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Supervised learning of gene-regulatory networks based on
graph distance profiles of transcriptomics data

Zahra Razaghi-Moghadam'? and Zoran Nikoloski ()"

Characterisation of gene-regulatory network (GRN) interactions provides a stepping stone to understanding how genes affect
cellular phenotypes. Yet, despite advances in profiling technologies, GRN reconstruction from gene expression data remains a
pressing problem in systems biology. Here, we devise a supervised learning approach, GRADIS, which utilises support vector
machine to reconstruct GRNs based on distance profiles obtained from a graph representation of transcriptomics data. By
employing the data from Escherichia coli and Saccharomyces cerevisiae as well as synthetic networks from the DREAM4 and five
network inference challenges, we demonstrate that our GRADIS approach outperforms the state-of-the-art supervised and
unsupervided approaches. This holds when predictions about target genes for individual transcription factors as well as for the
entire network are considered. We employ experimentally verified GRNs from E. coli and S. cerevisiae to validate the predictions and
obtain further insights in the performance of the proposed approach. Our GRADIS approach offers the possibility for usage of other
network-based representations of large-scale data, and can be readily extended to help the characterisation of other cellular
networks, including protein—protein and protein—-metabolite interactions.
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INTRODUCTION

Characterisation of gene-regulatory networks (GRNs) remains one
of the key challenges in systems biology'2. Successful solution
strategies to uncover the determinants of gene expression can be
used to understand how genes regulate downstream processes
(e.g., signalling, metabolism) and complex phenotypes (e.g.
growth, survival, disease susceptibility)®. At the simplest level,
regulation of gene expression is characterised by binding of a
transcription factor (TF) to a promoter region of the target gene
and its concomitant activation or repression. Variation in
responsiveness of a target gene to a TF, due to genetic variation,
change in the environment or a combination thereof, can affect its
expression and the resulting cellular phenotype. That said, gene
expression is regulated by additional factor that affect gene
expression (e.g., degradation)”. Bioinformatics studies have used
gene expression data collected under steady-state conditions®,
different time domains in response to external perturbation® and
their combination®, to reconstruct GRNs (i.e, TF-target gene-
regulatory relationships) with different degrees of success.
Combining the results from these approaches has been found
to perform well for unicellular organisms, such as Escherichia coli
and Saccharomyces cerevisiae®. These computational approaches
can be validated by and facilitate the integration of experimental
data on (putative) binding of a TF to a promoter region of a target
gene based on different technologies’™®. For instance, Chromatin
immunoprecipitation combined with sequencing (ChIP-Seq) facil-
itates determining functional binding of a TF to a promoter, yeast
one hybrid (Y1H) can be employed to identify the proteins that
bind a given DNA sequence in vivo'®, and DNA-affinity purification
sequencing (DAP-Seq) helps specify genome-wide TF-binding
sites'". Although useful and very informative, the data from these
technologies are either condition-specific (e.g., ChIP-Seq and Y1H)
or may not indicate functional binding of a TF to a gene promoter
(e.g., DAP-Seq), leading to a sizeable fraction of false positives

when identifying gene-regulatory interactions. In addition, these
methods are still resource-intensive even for well-studied model
organisms. As a result, it is necessary to further develop
approaches that can be used to accurately reconstruct GRNs from
expression data'%

The computational approaches for GRN reconstruction can be
broadly divided into two types: unsupervised, which only rely on
availability of gene expression data, and supervised, which in
addition to transcriptomics profiles also use knowledge on known
gene-regulatory interactions. The supervised approaches are
based on inductive reasoning to predict new interactions,
whereby if one TF is known to regulate a gene, then all TF-gene
pairs with similar features are likely to interact as well. To this end,
the expression data profiles for a TF-gene pair are transformed
into feature vectors and provided as input to a supervised learning
method. The learning method is used to train a classifier which is
in turn employed to identify whether or not a pair of genes is
involved in a regulatory interaction. A major challenge in
supervised learning of GRNs is that there is often no experimental
evidence for lack of interaction between a TF and a gene. The
latter makes it difficult to use well-established computational
approaches aimed for building binary classifiers.

