiorrhiza that has been used against
cardiovascular disease in China [16]. Therefore, many active
compounds with cosmopolitan distribution are being used
as herbal medicines or foods, giving hope for screening for
potential therapeutic agents against IH (Figure 1).

Recent clinical studies have shown that rapamycin A,
an VSMC inhibitor, prevents development of IH-induced
vascular endothelial dysfunction [17]. This nonspecific cyto-
toxicity leads to stenosis and eventually to failure of vascular
reconstruction after injury. Therefore, the ideal drug to pre-
vent restenosis or IH is one that inhibits VSMC proliferation
selectively while having minimal inhibitory effect on VEC
proliferation.

2. Diverse Cells Involved in Vascular IH

As stated earlier, four different cell types are involved in the
initiation and progression of IH. These are VSMCs, vascu-
lar adventitial cells, VECs, and circulating bone marrow-
derived cells (Figure 2). VSMCs play a critical role in the
initiation of intimal thickening and the formation neointimal
hyperplasia. Physiologically VSMCs exist in two phenotypes,
i.e., differentiated cells and proliferating cells, which are
responsible for maintaining the homeostasis and function
of vascular vessels [2, 6]. Stimulation by certain growth
and inflammatory factors, such as platelet-derived growth
factor, tumor necrosis factor-𝛼 (TNF-𝛼), and thrombin,
results in dedifferentiation into mature VSMCs [18, 19].
Mature and differentiated VSMCs exhibit loss of contractility
and increased proliferation and expression of ECM protein
and various cytokines. This phenomenon is responsible for
intimal thickening leading to the neointimal hyperplasia
formation that is observed in early-phase atherosclerosis.

Endothelial-to-mesenchymal transition is a phenomenon
where endothelial cells acquire a fibroproliferative mesenchy-
mal phenotype through differential stimulation [20]. These
transitioned endothelial cells mimic fibroblasts and have
increased ECM production and migration capabilities. In
vascular diseases, these transitioned endothelial cells can
quickly migrate and differentiate into smooth muscle-like
cells serving as a potential contributor to IH [21, 22]. EMT
is reported to be modulated by shear stress in an ERK5-
dependent manner, to contribute to neointimal hyperplasia,
and to induce atherogenic differentiation [23]. In addition
to adventitia-derived stem cells, circulating smooth muscle

progenitor cells have also been implicated in the pathogenesis
of neointimal hyperplasia [24] and in the recruitment of
endothelial precursor cells after vascular trauma. The pres-
ence of bone marrow-derived cells in solid neointima or
allograft lesions suggests their crucial involvement in lesion
formation following vascular injury [5, 25]. Although various
cells contribute to IH pathogenesis, smooth muscle cells are
the main culprits in lesion formation. Therefore, therapeutic
strategies that maintain VSMCs in a terminally differentiated
state and inhibit their proliferation and migration can be
useful in preventing neointimal hyperplasia.

3. Antiproliferation, Migration, and Cellular
Functions of Abnormal VSMCs as a Target
to Decrease Intimal Hyperplasia

VSMCs in the normal vascular tunica media express a range
of smooth muscle cell markers including smooth muscle
cell myosin heavy chain (MYH11), 22-kDa SMC lineage-
restricted protein (SM22𝛼/tagln), alpha smooth muscle actin
(ACTA2), and smoothelin. VSMCs in vitro and in atheroscle-
rosis undergo phenotypic switching with reduced expression
of these markers, while increasing capacity for cell prolif-
eration, migration, and secretion of various ECM proteins
and cytokines. These phenotypic switches have long been
considered of fundamental significance in IH progression.

Most studies investigating inhibition of VSMCs adopt
drugs like rapamycin, sirolimus, or tacrolimus to induce
VSMC apoptosis and cell cycle arrest at G1/S phase, suppress
ROS production, inhibit VSMCmigration, and downregulate
collagen deposition. These approaches do not recover the
mature VSMC immunophenotypes, but they do decrease
neointimal formation and prevent stenosis following vascular
injury. To investigate the anticellular function of drugs on
VSMCs many models have been established in vitro and in
vivo. For the in vitro experiments, inflammatory cytokines
like TNF-𝛼 or some growth factors such as platelet-derived
growth factor (PDGF) are used for inducing abnormal
proliferation and migration of VSMCs. For the in vivo exper-
iments, IH is usually induced using the vascular endothelial
denudation model or carotid artery ligation injury.

Dietary supplements and traditional herbal medicines
are complementary medication approaches used in every
society and are widely used for preventing IH in Asia and
in other developed countries [26]. Many herbal drugs and
foods have been verified as suppressing abnormal VSMC
growth and inhibiting intima formation. The positive effects
of the herbal medicines and plants depend on their active
natural compounds including phenols, flavonoids, terpenes,
and alkaloids.These natural products are involved in different
signaling pathways that regulate abnormal VMSCs to attenu-
ate IH.

