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A B S T R A C T

Background and purpose: Diffusion tensor imaging (DTI) has been proposed to guide the anisotropic
expansion from gross tumor volume to clinical target volume (CTV), aiming to integrate known tumor
spread patterns into the CTV. This study investigate the potential of using a DTI atlas as an alternative to
patient-specific DTI for generating anisotropic CTVs.
Materials and Methods: The dataset consisted of twenty-eight newly diagnosed glioblastoma patients from
a Danish national DTI protocol with post-operative T1-contrast and DTI imaging. Three different DTI atlases,
spatially aligned to the patient images using deformable image registration, were considered as alternatives.
Anisotropic CTVs were constructed to match the volume of a 15 mm isotropic expansion by generating 3D
distance maps using either patient- or atlas-DTI as input to the shortest path solver. The degree of CTV
anisotropy was controlled by the migration ratio, modeling tumor cell migration along the dominant white
matter fiber direction extracted from DTI. The similarity between patient- and atlas-DTI CTVs was analyzed
using the Dice Similarity Coefficient (DSC), with significance testing according to a Wilcoxon test.
Results: The median (range) DSC between anisotropic CTVs generated using patient-specific and atlas-based
DTI was 0.96 (0.93–0.97), 0.96 (0.93–0.97), and 0.95 (0.93–0.97) for the three atlases, respectively (p > 0.01),
for a migration ratio of 10. The results remained consistent over the range of studied migration ratios (2 to
100).
Conclusion: The high degree of similarity between all anisotropic CTVs indicates that atlas-DTI is a viable
replacement for patient-specific DTI for incorporating fiber direction into the CTV.
1. Introduction

Glioblastomas (GBMs) are aggressive and infiltrative brain tumors
with a poor prognosis. The current standard treatment for GBMs is
a combination of surgery, chemo-radiation and adjuvant chemother-
apy [1]. Radiotherapy is used to treat both the detectable tumor,
i.e. Gross Tumor Volume (GTV), as well as the surrounding microscopic
tumor spread which is not visible on medical images. To account for
microscopic spread, the Clinical Target Volume (CTV) is defined in

∗ Correspondence to: Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark.
E-mail address: jespkall@rm.dk (J.F. Kallehauge).

treatment planning by adding a safety margin to the GTV. According to
the ESTRO-EANO guidelines, the CTV is defined as a 1.5 cm isotropic
expansion around the GTV [2], which is then corrected for anatomical
barriers such as the falx cerebri, ventricles, and skull.

Correlations have been found between the extent of tumor presence
in the white matter and imaging data, suggesting that tumor cells
preferentially migrate along axonal tracts in the white matter [3–5].
Such spread patterns may not be adequately captured by an isotropic
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GTV-to-CTV expansion [6,7]. Therefore, incorporating patient-specific
anatomical and microstructural information may be an important step
in personalizing and ultimately improving the definition of the CTV.

Diffusion Weighted Imaging (DWI) is a technique used to probe
microstructural information of tissue, most commonly in the brain.
DWI is based on the acquisition of magnetic resonance imaging (MRI)
sequences that can measure the diffusion of water molecules in tissues
without the need for exogenous chemical agents. Diffusion Tensor
Imaging (DTI) is an extension of DWI and is used to estimate the degree
of anisotropy and orientation in tissue. The most popular application
of DTI is the structural mapping of tissues at the cellular level in the
brain. In particular, the structure of axon fibers connecting neurons in
the brain is of interest. The method of DTI has been used in clinical
research to study the effect of aging, multiple sclerosis and epilepsy on
axon fibers [8–10].

The diffusion patterns of water molecules provided by DTI serve as
a roadmap used to model preferential migration of GBM inside white
matter. Using DTI to design anisotropic CTVs has been attempted for
nearly a decade [11–15]. However, given the small cohorts and lack
of prospective studies, it is still an open question whether a DTI-based
CTV definition is clinically feasible.