A comprehensive comparative study with synthetic and
experimentally obtained transcriptomics data sets has indicated
the superiority of supervised over unsupervised approaches for
GRN reconstruction®. The existing supervised approach for GRN
reconstruction, called SIRENE, is based on support vector
machines (SVMs)'>. SIRENE learns a binary classifier that for each
TF distinguishes target from non-target genes'®. A similar SVM-
based approach was proposed and employed by Cerulo et al.'”.
SIRENE overcomes the absence of non-interacting pairs of TF and
target genes in the following way: For any given TF, it takes the set
of genes with which the TF has no reported regulatory
interactions, and splits this set into three subsets of roughly
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equal size. It first sets aside one subset, and then trains an SVM
classifier using all known positive instances and the two other
subsets, treated as negative instances. Then, this SVM is used to
score the instances in the subset left apart. This scoring procedure
is repeated, each time setting apart one of the other two subsets,
and the scores of the instances are aggregated. SIRENE was tested
on an Escherichia coli benchmark data set and was shown to
outperform the state-of-the-art unsupervised inference methods,
including context likelihood to relatedness (CLR)'S, algorithms for
the reconstruction of accurate cellular networks (ARACNE)',
relevance networks'® and Bayesian networks'®.

Supervised learning approaches for GRN reconstruction can be
further grouped into local and global®. In local approaches, a
classifier is built to discriminate the target of each TF separately. In
contrast, global approaches use all TF-target gene pairs to learn a
classifier for gene-regulatory interactions. The global approaches
are more suitable for practical applications, since the learned
classifier can be used on any TF-gene pair. In such a way, one
avoids the possibility of not having sufficient prior knowledge on
interactions for a given TF to learn a good classifier (e.g., due to
lack of information about its targets). Therefore, design of accurate
global approach for GRN reconstruction will allow identification of
TFs act as master regulators of multiple processes, and those TFs
have fine-tuning role and are involved in regulation of few
selected processes.

A class of recent approaches for unsupervised GRN reconstruc-
tion are based on random forests (RFs)?'?2. GENIE3 is an
unsupervised approach which decomposes the GRN inference
problem into several regression problems and uses tree-based
ensemble methods to predict the expression pattern of a target
gene from the expression patterns of all remaining genes (e.g.,
coding for TF)?2. iRafNet builds on GENIE3 by integrating
information provided by other biological data such as
protein—protein interactions and expression from perturbation
experiments (e.g, knockout studies)®'. While increasing the
predictive power of GENIE3, iRafNet requires consideration of
external knowledge from special experimental set-up. These
approaches have been widely used due to their good perfor-
mance in GRN reconstruction on synthetic data sets.

Here, we propose a global SVM-based supervised approach,
termed GRADIS, to infer GRNs from genome-wide expression data
and known regulatory interactions. Unlike the existing supervised
approach, the feature vectors in GRADIS are provided by graph
distance profiles from a network representation of the gene
expression data. To evaluate the performance of GRADIS, we apply
it to synthetic data as well as two benchmark data sets of
Escherichia coli and Saccharomyces cerevisiae provided by the
Dialogue for Reverse Engineering Assessments and Methods
(DREAM4 and DREAMS5) network inference challenges®®. The
results demonstrate that GRNs inferred by GRADIS are of higher
accuracy, assessed by the area under the ROC curve and the area
under the precision-recall curve, in comparison with all other
existing supervised learning approaches for GRN reconstruction,
the most widely used unsupervised approaches (i.e., CLR, ARACNE,
GENIE3, iRafNet, mrnet** and TIGRESS?®), and their combination
following ensemble learning strategies.

RESULTS
Formulation of the GRADIS approach
Our GRADIS supervised approach is based on graph distance

profile to infer regulatory interactions between TFs and all (TF and
non-TF-coding) genes in an organism of interest. GRADIS consists
of three main steps: (1) sample clustering, whereby samples with
similar expression profiles are first partitioned into k clusters (e.g.,
based on k-means clustering algorithm?®); (2) Euclidian-metric

graph construction, whereby the expression profiles obtained

npj Systems Biology and Applications (2020) 21

from step (1) for each TF-gene pair are cast as a Euclidean-metric
complete graph, where the gene can either encode TF or non-TF;
(3) SVM-based classification, whereby a binary classifier for the
TF—gene pair is trained based on the graph distance profile from
step; (2) to discriminate target from non-target genes (for a visual
illustration of GRADIS, see Fig. 1). A key step of GRADIS is the
construction of the Euclidian-metric complete graph, which
provides the key difference to supervised approaches for GRN
reconstruction. Since the pair TF-gene is an ordered pair between
a regulator and a regulated gene, the inferred statistical relation-
ships from GRADIS can be considered as directed.