4. Typical Signal Pathways Involved in Growth
and Physiology of VSMCs in IH Disease

The six signaling pathways involved in most drug inhibitory
VSMC studies (Figure 3) are mitogen-activated protein
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Figure 1: Graphic abstract for different natural compounds for inhibiting vascular smooth muscle cells proliferation and migration.
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Figure 2: Four different cell origins contribute to blood vessel stenosis.
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Figure 3: Key genes and pathways involved in restraining cell cycle and movements of VSMCs with natural products.

kinases/extracellular signal-regulated kinase (MAPKs/ERK),
phosphatidylinositol 3-kinases/Akt (PI3K/Akt), Janus
kinase-signal transducer and activator of transcription
(JAK-STAT), focal adhesion kinase (FAK), and nuclear
factor kappa-light-chain-enhancer of activated B (NF-𝜅B).
MAPKs are involved in cell proliferation, differentiation,
mitosis, cell survival, and apoptosis [27]. Three major
families of MAPKs are extracellular signal-regulated kinase
(ERK) [28], p38 kinase, and c-Jun N terminal kinase
(JNK). These contribute to the two important signaling
pathways, Ras/ERK-MAPK and JNK/p38-MAPK, which
are involved in regulating VSMCs [29]. In antiproliferation
studies of VSMCs, PI3K/Akt signaling pathway includes
many key factors such as GSK3𝛽, p21, and p27, which
all inhibit cyclins and CDKs thereby interfering with cell
cycle processes. GSK3𝛽 is one of the critical downstream
molecules of the Akt signaling pathway involved in cell
proliferation, metabolism, growth, and survival. It is
reported that cyclin D is regulated by GSK3𝛽 [30] and that
activation of GSK3𝛽 leads to exportation into cytoplasm for
proteolysis, thus downregulating cyclin D1 expression [31].
The JAK-STAT signaling pathway transmits information
from extracellular chemical signals to the nucleus resulting
in DNA transcription and expression of genes involved
in immunity, proliferation, differentiation, and apoptosis
[32]. The downstream proteins in this pathway include
cyclin D, p21, Bcl-2, and c-Myc, which are all directly
involved in growth, apoptosis, and cell cycle progression
in VSMC studies [33]. FAK is involved in cellular adhesion
and migration [34]. FAK is typically located at structures
known as focal adhesions, which are multiprotein structures
including actin, filamin, and vinculin which link the ECM
to the cytoplasmic cytoskeleton [35–37]. In addition, FAK
interacts with PI3K and p53 [38, 39] and with the PI3K/Akt
and MAPKs signaling pathways that are involved in cell
cycle regulation. NF-𝜅B controls many genes involved
with inflammation which are crucial to progression of
diseases including arthritis, asthma, and atherosclerosis

[40, 41]. Inflammation also mediates abnormal movement
and growth of VSMCs, while suppressing inflammation
could attenuate neointimal hyperplasia significantly [42–45].
Therefore, different signaling pathways are involved in
VSMC inhibition, which provides preferential protein targets
for future drug screening.

5. Different Natural Compounds Being Used
for Preventing Neointimal Formation and
Focus on VSMCs

5.1. Flavonoids Regulate Cell Cycle and Functions Inhibit-
ing VSMCs Proliferation and Migration. Flavonoids are dis-
tributed throughout the plant kingdom and fulfill a diverse
range of biological and pharmacological effects such as anti-
inflammatory [46], antioxidant [47], antibacterial [48], anti-
tumor [49], and antidiarrheal activities [50]. For treatment
of cardiovascular disease, flavonoid studies have focused
on reducing hypertension, risk of atherosclerosis, oxidative
stress, and related signaling pathways in blood vessel cells,
as well as modifying vascular inflammatory mechanisms
[51, 52]. In this review, we described the chemical structure,
category, source, and mechanism of action of some typical
flavonoids that suppress VSMC function and inhibit IH
(Table 1).

Nobiletin is widely distributed in citrus fruits and has
been reported to inhibit VSMC proliferation and migra-
tion in vitro [44]. In addition, carotid balloon injured rats
given nobiletin 25 mg/kg/day by gavage had significantly
decreased neointimal hyperplasia via regulation of the ROS
derived NF-𝜅B pathway and decreased serum TNF-𝛼 and
IL-6 concentrations [44]. Cyanidin-3-O-glucoside, an antho-
cyanin flavonoid, inhibited TNF-𝛼-induced NoxA1 (a type
of NADPH oxidase) and downregulated expression of both
TNF-𝛼 and NoxA1 at transcriptional and translational lev-
els [53]. (2S)-Naringenin, a typical flavonoid isolated from
Typha angustata, inhibited PDGF-BB-induced proliferation
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Table 1: The structure, cells, category, source, and mechanism of typical flavonoid compounds on inhibiting VSMCs proliferation and
migration.

Compound
name Structure Cells and animals Category Sources Mechanism

(2S)-naringenin
O

O

OH

OH

HO
rASMCs Flavonoid Typha angustata

G0/G1 ↓; cyclins D1 ↓;
cyclins E ↓; CDK2/4 ↓;

PCNA ↓; pho of rb protein
↓

Catechins
O

OH

OH

OH
OH

HO rASMCs and rat
balloon injury

Flavonoid
(Flavanols) Green tea TIMP-2 ↑, in vivo: TIMP-2

↑

Icariin hASMCs
Flavonoid
(Prenylated

flavonol glycoside)

Epimedium
brevicornum pERK1/2 ↓; G1/S ↓; PCNA ↓

Morelloflavone

O

O

O

O

OH

OH
OH

OH

OH

HO

HO

mVSMCs and
mouse artery

injury
Biflavonoid Garcinia dulcis FAK ↓; Src ↓; ERK ↓; RhoA

↓

Puerarin

O

O

O

OH

OH

OH
OH

HO
HO

rASMCs and rat
balloon injury Isoflavone Radix puerariae

ROS ↓; Nox ↓; PKC;PKC𝛽2
↓; Rac1 ↓; p47phox ↓;

p67phox ↓

Kaempferol
O

O

OH

OH

OH

HO

hpASMCs Flavonoid
Widely

(grapefruit,
Ginkgo biloba)

miR-21 ↑; ROCK4/5/7 ↓

Nobiletin rASMCs and rat
balloon injury Flavonoid Widely (citrus

fruits)

ROS ↓; pERK1/2 ↓; NF-𝜅B
p65 ↓, in vivo: TNF-𝛼 ↓;

IL-6 ↓

Alpinetin
OO

OHO

rASMCs Flavonoid

Widely (Alpinia
katsumadai,
Amomum

subulatum, and
etc.)