An alternative to adding a DTI sequence for each patient (patient-
DTI) as part of the radiotherapy treatment planning scans is to use a

TI atlas (atlas-DTI), by spatially matching the atlas to each patient.
uch an approach approximates the diffusion patterns of water in each
ndividual patient. However, the main concern with using an atlas-
TI is that it is unclear if it can reproduce tumor-induced and surgical
ffects since it was developed using a healthy cohort. The methodology

to incorporate an atlas-DTI to generate CTVs has been proposed in Buti
et al., but validation against a ground truth was missing [16]. Stretton
et al. showed that atlas-DTI can adequately reproduce tumor spread
compared to patient-DTI [17]. However, the analysis was performed
on a small cohort of three patients, which may not be representative of
the heterogeneity in the patient population.

The aim of this study was to evaluate the accuracy of an atlas-
TI as a surrogate to patient-DTI for generation of anisotropic CTV
xpansions. The analysis include CTV generation with different choices
f model parameters, e.g., tumor migration in white matter over gray
atter. Finally, the clinical implications of the choice of model-based

nisotropic CTVs over manually-edited isotropic CTVs will be presented
nd discussed.

2. Methods

First, an overview is given of the patient and imaging data used in
the study. Second, the workflow is presented for generating anisotropic
CTVs using patient- and atlas-DTI. Third, the evaluation metrics and
data pre-processing procedures are described.

2.1. Patient data

This study used data from a Danish national DTI protocol, approved
by the Central Denmark Region Committees on Health Research Ethics
(Reg. no. 1-10-72-184-21). All participating patients provided written
informed consent. This protocol is a non-interventional prospective
trial, in which DWI scans were conducted as part of the imaging
rotocol for radiotherapy treatment planning (referred to as therapy
cans).

Twenty-eight patients were selected. All patients were adults with
ewly diagnosed and pathology confirmed glioblastoma IDH wildtype,

according to WHO 2021 classification [18], ECOG performance status
f 0 or 1 and referred for long-course radio-chemotherapy. Patient
haracteristics are presented in Supplementary Table 1.

From the post-operative therapy scans, the contrast-enhanced T1-
eighted image (T1C), DWI (Philips Ingenia 3T), and Computed To-
ography (CT, Siemens Somatom Definition Edge) were used. Ad-
itionally, the GTV, CTV, and brain mask were acquired. All DWI
 e

2 
were derived using a diffusion weighting of 𝑏 = 0, 1000 s/mm2 in 32
directions. Prior to estimation of the DTI, the DWI underwent extensive
pre-processing steps to reduce artifacts and noise, as suggested in
[19,20].

Three atlas-DTI were investigated as potential surrogates for a
atient-DTI: HCP1065 [21], IIT [22] and MIITRA [23]. The atlases

differ in their size and age range of the cohorts. The cohort size was
1065, 72, and 202 subjects, and the age range was 22–37, 20–39, and
65–95 for the HCP, IIT, and MIITRA atlases, respectively.

In order to use the atlas-DTIs in the patient-specific setting, an
image registration step was performed to spatially align the atlas-DTIs
to the patient images. We used the brain image registration software
dvanced Normalization Tools (ANTs) [24]. First, the atlas T1-weighted

(T1) image associated with the atlas-DTI was registered to the patient
T1C image using a deformable image registration (DIR) process. ANTs
then applies the displacement vector field to the atlas-DTI using a ten-
sor transformation model called the preservation of principal direction
(PPD) [25].

2.2. Geometric expansion model to generate the CTV

We followed the methodology proposed in Refs. [16,26] to generate
he CTV for each patient. The CTV is defined as an iso-distance contour

in a 3D distance map with the GTV at the origin. The distance at each
oint 𝑟 = (𝑥, 𝑦, 𝑧) is obtained solving the shortest-path problem:

∇𝖳𝑆(𝑟)(𝑟)−1∇𝑆(𝑟) = 1, (1)

where ∇ is the gradient operator, 𝖳 the transpose, and −1 is the inverse
of a second order tensor , called the Riemannian metric tensor. (𝑟) is
the entity that integrates preferential pathways of tumor spread and
anatomical barriers.