To train a binary classifier, the input data set should contain
positive and negative instances. However, available experimen-
tally verified networks provide little information regarding the
absence of regulations between a TF and a gene. Another
distinguishing aspect of the GRADIS is the technique used to
generate negative instances during the SVM classification subtask.
In what follows, we provide the details of the three steps.

Step 1: sample clustering

The number of samples used in GRADIS determines the number of
features used in the SVM-based classification. To provide
informative, non-redundant features, a pre-processing step is
needed to cluster the data samples into a smaller number of
clusters based on their similarity. This step differs from determina-
tion of clusters based on genes, applied in other GRN reconstruc-
tion approaches”. To this end, GRADIS employs the k-means
clustering algorithm, so that the original data samples are
grouped into k clusters. We use k-means clustering, since it allows
us to investigate the effect of the cluster numbers, for any number
of clusters k, on the performance of GRADIS. The resulting cluster
centroids are then gathered in a new data set that effectively
summarises the information in the original one. In this reduced
data set, the expression profile of gene g is a k-dimensional vector
Xg = (x],x2, ... ,xk), where xI(i=1,2,... k) is the expression
level of gene g in the cluster centroid .

Step 2: construction of the graph distance profile

To provide a global supervised approach for GRN reconstruction,
we next build a feature vector for a TF-gene pair based on the
respective expression profiles. The expression profiles are
obtained from the sample clustering step, above. To account for
the magnitude differences among transcript levels of the TF gene
and the putative target, the expression profiles are rescaled to lie
in the interval [0, 1].

A pair of scaled k-dimensional vectors can be depicted by k
points in the unit square. Using a mathematical notation, the gene

pair (TF, G) with expression profiles of x7r = (X}, X%, ... , X&) and
Xg = (x},x%, ... ,x) can be represented by the k points
(e xg), (e, xE), .., (X, x€) in the unit square (Fig. 2a, b).

In the next step, we create a complete edge-weighted graph for
each pair using its corresponding set of k points as nodes (Fig. 2b).
The weight of the edge connecting nodes n; = (xk,x;) and
nj = (%g,xz) (i#j and 1<i, j<k) is defined as the Euclidian
distance between the two points, given by
w(n;, nj) = \/(X-'i—F —xe)® + (x. —xL)>. Having formed this
weighted graph, the upper right triangle of the weighted
adjacency matrix, excluding the diagonals, is then utilised as a
feature vector. As the weighted adjacency matrix is of size kx k,
the upper right triangle has k—i (1 <i<k) entries in its ith row.
Hence, concatenating all the rows of the triangle into one feature

vector leads to an array of Iength(lz() = 25;1 (k — 1), which is

subsequently used to learn a binary classifier (Fig. 2c). This feature
vector captures the statistical relationship between samples,
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Fig. 1 Visualisation of the steps in GRADIS. a GRADIS requires expression data and knowledge of known transcription factor (TF) and gene
(G) interactions as input. b The samples in the expression data are first clustered using k-means clustering, and the respective centroids are
used to obtain informative and non-redundant data. ¢ Features are then constructed from the scaled data sets obtained from the sample

clustering in (b).

which is not considered in approaches that rely on similarity
measures to determine statistical relationships between the levels
of a TF and putative target gene. Therefore, this unique
representation of between-sample relationships provide addi-
tional information in accurately reconstructing GRNs. The feature
vectors are formed based on the Euclidean distance, since it is a
widely used natural distance metric. However, for the purpose of
comparison, we also apply Manhattan distance to compute the
edge weights and further construct the features. The Manhattan

distance for a pair of nodes n; = (xi,xs) and nj = (X, x5) (%)
and 1<i, j<K) is given by wim(n;, ) = |(Xe — X)| -+ | (x5 — x5)|-

Step 3: SVM classification

SVM is a well-known binary classifier of points that belong to
either the positive or the negative class?®. In GRADIS, the positive
class of points is given by pairs of TF and a confirmed target, while
the negative class is provided by TF-non-target gene pairs.
Training of the SVM then utilises feature vectors obtained from the
Euclidian-metric graph for the pair of TF and gene. In addition, we
employ the feature vectors obtained from the Manhattan distance
to train an SVM and to compare the results between the two
distance metrics.