LDH ↓; NO ↓

Cyanidin-3-O-
glucoside OO

O

OH
OH

OH

OH OH

HO

HO
HO

⊕

mASMCs Flavonoid Hibiscus
sabdariffa ROS ↓;NoxA1 ↓; pSTAT3 ↓

Hesperetin
O

O

O
OH

OH

HO

rpASMCs Flavonoid
Widely (lemons

and sweet
oranges)

Block G1/S; cyclin D1 ↓;
cyclin E ↓; CDK2/4 ↓; p38
↓; p27 ↑; regulate

AKT/GSK3𝛽 signaling
pathway

Pinocembrin
O

O

OH

HO rAMSCs and rat
aortic rings injury Flavonoid Propolis ERK1/2 ↓; MLC2 ↓; AT1R ↓

Glyceollins
O

OO

H

OH

OH

（3C
（3C

hASMCs Isoflavone Soybean

Arrest G1/S phase; CDK2 ↓;
cyclin D1 ↓; p27kip1 ↑; p53
↑; ROS ↓; pPDGFr-𝛽 ↓;

phospholipase C𝛾1↓; Akt ↓;
ERK1/2 ↓
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of VSMCs via a G0/G1 arrest by suppressing cyclin D1/E and
CDK 2/4 [54]. Hu and colleagues found that icariin reduced
the amount of ox-LDL-induced proliferation of VSMCs
through suppression of PCNA expression and inactivation
of ERK1/2 [55]. Puerarin, isolated from Radix puerariae,
exerted inhibitory effects on high glucose-induced VSMC
proliferation via interfering with PKC𝛽2/Rac1-dependent
ROS pathways, thus resulting in attenuation of neointimal
formation [56]. Alpinetin is a well-known flavonoid isolated
from a variety of plants such as Alpinia katsumadai, Amo-
mum subulatum, and Scutellaria rivularis. It may have some
protective effects on VSMCs as it decreases LDH leakage
and inhibits production of NO in TNF-𝛼-induced VSMC
[57]. Hesperetin, a flavonoid, inhibits PDGFa-BB-induced
pASMC proliferation via the AKT/GSK3𝛽 signaling path-
way through upregulating p27 expression while suppressing
cyclin D1/E, CDK2/4 and p38 [58]. Pinocembrin reduces the
increased ERK1/2 phosphorylation that occurs in response to
angiotensin II in both rat aortic rings ex vivo and VSMCs
in vitro [59]. Glyceollins, which are isoflavonoids, inhibit
PDGF-BB-induced hVSMC proliferation and migration by
downregulating CDK2, cyclin D1, pPDGFr-𝛽, phospholipase
C𝛾1, Akt, and ERK1/2 and interfering with ROS generation,
while upregulating p27kip1 and p53 expression levels [60].
Morelloflavone is a biflavonoid, which has been found to
block injury-induced neointimal hyperplasia via inhibition
of VSMC migration and downregulation of FAK, Src, ERK
and RhoA expression [61]. Some studies have demonstrated
that a natural flavonoid, kaempferol, may induce miR-21.
This results in downregulation of ROCK4, 5, and 7, which
are critical for cytoskeletal organization and cell motility,
leading to decreased cell migration [62]. Finally, green tea is
beneficial for health due to its antioxidant, anticarcinogenic,
anti-inflammatory, and antiradiation effects [63–65]. A large
number of flavonoids, especially flavan-3-ols (“catechins”),
inhibit IH in a rat balloon injury model through upregulation
of TIMP-2 expression to modulate MMP activity [66]. From
the above review, flavonoids are an important candidate com-
pound type for screening natural drugs capable of inhibiting
VSMC growth.

5.2. Polyphenols as an Antioxidants Restrain VSMC Pro-
liferation and Migration to Attenuate IH. Polyphenols are
distributed widely in vegetables and plants, green tea, black
tea, and redwine. Recent studies have shown that they possess
antioxidant, anti-inflammatory, and cardioprotective effects
[67–69]. Some typical polyphenols prevent IH by restrain-
ing VSMC function including proliferation, migration, and
fibrosis (Table 2). Salvianolic acid B is a typical polyphenol
that is usually isolated from Salvia miltiorrhiza. It markedly
reduces neointimal thickness by inducing neointimal cell
apoptosis through upregulating p53 expression levels [70].
In another study, salvianolic acid B protected hAECs and
neointimal formation through inhibition of LDLoxidation by
reducing ROS generation [71]. Magnesium lithospermate B, a
derivative of salvianolic acid B, prevented diabetic atheroscle-
rosis via the Nrf2-ARE-NQO1 transcriptional pathway [72].
Magnolol (a phenol) is a powerful antioxidant that inhibited
balloon injury-induced rabbit IH by downregulating MCP-1

expression [73]. In another work, magnolol inhibited VSMC
migration via the cytoskeletal remodeling pathway through
inhibition of 𝛽1-integrin expression, phosphorylation of FAK
and MLC20, and activation of RhoA and Cdc42 [74]. Lithos-
permic acid, a polyphenol, arrested cell cycle progression
at the G1 phase via downregulating expression of cyclin D1
and inhibiting ROS generation and ERK1/2 phosphorylation
[75]. Moreover, lithospermic acid attenuated LPS-induced
VSMC migration by inhibiting MMP-9 expression in a
dose-dependent manner (25-100 𝜇mol/L). Hispolon blocked
balloon injury-induced neointimal hyperplasia via inhibition
of VSMC proliferation. It also inhibited VSMC migration
by lowering MMP-2/9 expression and increasing TIMP-
1/2 expression through suppression of the FAK signaling
pathway [76]. Lim and colleagues were of the view that
obovatol blocked the cell cycle inG1 phase by downregulating
expression of cyclins and CDKs, while selectively upregulat-
ing expression of p21Cip1, a well-known CDK inhibitor, both
in vitro and in vivo [77].