Preferential pathways were derived from the DTI. Let  denote
he patient- or atlas DTI tensors at point 𝑟 in the image.  can be

reformulated using spectral decomposition [27]:

(𝑟) = 𝑄(𝑟)𝛬(𝑟)𝑄(𝑟)−1, (2)

with the eigenvector matrix 𝑄 = (𝐪1,𝐪2,𝐪3) and the corresponding
eigenvalue matrix 𝛬 = diag(𝜆1, 𝜆2, 𝜆3). The eigenvectors were sorted
as 𝜆1 ≥ 𝜆2 ≥ 𝜆3 so that 𝐪1 is the dominant diffusion direction.
White matter voxels typically have a strong directionality 𝜆1 ≫ 𝜆2 ≥
𝜆3 ≥ 0, while the voxels in gray matter and cerebrospinal fluid have
approximately equal eigenvalues.

 and  are inversely related to each other [26]. Therefore,  can
e constructed in a piecewise fashion by using the DTI eigenvectors in

white matter but replacing the DTI eigenvalues by the parameterized
matrix (𝜎 , 1, 1), and setting the gray matter and barrier structures to
unity and zero:

(𝑟)−1 =
⎧

⎪

⎨

⎪

⎩

𝑄(𝑟)diag(𝜎 , 1, 1)𝑄(𝑟)−1 ∀𝑟 ∈ white matter,
I3 ∀𝑟 ∈ gray matter,
O3 ∀𝑟 ∈ barriers,

(3)

with I3 the 3 × 3 identity matrix and O3 the 3 × 3 zero matrix. The
odel parameter 𝜎 is referred to as the migration ratio and expresses

he relative preference of tumor cell migration in white matter over
ray matter along the dominant diffusion direction. Studies on mathe-
atical tumor growth models generally use a value between 2 and 100,
ith a value of 10 commonly used, e.g. [28–30].

Fig. 1 illustrates the effect of choosing different values of 𝜎 on the
resulting 3D distance map solved with the Hamilton Fast Marching
python library [31]. Setting 𝜎 = 10 produces a distance map with highly
nisotropic iso-distance contours compared to 𝜎 = 1.

Once the 3D distance map is computed for each patient, the aniso
ropic CTV is defined by selecting the level set within the distance

map that encompasses the same volume as the CTV used for clinical
treatment (15 mm isotropic expansion from GTV). This level set is then
xtracted and used to define the anisotropic CTV boundary.
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Fig. 1. Example of distance maps using a uniform expansion (left) and anisotropic expansion (right).
3D distance maps calculated with Eq. (1), using different choices of parameter 𝜎 in Eq. (3). A value of 𝜎 = 1 results in quasi isotropic iso-distance contours (left), while setting and 𝜎 = 10
in white matter voxels results in anisotropic iso-distance contours (right). Expansions were restricted by a barrier segmentation, which prevented migration across structures such as the falx
cerebri and into the ventricles. Note that the colorbar units in each image are in mm. However, the distance metric used in the anisotropic expansion on the right operates in a non-Euclidean
space, where anisotropic regions are effectively ‘‘shortened’’. As a result, the iso-distance contours do not correspond to actual physical distances. GTV: Gross Tumor Volume. mm: millimeters.
2.3. Evaluation of CTV expansions

To evaluate similarity of CTVs we used the Dice Similarity Coef-
ficient (DSC) and 95% percentile Hausdorff distance (HD95). In the
following all comparisons were done for migration ratios 𝜎 equal to
1, 2, 5, 10, 50 and 100.

We first investigated the feasibility of using an atlas-DTI for aniso
tropic CTV expansion, as opposed to a patient-DTI. We did this by com-
paring the CTVs produced using each of the three atlas and compare
them with the CTV produced using the patient-DTI.

Second, we investigated the similarity of the anisotropic CTV expan-
sion to the clinically used CTV, hereafter referred to as clinical-CTV.
We did this by comparing the surface shape of the anisotropic CTVs
produced by the three atlas- and the patient-DTI, to the clinical-CTVs.