Published in partnership with the Systems Biology Institute

Typically, there is little information available about the absence
of gene-regulatory interactions between TFs and target genes in
real-world data sets. Hence, it is not straightforward to train a
classifier for this specific problem due to lack of negative
instances. To overcome this issue, GRADIS utilises the following
labelling strategy to identify potential members of the negative
class: Naturally, the prior experimentally characterised TF-gene
interactions (e.g., by ChIP-seq and other technologies), included in
a gold-standard network, comprise the positive class of the
training data. The uncharacterised TF-gene pairs then are divided
into several subsets of size equal to that of the positive class. At
each iteration, only one of these subsets is treated as the negative
class, which is used together with the positive class to train a new,
iteration-specific SVM using tenfold cross-validation on the
positive and negative class selected in the iteration. All the
uncharacterised pairs in the remaining subsets are in turn treated
as test data in this iteration, which are to be assessed by this
specific SVM classifier. These partial assessments by the individual
classifiers trained in each iteration are finally aggregated to make
a final decision on our choice of potential negative instances.

The adoption of this labelling strategy leads to training as many
as % independent SVM classifiers. Initially, a zero
score is assigned to all uncharacterised TF—gene pairs. The score
for an uncharacterised TF-gene pair is subsequently updated in
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Fig. 2 Construction of a Euclidian-metric complete graph. An example of expression profiles (a) of transcription factor (TF) and a gene (G)
represented in the unit square (b), and (c) the adjacency matrix of the Euclidean-metric complete graph obtained from (b). The feature for the
TF-gene pairs is given by vectorisation of the upper triangle of the matrix (excluding the diagonal as non-informative).

each iteration as follows: the trained iteration-specific SVM
classifier categorises each uncharacterised TF—gene pair in the
test set to be either positive or negative. If the prediction for a pair
is positive, its score is incremented by one; otherwise, the score
remains unchanged. This procedure is then repeated in the next
iteration by taking another subset of the uncharacterised TF-gene
pairs as the negative set, and classifying the remaining such pairs.
Eventually, each uncharacterised TF—-gene pair will end up with a
certain score obtained through this process, which reflects the
plausibility of an interaction existing between these genes.
Intuitively, a lower final score for a TF-gene pair indicates a
higher likelihood that it belongs to the negative class. The
negative class for the training data is then constructed by
selecting those pairs with a zero final score. The number of the
negative instances found with this approach is considerably
higher than the number of positive ones.

Having obtained a labelled training set associated with the
feature vectors explained earlier, an SVM can be trained to find an
optimal hyperplane that separate the two classes. The training set
consists of n TF—gene pairs py, pa,..., Pn, €ach of which belong to
either of the two positive and negative classes, respectively
denoted by +1 and —1. Once the SVM classifier is trained, it can
predict the label (class) of any uncharacterised TF-gene pair p.
This labelling is done by SVM based on a scoring function of the
formf(p) = 3", a;K(pi, p). The a; are Lagrange multipliers, which
are optimised by SVM to enforce large positive scores for gene
pairs in the +1 class and large negative scores for pairs in the —1
class in the training set. The kernel function K(,) is a basic
component of the SVM, which provides an implicit mapping of
data points into a high-dimensional space, in which the optimal
hyperplane can be obtained. In GRADIS, the SVM classifier is
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trained with a Gaussian (RBF) kernel function. GRADIS is
implemented in Matlab R2017b and is available online at
https://github.com/MonaRazaghi/GRADIS. To examine the extent
to which the choice of machine-learning algorithm affects the
performance of the GRN reconstruction, we also train RFs*° on
feature vectors obtained from the Euclidian-metric graph and
compare its results with those of the SVM.