Some studies have shown that curcumin (diarylheptanoid
phenol) has potent antioxidant properties, which can be used
for attenuating neointimal hyperplasia [78]. Curcumin has
also been shown to inhibit PDGF-induced VSMC migration,
proliferation, and collagen synthesis in a concentration-
dependent manner [79], with a concentration range of 0.01
to 10 𝜇mol/L inhibiting VSMC proliferation and migration.
Curcumin-coated stents inhibited neointimal formation in
the rabbit iliac artery stentmodel.Moreover, curcumin inhib-
ited LPS-induced MMP-2 activity in rat VSMCs through
Ras/MEK1/2 and NF-𝜅B signaling [80].

Curcumin shows the ideal biological effects of inhibiting
abnormal VSMC proliferation and migration without com-
promising VEC proliferation or delaying reendothelializa-
tion after blood vessel injury. Curcumin inhibited platelet
adhesion to brain microvascular endothelial cells by decreas-
ing expression of P-selectin, E-selectin, and GPIIb/GPIIIa
in a concentration-dependent manner (30-240 𝜇mol/L).
Curcumin antagonized the detrimental effect of rapamycin
on aortic endothelial cells in vitro, through upregulation
of eNOS [81]. Hence, curcumin very selectively inhibited
abnormal VSMC functions, such as PDGF-induced prolif-
eration or migration, without impairing VECs. As a result,
curcumin has been regarded as an ideal drug for attenuating
atherosclerosis and restenosis. In summary, polyphenols
exhibit beneficial and wide ranging biological effects relevant
to prevention of IH. Polyphenols are worthy candidate
compounds to be screened as natural drugs for inhibiting
VSMCs.

5.3. Terpenes Suppress Abnormal VSMC Function against
Neointimal Formation. Terpenes are proven cell cycle
inhibitors for various cell types, especially tumor cells
[82, 83]. Like similar compounds with active sites for
regulating VSMC mitosis and DNA synthesis, terpenes
lead cell proliferation and function arrest via cell cycle
blockade or apoptosis induction (Table 3). Betulinic acid,
a typical terpene, has been reported to inhibit growth and
proliferation of VSMCs via arresting G1/S cell cycle in a dose-
dependent manner [84]. A monoterpene, (S)-(-)-perillic
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Table 2: The structure, cells, category, source, and mechanism of typical polyphenols compounds on inhibiting VSMCs proliferation and
migration.

Compound name Structure Cells and animals Category Sources Mechanism

Salvianolic acid B
OO

O

O

O

O

O

OH

OH

OH

OH
OH

OH

HO
HO

HO

NeCs; HAECs and
cholesterol-fed

rabbits;
rTASMCs and rats
balloon injury

Polyphenol Salvia
miltiorrhiza

(1) p53 ↑; NeCs apoptosis, (2)
ROS ↓; LDL oxidation ↓; lipid
deposition ↓, (3) PCNA ↓;

NQO1 ↓; via Nrf2-ARE-NQO1
pathway

Caffeic acid
phenethyl ester
(CAPE)

O OH

OH
OH

rASMCs Polyphenol Honeybee
propolis

Blocking G0/1 to S phase;
pp38 ↑;HiF1𝛼 ↑;HO-1 ↑

Hispolon

O OH

OH
OH

rTA-A10-VSMCs Polyphenol Phellinus linteus
MMP2 ↓;MMP9 ↓; TIMP-1
↑;TIMP-2 ↑; pFAK ↓; pERK1/2
↓;PI3K/AKT ↓

[6]-shogaol
O

O
HO rASMCs Phenols Zingiber

officinale

Inhibit DNA synthesis;
activation of (Nrf2)/HO-1

pathway

Resveratrol

OH

OH

HO ncTASMCs;
mASMCs Polyphenol

Widely (grapes,
blueberries,

raspberries, and
etc.)

c-Src ↓, Rac1 ↓, cdc42 ↓, IRS-1
↓, MEKK1 ↓,

MEKK4 ↓; p-Src; pFAK ↓;
pAKT ↓; pERK1/2 ↓

Lithospermic acid

O

O O
O

O
O

OH

OH

OH

OH

OH

OH
OH

OH

HO

O

rTASMCs Polyphenol Salvia
miltiorrhiza

ROS ↓; pERK1/2 ↓; cyclin D1 ↓;
arresting cell cycle progression

at the G1 phase; MMP9 ↓

Magnolol
OH

HO Cholesterol-fed
rabbits;

rVSMCs; rats
balloon injury

Polyphenol Magnolia
officinalis

(1) MCP-1 ↓, (2) Reduce
collagen type I deposition;
𝛽1-integrin ↓;pFAK ↓;pMLC20
↓; RhoA ↓;Cdc42 ↓

Obovatol OH
OH

O
rASMCs; rats
balloon injury Biphenol Magnolia

obovata
Blocks the cell cycle in G1
phase; CDKs ↓;p21cip1 ↓

Curcumin
OH

OH

HO

O
OO
＃（3＃（3

rTASMCs;
rabbit artery
injury; VECs;