2.4. Data pre-processing

Initially all CT images were rigidly registered to T1C, along with
GTV, CTV and brain delineations. Linear interpolation was used for
images and nearest neighbor for masks. All T1C images underwent
skullstripping. If a T1 atlas did not have a skullstripped version avail-
able, the Brain Extraction Tool (FSL, version 6.0) [32] was used to
extract the brain. Subsequently both patient and atlas images under-
went white matter normalization [33] and was rigidly registered into
the MNI152 non-linear 6th generation standard-space [34]. Following
next, each of the atlas T1 images were deformably registered onto the
standardized patient images. The same transformation was then applied
to the atlas-DTI, followed by the PPD algorithm.1 Subsequently, atlas-
and patient-DTI with negative eigenvalues were replaced by 1e-14 and
all-zero eigenvalues were replaced by the globally smallest non-zero
eigenvalue.

White matter and tumor barrier segmentation were computed us-
ing Freesurfer [35] version 7.2.0, applying the Sequence Adaptive
Multimodal SEGmentation (SAMSEG) [36] functionality. The barrier

1 https://github.com/ANTsX/ANTs/wiki/Warp-and-reorient-a-diffusion-
tensor-image
3 
structures were created by combining the ventricle system, brain-
stem, cerebellum and Cerebrospinal Fluid (CSF). The CSF segmentation
underwent post-processing to resemble falx cerebri and tentorium cere-
belli. Subsequently, barrier structures were generated on an indepen-
dent dataset of GBM patients and a deep learning segmentation model
was trained to generate smooth barrier structures with no leaks due
to missing voxels in the segmentation. The white matter and barrier
segmentations were corrected for faulty segmentations inside the GTV.

2.5. Statistics and software

Pre-processing and estimating of DTI was done using MRtrix3
(version 3.0.3) [37]. Python (version 3.7.12) was used to generate CTV
expansions and calculate metrics (packages: AGD-0.2.4, HFM-0.2.12,
Nibabel-4.0.2, Tensorflow-2.11.0, Medpy-0.4.0, Surface distance-0.1).
95% Confidence Intervals (CI) were estimated with percentile boot-
strapping in 1000 iterations. Significance testing was done using
Wilcoxon signed rank test with Holm-Bonferroni correction, using a
significance level of 0.01. All statistical analysis was performed in R
(version 4.4.0).

3. Results

The results from the use of a warped atlas-DTI are presented below.
Figs. 3,4, Table 1, and Supplementary Table 2 show the volumetric
and surface similarities of the anisotropic CTVs across all investigated
migration ratios. Sections 3.1 and 3.2 focus on a migration ratio of 10
for clarity, as it is the most common value.

3.1. Atlas- versus patient-DTI for anisotropic CTV generation

Evaluating the anisotropic CTVs produced using the three atlas-DTI:
HCP, IIT and MIITRA with the volume produced using the patient-DTI,
there was no statistically significant difference in DSC between any of
the atlas-DTI used: Median (range) were 0.96 (0.93-0.97), 0.96 (0.93-
0.97) and 0.95 (0.93-0.97) respectively. The DSC decreased gradually
as the migration ratio increased, however the non-significant relation
between the CTVs remained. Results were consistent across all metrics
(Fig. 2, Fig. 3, Table 1).

https://github.com/ANTsX/ANTs/wiki/Warp-and-reorient-a-diffusion-tensor-image
https://github.com/ANTsX/ANTs/wiki/Warp-and-reorient-a-diffusion-tensor-image
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Fig. 2. Three examples of patients with all four anisotropic CTVs and the clinical-CTV.
The three patients differ by their location of the GTV, extent of resection and contrast enhancement. The anisotropic CTVs are generated with a migration ratio equal to 10. Barrier structure is
shown in blue. A: Non-contarst enhancing tumor in the right frontal region distant from corpus callosum B: Resection cavity near splenium corporis callosi. Example of minor barrier violations
by the clinical-CTV. C: Irregularly shaped contrast enahncing tumor growing through splenium corporis callosi. Instance of substantial barrier violations by the clinical-CTV. GTV: Gross Tumor
Volume, CTV: Clinical Tumor Volume, HCP: Human Connectome Project, IIT: Illinois Institute of Technology, MIITRA: Multichannel Illinois Institute of Technology & Rush university Aging .
Table 1
Results from comparing CTVs generated using Atlas-DTI with CTVs generated using
Patient-DTI.
DSC: Dice Similarity Coefficient, DTI: Diffusion Tensor Imaging, CTV: Clinical Target Volume,
HCP: Human Connectome Project, IIT: Illinois Institute of Technology, MIITRA: Multichannel
Illinois Institute of Technology & Rush university Aging, MR: Magnetic Resonance.