Comparative analysis

To assess the performance of the proposed approach, GRADIS,
and compare it with the contending approaches, we used the area
under the ROC curve (AUC) and the area under the precision-recall
curve (AUPR®) obtained from synthetic and real-world data sets
for which gold-standard interactions are available from the
DREAM4 and DREAMS5 challenges. To ensure robustness of our
findings and obtain highly reliable AUC and AUPR measures, a
tenfold cross-validation with ten repetitions is performed for the
supervised approaches (see Supplementary Table S4 for the sizes
of training and testing data sets). As indicated above, the positive
and negative classes are not balanced, in the sense that there are
considerably more negative than positive instances. Such a lack of
balance in the size of classes may lead to training a classifier that is
biased towards the bigger class. To avoid this issue in GRADIS, we
ensure that each fold on which the SVM classifier is trained
contains the same number of instances from both classes. This is
achieved by considering all positive instances in the selected
training set (from the tenfold cross-validation) and sampling the
same number of negative instances uniformly at random.

Published in partnership with the Systems Biology Institute
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Table 1. Comparative analysis based on area under the ROC curve (AUC).
Data Methods
ARACNE CLR TIGRESS mrnet GENIE3 iRafNet Wisdom of crowds SIRENE (average) Expression-based SVM  GRADIS
DREAM4
Net1 0.56 0.71 0.50 0.69 0.77 0.5 0.82 0.54 0.81 (0.77-0.84) 0.86 (0.80-0.92)
Net2 0.54 0.64 0.50 0.65 0.69 0.5 0.78 0.48 0.83 (0.79-0.87) 0.85 (0.82-0.88)
Net3 0.56 0.71 0.52 0.72 0.73 0.5 0.79 0.5 0.72 (0.66-0.77) 0.77 (0.72-0.82)
Net4 0.55 0.67 0.51 0.67 0.69 0.5 0.78 0.5 0.70 (0.67-0.73) 0.76 (0.72-0.80)
Net5 0.58 0.68 0.51 0.52 0.76 0.5 0.80 0.48 0.71 (0.64-0.79) 0.77 (0.71-0.82)
DREAM5
InSilico 0.50 0.50 0.74 0.74 0.82 - 0.81 0.42 0.84 (0.83-0.85) 0.85 (0.84-0.86)
E. coli 0.51 0.59 0.59 0.59 0.69 - 0.69 0.41 0.87 (0.85-0.88) 0.94 (0.93-0.94)
S. cerevisiae  0.50 0.52 0.52 0.52 0.54 - 0.54 0.49 0.80 (0.79-0.81) 0.96 (0.96-0.97)
The performance of GRADIS is compared with that of unsupervised approaches (ARACNE, CLR, GENIE3, iRafNet, mrnet, TIGRESS), their combination based on
wisdom of crowds and two supervised approaches (SIRENE and expression-based SVM classifier). Since the performance is based on the global (i.e., network-
centric) approach, for SIRENE we report the average AUC over all TFs (for local comparison, refer to ‘Methods'). The numbers in parentheses refer to confidence
intervals (see ‘Methods'). The comparison includes the five synthetic data sets from the DREAM4 challenge as well as the one synthetic and the two real-world
data sets from the DREAMS5 challenge. Results from iRafNet are not provided for the data sets in DREAM5 due to lack of data on knockout experiments and
protein—protein interactions.

Effects of the number of clusters

An initial step of GRADIS implementation involves selecting the
number of clusters, k, to use only the most informative samples.
To gauge the selection of an appropriate value for k, we first
investigate the effect of this parameter on the performance of
GRADIS. We observe that higher values of AUC are generally
associated with larger values of k for all three data sets from the
DREAMS5 challenge (Supplementary Fig. S1). In addition, as we
increase the number of clusters, k, the value of AUC approached
its maximum at about k= 50. However, further increase in the
value of k, above 50, does not result in a noticeable improvement
in the value of the AUC (Supplementary Fig. S1).

For fairness of comparison, we also make sure that the number
of clusters used in GRADIS ensures the usage of a similar number
of features as the approaches based only on the expression
profiles. Specifically, for the synthetic data from the DREAM4
challenge, the 210 samples are clustered in k=30 clusters,
yielding 435 features for GRADIS. This is similar to the 420 (=2.210)
features used by the other approaches. In addition, for the
synthetic data from the DREAM5 challenge, the 805 samples are
clustered in k=50 clusters, yielding 1225 features for GRADIS.