RAECs

Phenols Curcuma longa

(1) Inhibits PDGF Receptor
Binding; PDGFr ↓; pERK1/2 ↓;

pAkt ↓, (2) P-selectin ↓;
E-selectin ↓; GPIIb/GPIIIa ↓,
(3) MMP2 ↓; pRas ↓; MEK1/2
↓; NF-𝜅B p65 ↓, (4) Curcumin
protects aortic endothelial
cells; eNOS ↑; caveolin-1 ↓;

acid, has been reported to decrease protein prenylation
leading to DNA synthesis and inhibition of VSMCs [85]. A
sesquiterpene lactone, parthenolide, arrested VSMC G0/G1
cell cycle via upregulating p21 and p27. It also increased
I𝜅B𝛼 expression and reduced Cox-2 expression in a time-
dependent manner [86]. A special terpene, plumericin,
arrested VSMCs in the G1/G0 phase of the cell cycle along
with causing abrogated cyclin D1 expression, hindered
Ser807/811-pRb protein [87], and blockade of STAT3 signaling
via S-glutathionylation. Paclitaxel, a diterpenoid, has been
used as an anticancer drug for decades and has been shown
to prevent neointimal formation in oral administration
studies [88]. Moreover, paclitaxel arrested VSMC G1/S phase
by upregulating p21 and p53 in vitro [89]. Epothilone D is a
paclitaxel-like microtubule-stabilizing agent that was isolated

originally from the myxobacterium Sorangium cellulosum.
It inhibits neointimal hyperplasia through blockade of
VSMC CDK2 and pRb [90]. 𝛽-Elemene protected VECs
from injury induced by H2O2 in vitro via downregulating
MDA while upregulating T-AOC, SOD, GSH-Px, and CAT
[91]. Meanwhile, 𝛽-elemene selectively inhibited VSMC
proliferation/migration and inhibited neointimal formation
in vivo following vascular injuries [91]. Recent studies
have indicated that artemisinin effectively inhibited VSMC
proliferation induced by TNF-𝛼 through apoptotic induction
of the caspase pathway and cell cycle arrest [92, 93]. It also
significantly inhibited neointimal formation in rat balloon
injured carotid arteries. Therefore, terpenes are also notable
candidate compounds for screening natural drugs capable of
inhibiting VSMCs.
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Table 3: The structure, cells, category, source, and mechanism of terpenes on inhibiting VSMCs abnormal proliferation, migration, and
functions.

Compound name Structure Cells and
animals Category Sources Mechanism

Betulinic Acid O
H

H
H

H

OH

HO

VSMCs Terpene
Various plant sources
widespread throughout

the tropics

Inducing G1 Arrest and
Apoptosis

Parthenolide

O
O

O rVSMCs Sesquiterpene
lactone Tanacetum parthenium G0/G1 cell cycle arrest; p21 ↑;

p27 ↑; I𝜅B𝛼 ↑;Cox-2 ↓

Plumericin O

OO

O
O

O
H

H

H
H

rAVSMCs Iridoid
(Terpene) Himatanthus sucuuba

Block STAT3 signaling; arrest
VSMCs in the G1/G0-phase;

cyclin D1 ↓; pRb ↓

Paclitaxel
OO

O
O

OO

O
O O

O
OH

OH

OHOH

NH

Rat balloon
injury;

hCASMCs
(CC-2583)
and VSMCs
(CC-2571);
rTASMCs
and VECs

Diterpenoid Taxus cuspidata

(1) prevent neointimal
formation via oral

administration, (2) arrest G1/S
phase; p21 ↑; p53 ↑

Epothilone D
O

O
O

OH

OH

N
S

rTASMCs;
carotid artery

injury
Diterpenoid Sorangium cellulosum CDK2 ↓; pRb ↓

𝛽-elemene

hUVECs and
VSMCs

(A7r5); rat
balloon
injury

Terpene Curcuma wenyujin Antioxidant; Casp 3/7/9 ↑;
Migration ↓

Artemisinin

O

O

O

O O

H

HH
＃（3

＃（3

（3C
rVSMCs and
rat balloon
injury;

rTASMCs

Sesquiterpene
lactone Artemisia annua

(1) arrest G0/G1 phase; cyclin
D1/E ↓; CDK2/4 ↓; caspase 3/9
↑; Bax ↑; Bcl-2 ↓, (2) PCNA ↓;
caspase 3↑; Bax ↑; Bax/Bcl-2

ratio ↑

(S)-(-)-Perillic acid

O

OH

＃（3

（2C rASMCs Monoterpene Widely Protein prenylation ↓

5.4. Alkaloids Exhibit Antiproliferation Biological Effect on
VSMCs. Alkaloids are a group of naturally occurring chem-
ical compounds that mostly contain basic nitrogen atoms.
Alkaloids have diverse biological effects including those
against tumors, hypertension, and pain. For vascular IH,
some studies indicate that alkaloids hinder cell cycle progress,
decrease ROS production, and inhibit VSMC migration
(Table 4). A classic alkaloid, piperine, selectively inhibits
VSMC proliferation with an IC50 of 11.8 𝜇mol/L without
influencing VEC growth [94]. Coptisine was isolated from
Coptis chinensis and suppresses VSMC proliferation selec-
tively at lower concentrations with a GI50 of 3.3 𝜇mol/L
(1.2 𝜇g/mL) [95]. Vinpocetine, a potential derivative of

vincamine, inhibits high glucose-induced proliferation of
VSMCs by preventing ROS generation and affecting MAPK,
PI3K/Akt, and NF-QB signaling, Wang, Wen, Peng, Li,
Zhuang, Lu, Liu, Li, Li, and Xu [96]. Vinpocetine arrested
G1/S phase of the cell cycle by downregulating cyclin D1 and
pERK1/2. Alongside these effects, vinpocetine also inhibited
VSMCmigration and ROS production [97]. A quinazolinone
alkaloid, halofuginone, selectively inhibited cell proliferation,
ECM deposition, and type I collagen synthesis in VSMCs
versus VECs, which attenuated injury-induced IH [98].
Carbazole or murrayafoline A inhibited PDGF-BB induced
abnormal proliferation of VSMCs by downregulating cyclin
D1/E, CDK2/4, and PCNA and phosphorylation of Rb [99].
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Table 4: The structure, cells, category, source, and mechanism of alkaloids on inhibiting VSMCs abnormal proliferation, migration, and
functions.