Migration.Ratio Atlas DSC HD95 sDSC_1mm

1 HCP 1.00 (1.00, 1.00) 0.0 (0.0, 0.0) 1.00 (1.00, 1.00)
1 IIT 1.00 (1.00, 1.00) 0.0 (0.0, 0.0) 1.00 (1.00, 1.00)
1 MIITRA 1.00 (1.00, 1.00) 0.0 (0.0, 0.0) 1.00 (1.00, 1.00)

2 HCP 0.99 (0.98, 0.99) 1.0 (1.0, 1.4) 0.99 (0.97, 1.00)
2 IIT 0.99 (0.98, 0.99) 1.0 (1.0, 1.4) 0.99 (0.97, 1.00)
2 MIITRA 0.99 (0.98, 0.99) 1.0 (1.0, 1.4) 0.99 (0.96, 1.00)

5 HCP 0.97 (0.95, 0.98) 2.0 (1.0, 2.2) 0.90 (0.83, 0.98)
5 IIT 0.97 (0.95, 0.98) 2.0 (1.4, 2.4) 0.91 (0.83, 0.96)
5 MIITRA 0.97 (0.95, 0.98) 2.0 (1.0, 2.4) 0.90 (0.83, 0.99)

10 HCP 0.96 (0.93, 0.97) 2.3 (1.4, 3.0) 0.86 (0.76, 0.95)
10 IIT 0.96 (0.93, 0.97) 2.4 (1.7, 3.2) 0.86 (0.73, 0.93)
10 MIITRA 0.95 (0.93, 0.97) 2.3 (1.4, 3.0) 0.85 (0.78, 0.96)

50 HCP 0.93 (0.88, 0.96) 2.6 (1.7, 4.5) 0.84 (0.73, 0.94)
50 IIT 0.93 (0.87, 0.96) 2.8 (1.7, 5.1) 0.84 (0.68, 0.94)
50 MIITRA 0.93 (0.86, 0.96) 2.9 (2.2, 5.1) 0.83 (0.67, 0.89)

100 HCP 0.92 (0.86, 0.96) 2.6 (1.4, 5.0) 0.86 (0.76, 0.95)
100 IIT 0.92 (0.83, 0.96) 2.4 (1.4, 5.4) 0.86 (0.70, 0.95)
100 MIITRA 0.92 (0.83, 0.95) 2.6 (1.7, 5.4) 0.85 (0.69, 0.93)

3.2. Anisotropic versus clinical-CTV

When evaluating the anisotropic CTVs generated using each of the
DTI sources (HCP, IIT, MIITRA, MR) with the clinical-CTV, we found
no statistically significant difference in DSC, between the MR-based
CTV and any of the Atlas-based CTVs; 0.87 (0.76-0.92), 0.86 (0.76-
0.91), 0.87 (0.76-0.92) and 0.86 (0.76-0.91). Again, DSC decreased as
the migration ratio increased and the non-significant relation remained
intact. Results were consistent across all metrics (Fig. 4, Supplementary
Table 2).
4 
3.3. Influence of migration ratio on similarity between anisotropic- and
clinical-CTV

The bootstrapped uncertainty of the median DSC between aniso
tropic CTVs made using patient-DTI and clinical-CTV was calculated to
be: Median (CI) 0.95 (0.93, 0.96), 0.94 (0.93, 0.95), 0.90 (0.89, 0.91),
0.86 (0.85, 0.88), 0.78 (0.76, 0.80) and 0.73 (0.71, 0.76) for migration
ratios 1, 2, 5, 10, 100 respectively. Comparing the CIs across migration
ratios, there is an overlap between 1 and 2 as well as 50 and 100
(Supplementary Table 3, Fig. 5). Given that no overlap is considered a
distinctive difference, increasing the migration ratio above 2 results in
distinctively different anisotropic CTVs compared to the clinical-CTVs.