Comparison of performance with synthetic data
We first compare the performance of GRADIS with that of the
other contenders on synthetic data sets for which both positive
and negative interactions instances are known. To this end, we use
six popularly used unsupervised approaches, CLR, ARACNE,
GENIE3, iRafNet, mrnet and TIGRESS, and supervised approach
SIRENE and an expression-based SVM classifier. Because of the
local strategy exploited in SIRENE, for this approach we only train
local classifiers for each TF, together with a corresponding value
for AUC. Finally, we use the average AUCs in the comparisons. In
addition, we consider combining the information of the unsu-
pervised approaches following the wisdom of crowds strategy®.
As shown in Table 1, GRADIS outperforms all contending
approaches based on the average AUC, over the different
classifiers with balanced number of positive and negative
instances, when using the synthetic data from the DREAM4 and
DREAMS challenges. Interestingly, for all synthetic data, except for
Network 4 from the DREAM4 challenge, GRADIS also performs
better than the wisdom of crowds that combines the findings of
CLR, ARACNE, GENIE3, iRafNet, mrnet and TIGRESS. Therefore, we
conclude that the features used in GRADIS provide a considerable
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advantage to the other computational approaches. Since iRafNet
is based on RF, we are also interested to investigate if the better
performance of GRADIS is due to the differences between the
methods used to train the classifiers (i.e., SVM vs. RF). To this end,
we compare the performance of GRADIS with that of an
expression-based SVM classifier that employs the expression of
TFs and target genes. For all synthetic networks, the average AUC
of GRADIS is larger than that of the expression-based SVM
classifier. Further, we observe that: (1) the upper bound of the
confidence intervals for the AUC of GRADIS is consistently larger
than that of the expression-based SVM classifier, and (2) the lower
bound of the confidence intervals for the AUC of GRADIS is at least
as large as the average AUC of the expression-based SVM classifier
over the different networks. Altogether, these findings demon-
strate the robustness of the excellent performance of GRADIS.

Similar findings hold for the comparison of the approaches
based on the AUPR statistic. GRADIS outperforms all other
contending approaches and their combination based on the
wisdom of crowds (Supplementary Table S1). For all networks,
except Network 2 from the DREAM4 challenge, GRADIS outper-
forms the expression-based SVM classifier.

Furthermore, we apply the Manhattan distance to compute the
edge weights in the graph representation of our data and
compare the findings with those from the Euclidean distance. The
results show the coefficients of correlation between Manhattan
distance and Euclidean distance vary from 0.96 to 0.99, based on
Mantel test’'. The high correlation between the two distance
metrics implies that the SVM with Manhattan distance performs
similarly to that based on the Euclidean distance (Supplementary
Table S2). Eventually, to evaluate the impact of classification
algorithms, we also train RF classifier based on Euclidean-metric
graph and compare its performance to that of SVM classifier. The
results show that using the graph-based features, SVM classifier
performs better than random forests in reconstructing GRNs
(Supplementary Table S3).

Comparison of performance with real-world data

The findings from the synthetic data sets have motivated us to
explore the performance of GRADIS on real-world expression data
sets from E. coli and S. cerevisiae provided in the DREAM5
challenge. Here, we first learn negative interaction instances, and
use them to train a global classifier. We find that for the two real-
world networks in the DREAM5 challenge, GRADIS outperforms
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each of the contending approaches, individually as well as their
combination based on the wisdom of crowds strategy (Table 1).
Moreover, GRADIS outperforms the expression-based SVM with
respect the average AUG; further, the confidence intervals do not
overlap, strengthening the claims about the better performance of
GRADIS. Similar findings hold with respect to the average AUPR
(Supplementary Table S1). We note that no results could be
obtained based on iRafNet as this approach requires data from
knockout experiments or protein—protein interaction data, which
are not provided in the DREAMS5 challenge.

Comparison of local and global approaches

Although GRADIS and SIRENE are both based on SVM, they adopt
two intrinsically different strategies to GRN inference, namely the
global and local, respectively. Hence, to provide a fair assessment,
we compare GRADIS and SIRENE following a TF-centric (i.e., local)
and network-centric (i.e., global) perspective. Supplementary Fig.
S2 presents the network-centred results obtained from SIRENE,
applied on each of the two real-world data sets. Both ROC and PR
curves in Supplementary Fig. S2 indicate that GRADIS outperforms
SIRENE from a network-based (global) perspective. To compare
the two approaches from the TF-centred (local) perspective, we
use the GRADIS results to calculate the AUC for each individual TF.
We note that in this approach, some TFs may not be present in the
test set, thereby we repeat the analysis ten times. We then
calculate the distribution of AUC values based on the minimum,
maximum and mean values from the ten repetitions. Finally, we
compare the performance of two approaches via box plots, as
shown in Supplementary Fig. S3. The results of this local
investigation once again show that GRADIS has a superior
performance compared with SIRENE. For instance, we find that
the median values for the distributions of minimum, mean and the
maximum AUC values over all TFs are consistently larger for
GRADIS on the data sets of E. coli and S. cerevisiae.