Compound name Structure Cells and animals Category Sources Mechanism

Piperine O

O

O

N
rASMCs Alkaloid Piper nigrum Selectively inhibit VSMCs

Coptisine
O

O
O

O
．+

rVSMCs Alkaloid Coptis chinensis Arrest G1/S phase

Vinpocetine O

O

N
N

H
rVSMCs and rat
balloon injury;

rASMCs and mice
carotid artery
ligation injury

Alkaloid
vincamine

Lesser periwinkle
plants

(1) ROS ↓; apoptosis ↓; pAkt ↓;
pJNK1/2 ↓; I𝜅B𝛼 ↓; PCNA ↓;
cyclin D ↓; Bcl-2 ↓, (2) Arrest

G1/S phase; cyclin D1 ↓;
p27Kip1 ↑; inhibit migration;

pERK1/2 ↓; ROS ↓

Halofuginone O

O
Cl

N

N

OH

HN
Br

bASMCs Quinazolinone
alkaloid Dichroa febrifuga ECM synthesis and deposition

↓; Col I ↓

Murrayafoline A
O N

H

rASMCs Carbazole
alkaloid

Glycosmis
stenocarpa
Guillaumin

Arrest G1/S phase; cyclin D1/E
↓; CDK2/4 ↓; PCNA ↓; pRb ↓

Review of these recent studies on the effects of alkaloids
provides hope for identification of useful drugs capable of
inhibiting VSMC growth and preventing IH.

5.5. Other Promising Natural Compounds for Preventing
Intima Hyperplasia. As shown in Table 5, emodin is a
typical anthraquinone compound beneficial for prevention
of atherosclerosis due to its effects against inflammation,
proliferation, and migration and its ability to induce apop-
tosis in VSMCs [100]. Moreover, emodin arrested growth
and induced apoptosis and autophagy via enhanced ROS
production and upregulation of p53 expression [101]. Emodin
inhibited VSMC proliferation induced by angiotensin II
through downregulation of PCNA and c-myc expression
[102]. Moreover, emodin showed anti-inflammatory effects
by inhibiting Hcy-induced CRP generation, a key inflamma-
tory molecule in atherogenesis in VSMCs [103]. Emodin has
also been shown to inhibit TNF-𝛼-induced hASMC prolif-
eration via caspase signaling and a mitochondrial-dependent
apoptotic pathway by downregulating Bcl-2 and upregulating
Bax expression [104]. Additionally, emodin reduced TNF-𝛼
induced migration of VSMCs by suppressing NF-𝜅B activa-
tion and MMP2/9 expression levels [105]. Our recent study
demonstrated that emodin efficiently and concentration-
dependently (0.05 to 5 𝜇mol/L) inhibited hVSMC prolifera-
tionmore thanhVECproliferation in vitro,with less influence
on reendothelialization of VECs in rat carotid artery balloon
injury [106].

Methyl-protodioscin is a steroidal saponin that has been
reported to inhibit neointimal formation by restraining
VSMC proliferation and migration through downregulation
of ADAM15, FAK, ERK, PI3K, Akt, andMMP-2/9 expression
levels [107]. Salvia miltiorrhiza has been used to prevent
cardiovascular diseases in traditional Chinese medicine over

the millennia. Tanshinone-IIA is a principal active compo-
nent of Salvia miltiorrhiza that suppresses abnormal VSMC
proliferation by cell cycle arrest at G0/G1 phase and inhibits
phosphorylation of ERK1/2 and c-fos expression [108]. It
has been reported that ajoene (1-50 𝜇nol/L) interfered with
progression of the G1 phase in the cell cycle and restrained
rat VSMC proliferation via inhibiting protein prenylation
[109]. Gastrodin influenced the S phase entry of VSMCs
and stabilized p27KIP1 expression. It also inhibited VSMC
proliferation and attenuated neointimal hyperplasia by sup-
pressing phosphorylation of ERK1/2, p38 MAPK, Akt, and
GSK3𝛽 [110]. Genipin has been reported to inhibit TNF-
𝛼 induced VSMC proliferation and migration in a dose-
dependent manner by upregulating HO-1 expression, pre-
venting ERK/MAPKandAkt phosphorylation, and addition-
ally blocking generation of ROS [111]. Ginsenoside Rg1 is
one of the main active components of Panax ginseng and
is said to arrest G1/S phase in VSMCs by interfering with
GRKs, PKC, and N-ras while upregulating p21 expression
[112]. Vascular IH is significantly decreased when carotid
artery balloon injured rats are intraperitoneally injected with
ginsenoside Rg1 for 14 days [113]. Moreover, ginsenoside Rg1
significantly inhibited TNF-𝛼-induced hASMC proliferation
dose-dependently through downregulating cyclin D1, inacti-
vating ERK1/2 and PKB, and upregulating expression of p53,
p21WAF/CIP1, and p27KIP1 [114]. A coumarin called ostruthin
is a major bioactive constituent of Peucedanum ostruthium
and inhibited serum (10%)-induced VSMC proliferation in a
dose-dependent manner [115].