4. Discussion

We conducted the first head-to-head comparison of multiple atlas-
DTI with patient-DTI, for the purpose of developing anisotropic CTVs.
Our results show that there was no significant difference between
the three atlases when compared to the patient-DTI. In addition, un-
der certain choices of the migration ratio parameter, the anisotropic
CTVs could be significantly different from the clinical-CTV. However,
each respective difference was statistically insignificant, indicating an
equivalence between the use of each DTI source.

Similarly to our study, Stretton et al. [17] reported a non-significant
difference between patient- and atlas-DTI for predicting the shape of
the tumor infiltration boundary. However, the results were based on
only 3 patients (2 low grade gliomas and 1 high grade glioma), which
does not encapsulate heterogeneity of the patient group. In addition,
patient data included only preoperative patient cases. Surgical inter-
vention may cause disruption of white matter bundles surrounding the
resection cavity. Therefore, our study provides a more comprehensive
validation of the use of atlas-DTI at the radiation treatment planning
stage.

The uncertainties introduced by substituting a patient-DTI with
an atlas-DTI can be considered small compared to other sources of
uncertainty in the CTV delineation process. For instance, Wee et al.
conducted an inter-observer variation study on CTV delineation for
GBM. They reported a mean DSC (range) of 0.78 (0.69-0.86) between
a calculated consensus- and an expert-contour delineated by a panel of
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Fig. 3. Feasibility of using an atlas-DTI in place of a patient-DTI.
Comparison of DSC between anisotropic CTVs using Atlas- and Patient-DTI across migrations ratios (1, 2, 5, 10, 50, 100) and atlas versions (HCP, IIT, MIITRA). The p-values for difference
comparisons are shown above. DSC: Dice Similarity Coefficient, DTI: Diffusion Tensor Imaging, HCP: Human Connectome Project, IIT: Illinois Institute of Technology, MIITRA: Multichannel
Illinois Institute of Technology & Rush university Aging .

Fig. 4. Similarity of the anisotropic CTVs and the clinical-CTV.
Comparison of DSC between anisotropic CTVs and clinical CTV across migrations ratios (1, 2, 5, 10, 50, 100) and DTI sources (HCP, IIT, MIITRA, MR). The p-values for difference
comparisons are show above. DSC: Dice Similarity Coefficient, DTI: Diffusion Tensor Imaging, HCP: Human Connectome Project, IIT: Illinois Institute of Technology, MIITRA: Multichannel
Illinois Institute of Technology & Rush university Aging, MR: Magnetic Resonance.
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Fig. 5. The influence of migration ratio on similarity between anisotropic CTV and the clinical-CTV.
Bootstrap uncertainty of median DSC on comparison of MR anisotropic CTVs versus clinical-CTVs, across migrations ratios (1, 2, 5, 10, 50, 100). DSC: Dice Similarity Coefficient, MR:
Magnetic Resonance, CTV: Clinical Target Volume.
15 radiation oncologists following European guidelines [38]. Although
a direct comparison with Wee et al. is not possible due to differing
sources of uncertainty, the error introduced by replacing a patient-
specific DTI with an atlas-DTI is small compared to other uncertainties
in the CTV delineation process. Interestingly, this suggests that an
approximate template of brain tissue microstructure is sufficient for
predicting tumor infiltration patterns, and any discrepancies between
atlas- and patient-DTI have little to no effect. This observation is
consistent for all three atlases considered, despite the differences of
developmental cohorts in size and age.