Effects of determining the negative class

In the aforementioned scoring scheme from the SVM classifica-
tion, a higher score for a pair is indicative of a positive class
instance, i.e.,, of a regulatory interaction. To further evaluate the
proposed strategy for determining negative class instances, the
uncharacterised pairs that are less likely to be negative instances
are selected, based on a given threshold score, and cross-
examined with an experimentally verified database. For instance,

for the E. coli data set, 80 (: w) SVM classifiers

|positive pairs|

were trained to identify pairs that may serve as negative instances.
Interestingly, the results show that 49 (out of 223,262) unchar-
acterised pairs received the maximum possible score of 80. The
pairs which received a score above 75 (7728 pairs) were selected
and cross-examined with RegulonDB. From the 7728 pairs with
score larger than 75, we find that 275 represent true gene-
regulatory interactions. To assess the significance of this finding,
we generated a null distribution of 1000 sets of random
uncharacterised pairs of the same size (7728), and examined their
interactions in RegulonDB. The maximum number of true
regulatory interactions among the 1000 random sets is 63, which
is considerably smaller than 275. This further indicates that pairs
with high scores are indeed significantly enriched for regulatory
interactions (P < 0.001).

To evaluate the performance of this scoring scheme for
S. cerevisiae, we test the same strategy on regulatory interactions
with DNA-binding evidence from YEASTRACT. Here, the results
show that 32 (out of 56,281) uncharacterised pairs receive the
maximum possible score of 56. The maximum number of true
regulatory interaction among the 1000 random sets is 29, which
further supports the validity of the proposed strategy in providing
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information about uncharacterised TF-gene pairs, particularly for
those with highest scores (of 56).

DISCUSSION

Despite considerable advances in computational approaches to
reconstruct cellular networks in model organisms from data profiles
of the participating components®?, there is a considerable gap in our
knowledge of GRNs, particularly for eukaryotes. Therefore, further
developments of computational approaches is needed to increase
the accuracy of the predicted interactions and consequently obtain
a larger return on investment in experimental network validation.
Our thorough comparative analysis with existing, widely employed
unsupervised and supervised approaches for GRN reconstruction
from synthetic and real-world gene expression data sets demon-
strates that unsupervised approaches perform very close to random
guessing of interactions. As a result, here we focus on developing a
new supervised approach for GRN reconstruction—a challenge
which requires a computational strategy for selecting non-
interacting pair of TF and target genes.

The novelty of our supervised approach, termed GRADIS is the
usage of network-based representation of the expression data. This
network-based representation allows us to capture and later use the
relationship of a TF and its target genes between the samples to
distinguish interacting from non-interacting TF-gene pairs. In such a
way, we obtain a richer representation of the data, rather than a
single value, quantifying the relationship between a TF and a gene,
obtained by classical similarity measures (e.g., mutual information,
different correlation coefficients) with the gene expression profiles.
Another novelty of the approach is the way in which we select
representative non-interacting TF-gene pairs based on which the
final SVM model is trained. Here, we use an iterative scheme to learn
putative non-interacting TF-gene pairs. Our comparison with
available knowledge of the GRN of E. coli and S. cerevisiae provides
evidence for the validity of the proposed strategy.

Finally, our thorough comparative analysis based on synthetic
and real-world data sets demonstrates that the proposed
approach GRADIS exhibits considerably better performance than
the popularly used unsupervised as well as supervised computa-
tional approaches for inference of GRNs. In the comparative
analyses, we insisted on fairness with respect to the available data
to each of the algorithms. In this sense, we ensured that all
algorithms obtained same (or similar) number of features, thus
avoiding bias in the comparisons.