Most foods contain various biologically active con-
stituents that act to prevent and cure neointimal hyperplasia
by inhibiting abnormal VSMC proliferation and migration.
A well-known carotenoid, lycopene, is abundant in tomatoes
and its products and has been reported to inhibit neointimal
hyperplasia in a rabbit restenosis model. It does this by
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Table 5: The structure, cells, category, source, and mechanism of promising compounds on suppressing VSMCs.

Compound
name Structure Cells and animals Category Sources Mechanism

Bilirubin

O

O

O

O

OHHO

H
N

H
N

NH HN

rVSMCs and
mVSMCs; rat
balloon injury

Ferric
porphyrins Heme

Inhibit MAPK signaling
pathway; CDK2 ↓; Cyclin

A/D1/E ↓; pRb ↓; YY1 ↓; p38 ↓

capsaicin

O

OH

NH
＃（3

O＃（3

＃（3

rASMCs Capsaicinoids Chili peppers Inhibit DNA synthesis

Emodin

O

O

OHOH

OH（3C

hUVSMCs;
rTASMCs;
hASMCs; rat
balloon injury

Anthraquinone Rheum officinale

(1) Arrest cell cycle, induce
apoptosis and autophagy; ROS
↑; p53 ↑, (2) PCNA ↓; c-myc ↓,
(3) CRP ↓;ROS ↓; pERK1/2 ↓;
p38 ↓; PPAR𝛾 ↑, (4) Induce
apoptosis; Bcl-2 ↓; Bax ↑, (5)
MMP2/9 ↓; NF-𝜅B activation

↓

Rhein

O

O

O

OHOH

OH

hASMCs Anthraquinone Rheum palmatum
Col I/III ↓;

Wnt4/Dvl-1/𝛽-catenin ↓;
miR-126 ↑

Ajoene
O

S
SS rASMCs Organosulphur

compound Allium sativum Inhibit protein prenylation
and cholesterol biosynthesis

Gastrodin
O

O

OH

OH

OH

HO
HO rASMCs, mice

artery injury Glucoside Gastrodia elata B1
Block S-phase; stabilised

p27Kip1; PCNA ↓; pERK1/2 ↓;
pp38 ↓; pAkt ↓; pGSK3𝛽 ↓

Genipin

OO

O

OH
H

H

HO

rTASMCs Aglycon Gardenia
jasminoides

HO-1 ↑; pERK/MAPK ↓; pAkt
↓; ROS ↓

Ginsenoside Rg1

O

O

OO

OH
OH

OH

OH

OH

OH
OH

HH

HH

H

HO

HO

HO

hASMCs; rat
balloon injury

Steroid
glycosides Panax ginseng

(1) PCNA ↓; pERK2 ↓; c-fos ↓;
MKP-1 ↑; (2) Arrest G1/S

phase; GRKs ↓; PKC ↓; N-ras
↓; p21 ↑, (3) Cyclin D1 ↓; p53 ↑;
p21WAF/CIP1 ↑; p27KIP1 ↑;
inactivate PKB and ERK1/2

Ostruthin
O O OH

rTASMCs Coumarins Peucedanum
ostruthium Inhibit DNA synthesis

Lycopene Rabbit artery
injury Carotenoid Widely (tomatoes,

red carrots,)

TG ↓; TC ↓; LDL-C ↓; HDL-C
↑; SOD ↑; T-AOC ↑; MDA ↓;
PCNA ↓; pERK1/2 ↓; Nox1 ↓;
p22phox ↓; HMG-CoA ↓;

ABCA1 ↑

Methyl
Protodioscin

A7r5 VSMCs; rat
balloon injury

Steroidal
saponin Dioscorea collettii

Arrest G1/S phase; ADAM15
↓; MMP2/9 ↓; FAK ↓; ERK ↓;

PI3K ↓; Akt ↓

Tanshinone IIA

O

O

O
rASMCs; rat
balloon injury Phenolic acids Salvia miltiorrhiza Block cell cycle in G0/G1

phase; pERK1/2 ↓; c-fos ↓

Sulforaphane
O

N
C SS

rASMCs; rat
balloon injury

Organosulfur
compounds

Widely (cruciferous
vegetables such as
broccoli, Brussels
sprouts, and
cabbages)

p21 ↑; p53 ↑; CDK2 ↓; Cyclin E
↓; PCNA ↓
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Table 6: The selected potential targets of the compounds.

Idarubicin Halofuginone Piperine 𝛽-elemene Curcumin Coptisine
Seq Predicted target names (most related top 15)
1 MAPT BCHE MAOA MAPT MAPT CHRM4
2 MBNL1 ACHE MAOB TDP1 TLR9 CHRM1
3 MBNL2 MAPK8 SIGMAR1 CXCR3 TDP1 CHRM2
4 MBNL3 MAPK9 MBNL1 SLC6A2 Unknown CHRM5
5 MMP2 MAPK10 MBNL2 SLC6A3 MBNL1 CHRM3
6 MMP9 MAPK11 MBNL3 LDLR MBNL2 BCHE
7 APP MAPK14 MAPT VLDLR MBNL3 ADRA2A
8 SNCA HTR1A DRD2 LRP8 GLO1 CYP2D6
9 APLP2 HTR1B DRD3 HSD11B1 AKT1 ADRA2B
10 SNCG MAPT HDAC3 BACE1 AKT2 ADRA2C
11 SNCB HTR2A HDAC1 HSD11B1L AKT3 ACHE
12 TDP1 DRD2 HDAC2 BACE2 HSD17B3 HTR2A
13 EGFR DRD1 DYRK1A HTR1A HSD17B12 HTR2C
14 ERBB2 OPRM1 HDAC6 HTR1D CRYZ HTR2B
15 ERBB3 OPRD1 CTSL1 HTR1B APP SIGMAR1

regulation of blood lipid concentrations and suppression of
oxidative stress [116]. Sulforaphane, an organosulfur com-
pound, mostly found in cruciferous vegetables significantly
inhibited PDGF-BB-induced VSMC proliferation by upreg-
ulating p21 and p53 expression, while CDK2, cyclin E, and
PCNA expression was suppressed [117].