Our model converges to the clinical-CTV by choosing a migration
ratio equal to 1 under the condition that there are no anatomical
barriers in close proximity to the GTV. However, across all DTI sources,
the DSC values range from 0.81 to 0.98. In some cases, the clinical-CTV
overlapped with barriers, such as the ventricles as shown in Fig. 2. In
some patients, the CTV may deviate from the guidelines due to clinical
considerations. This places an upper limit on how close an automated
model-based CTV can be to the clinical-CTV. In addition, for a given
patient, the anisotropic CTV boundary was selected to be the same
volumetric size as the clinical CTV. Therefore, any overlap between the
clinical-CTV and a barrier structure will result in redistribution of the
corresponding anisotropic CTV to other tissues in the brain.

A direct comparison of migration ratios has not previously been
explored. The migration ratio determines the extent to which the
anisotropic CTV will deviate from the clinical-CTV, but it has no know
biological correlate. The precise threshold at which this deviation be-
comes significant is unclear. To give a guideline for relevant migration
ratios that generate substantially different CTVs, we calculated boot-
strap uncertainties on the median of the MR-based anisotropic CTVs.
The anisotropic CTV with a migration ratio of 1 serves as a reference
point for the reproducibility of the clinical-CTV, using the automated
method proposed in section 2.2. Our findings show that a migration
ratio of 10 is a conservative choice that results in a substantially
different CTV, while still retaining a large portion of the original CTV.
Interestingly, migration ratios of 50 and 100 provide somewhat similar
6 
volumes. This is most likely due to the volumetric size restriction
defined by the clinical-CTV. As the migration ratio increases, the expan-
sion model shifts volume from gray matter into white matter. However,
because the amount of gray matter is limited, this migration diminishes
at higher migration ratios, resulting in similar volumes. Therefore, the
range of relevant migration ratios in our dataset is limited to between
5 and 50.

We identified the following limitations for this study. Using DTI data
for estimating anisotropic CTV margins requires the transformation
of diffusion tensors to metric tensors for inclusion in the shortest
path algorithm. We can only determine this transformation up to a
constant [26]. This is a single center study and difference in DTI
scan sequences and MRI scanners could potentially have an influence.
We did not attempt to determine whether the differences between
atlas- and patient-DTI based CTVs were caused by microstructural
breakdowns in the white matter tracts due to tumor infiltration or by
inconsistencies between atlas- and patient-DTI. Having this informa-
tion available would provide a clearer understanding of the potential
improvements.

GBM is a challenging tumor to treat, and understanding its infiltra-
tion and recurrence patterns is crucial for developing more personalized
treatment strategies. Recent studies have explored the potential to
predict GBM infiltration in the peritumoral region, with promising
results [39–42]. This research could potentially support the use of
an anisotropic CTV by identifying high- and low-risk regions, offering
guidance for selecting a patient-specific migration ratio that effectively
covers high-risk areas while sparing low-risk ones. In our study, the
anisotropic CTV is constrained by the volume of the clinical CTV. How-
ever, with information about high-risk areas available, an oncologist
may choose to extend beyond these constraints, allowing for a larger
anisotropic CTV than would typically be accepted with a standard
15 mm isotropic expansion. Conversely, a more flexible CTV definition
could also enable an overall reduced volume while maintaining similar
recurrence coverage, to the current standard.

Currently, DTI plays little to no role in clinical practice of radiother-
apy treatment planning for glioblastoma due to a lack of supporting
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evidence. Our study demonstrates that using an atlas-DTI is a vi-
ble alternative to a patient-DTI. This approach enables retrospective
tudies of anisotropic CTVs across large cohorts, which could provide
he necessary evidence to support its integration into clinical prac-
ice. Furthermore, the atlas-DTI method has the potential to render
atient-specific DTI unnecessary for anisotropic CTV generation.

Our results show that the use of atlas DTI produces very similar
nisotropic CTV volumes compared to patient DTI. This suggests that
he use of atlas-DTI for the purpose of anisotropic CTV expansion is a
iable alternative to patient DTI.
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