The graph-based features can be used as a promising step towards
learning other types of molecular interactions, including
protein—protein and protein-small molecule (e.g., drug), based on
data profiles from other high-throughput profiling technologies. To
this end, sparser network representations based on unique geometric
graphs on a set of data points can be investigated in future work.

METHODS
Performance statistics

To assess the performance of GRADIS and compare it with that of other
contenders for GRN reconstruction, we use the area under the ROC curve
(AUQ) and the area under the precision-recall curve (AUPR®9). To this end,
the sensitivity and specificity as well as the precision and recall are
calculated for each threshold value, resulting in the ROC and the precision-
recall curves, respectively. In addition, we determine confidence intervals
for the AUC and AUPR statistics for the SVM-based approaches
implemented in this study by first fitting a normal distribution to the
statistics obtained from ten different runs. The 95% confidence intervals is
then computed based on the resulting distributions.

Contending computational approaches and wisdom of crowds

We provide a comprehensive comparison of GRADIS to six unsupervised and
one supervised approach proposed to date for GRN reconstruction. In addition,
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we consider another supervised approach based on concatenation of gene
expression profiles of TF and target gene, similar to the approach of Ni et al.>>,
For this expression-based SVM classifier, the negative instances are obtained
by randomly sampling from the uncharacterised instances. Such an approach
allows us to determine the added value of using the graph-based
representation of the expression profiles for a TF and a gene, coupled with
our strategy for balancing the negative instances. To infer the GRN based on
the unsupervised approaches, CLR, ARACNE and mrnet, we employ the
implementation in the R package minet. To infer the GRN based on GENIE3, we
used the implementation in the R package GENIE3 (https://bioconductor.org/
packages/devel/bioc/vignettes/GENIE3/inst/doc/GENIE3.html), and for iRafNet,
the R code implementation and a tutorial are obtained from http://research.
mssm.edu/tulab/software/irafnethtml. In the case of TIGRESS and SIRENE, we
used the MATLAB implementations freely available at http://cbio.ensmp.fr/
tigress and http://cbio.ensmp.fr/sirene, respectively. To provide a comparison
with another state-of-the-art approach, we also implemented the strategy used
by wisdom of crowds (i.e, ensemble learning), whereby integration of the
findings from multiple weak classifiers results in more accurate predictions®*.
Wisdom of crowds integrated the findings from six unsupervised approaches
(where possible), namely, CLR, ARACNE, GENIE3, iRafNet, mrnet and TIGRESS.
Each of these approaches provides a scoring matrix for TFs and genes,
comprising the likelihood that a given TF regulates a specified gene. To
facilitate integration, each of the scoring matrices was first scaled by dividing
with the corresponding maximum score. An interaction was then considered
as present, if the associated values in all scaled scoring matrices were above a
threshold used for obtaining the AUC and AUPR curves. Results from SERINE
are not considered, since the used implementation does not provide the
identity of the predicted TF-gene interactions. The results from the other
supervised approaches used are not considered in the wisdom of crowds to
provide an unbiased comparison between the combination of weak classifiers
resulting from the unsupervised approaches.

Data

We employ five synthetic benchmark data sets from the DREAM4 and one
from the DREAMS5 challenge to assess GRADIS. These data sets comprise
both time-resolved and perturbation experiments. Each of the five
synthetic expression data sets from DREAM4 has expression values of
100 genes in 210 time points (i.e., samples), and the number of TF-coding
genes in the corresponding gold-standard networks varies from 34 to 44.
The synthetic data from DREAM5 comprises the expression values of 1643
genes in 805 samples. The corresponding network has 178 TFs and 4012
regulatory interactions.

Moreover, we use two independent real genome-wide expression data
sets and corresponding gold-standard networks to evaluate the perfor-
mance of GRADIS on real-world data. The expression data with gold-
standard networks for E. coli and S. cerevisiage are obtained from the
DREAMS5 website. The E. coli data set has expression values of 4297 genes
in 805 samples. The corresponding network has 2066 regulatory
interactions, in which 141 TFs regulate 999 target genes (TF and non-TF-
coding genes). The S. cerevisiae data set has the expression levels of 5667
genes in 536 samples, and the GRN includes 3940 regulatory interactions
between 114 TFs and 1934 target genes (TF- and non-TF-coding genes).
The number of available features is one of the factors that affect the
performance of the compared approaches.
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