6. Selective Inhibition of VSMCs versus
VECs Shows Significant

Although many natural products inhibit VSMC func-
tion, most anti-smooth muscle proliferation drugs such as
rapamycin (in-stent coating) also inhibit VEC proliferation
and delay reendothelialization. This nonspecific cytotoxicity
leads to restenosis and final graft or stent implantation failure.
When screening for selective natural drugs that inhibit
smooth muscle cell proliferation and migration, it is nec-
essary to combine computer-aided design, bioinformatics,
and a high-throughput screening platform. In this review, we
selected certain drugs including chemosynthetic (idarubicin)
and some natural (𝛽-elemene, coptisine, halofuginone, piper-
ine, and curcumin) compounds that possess specificity for
suppressing proliferation of VSMCs over VECs.The chemical
structure of the natural compounds has no typical similarity
and cannot be analyzed using structural-activity relationships
of molecular-protein binding sites. However, an online tool
“Swiss Target Prediction”was used to predict potential targets
of these compounds [118]. Most of the predicted targets of
these drugs were membrane receptors, enzymes, kinases,
proteases, or transporter proteins (Table 6). The analyses
showed that microtubule-associated protein TAU (MAPT) is
the most frequent protein target among them (Figure 4).This
stabilizes microtubules and influences transportation of cel-
lular secretory proteins. Moreover, MAPT has been reported
to accelerate cancer cell growth [119], while its inactivation
through gene knockdown suppressed cell proliferation [120].

Therefore, it is speculated that the diverse affinity of a natural
drug to different functional protein targets may be one of
the key factors for different selectivity profiles on VSMCs or
VECs. Common targets like MAPT could be used as one
of the important indicators in screening selective inhibitory
drugs in future studies.

7. Conclusion

This review highlighted the originating four cells that may
contribute to IH and then focused on VSMCs due to
their involvement in intima formation as a consequence of
abnormal proliferation, migration, and physiology. It further
summarized typical signaling pathways such as MAPKs,
PI3K/Akt, JAK-STAT, FAK, and NF-𝜅B and their involve-
ment in the abnormal activities of VSMCs. Based on these the
above cell origins and pathways, we organized and classified
different natural isolates including phenols, flavonoids, ter-
penes, and alkaloids that have suppressing effects on VSMCs.
In addition, many natural drugs not only induce apoptosis
and arrest cell cycle in VSMCs, but also impair VECs leading
to vascular restenosis and failure of blood vessel remodeling.
Thus, it is crucial to screen desirable drugs from natural
sources that preferentially inhibit VSMCs versus VECs to
prevent IH in the early stages, restenosis following graft
implantation, and even atherosclerotic diseases.

Abbreviations

IH: Intimal hyperplasia
EndMT: Endothelial-to-mesenchymal transition
rASMCs: Rat aortic smooth muscle cells
rTASMCs: Rat thoracic aortic smooth muscle cells
VSMCs: Vascular smooth muscle cells
CA: Carotid artery
RAECs: Rat aortic endothelial cells
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Figure 4: The compounds potential target: MAPT which is a common target.

HAECs: Human aortic endothelial cells
VECs: Vascular endothelial cells
hUVECs: Human umbilical vein endothelial cells
hUVSMCs: Human umbilical vein smooth muscle

cells
NeCs: Neointimal cells
rTA-A10-VSMCs: Rat thoracic aorta A10 vascular smooth

muscle cells
ncTASMCs: Newborn calf thoracic aorta smooth

muscle cells
mASMCs: Mice aortic smooth muscle cells
hPASMCs: Human pulmonary artery smooth

muscle cells
rPASMCs: Rat pulmonary artery smooth muscle

cells
hCASMCs: Human coronary artery smooth muscle

cells
bASMCs: Bovine aortic smooth muscle cells
MYH11: Smooth muscle cell myosin heavy chain
SM22𝛼/tagln: SMC lineage-restricted protein
ACTA2: Alpha smooth muscle actin
ECM: Extracellular matrix
TNF-𝛼: Tumor necrosis factor-𝛼
PDGF: Platelet-derived growth factor
ERK: Extracellular signal-regulated kinase
MMP: Matrix metalloproteinase
MAPK: Mitogen-activated protein kinase
JNK: c-Jun N terminal kinase
PCNA: Proliferating cell nuclear antigen
PI3K: Phosphatidylinositol-4,5-bisphosphate

3-kinase
AKT: Serine/threonine kinase 1
CDK: Cyclin-dependent kinase
JAK: Janus kinase
STAT: Signal transducer and activator of

transcription protein

FAK: Focal adhesion kinase
NF-𝜅B: Nuclear factor kappa B
LDL: Low-density lipoprotein
ROS: Reactive oxygen specie
IL-1𝛽: Interleukin 1-𝛽
LPS: Lipopolysaccharide
Nox: NADPH oxidase
TIMP: Tissue inhibitors of metalloproteinase
NOS: Nitric oxide synthase
IC50: Half maximal inhibitory concentration
miR-21: MicroRNA-21
NO: Nitric oxide
LDH: Lactate dehydrogenase
eNOS: Nitric oxide synthase
pPDGFr-𝛽: 𝛽-type platelet-derived growth factor

receptor
ROCK: Rho-associated protein kinase
Rb: Retinoblastoma tumor suppressor protein
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