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Abstract: In this paper, a new class of impulsive neural networks with fractional-like derivatives
is defined, and the practical stability properties of the solutions are investigated. The stability
analysis exploits a new type of Lyapunov-like functions and their derivatives. Furthermore,
the obtained results are applied to a bidirectional associative memory (BAM) neural network model
with fractional-like derivatives. Some new results for the introduced neural network models with
uncertain values of the parameters are also obtained.
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1. Introduction

Cellular neural network systems [1,2] and their various generalizations have attracted the
attention of the researchers due to their incredible opportunities for applications in areas such as
pattern recognition, associative memory, classification, parallel computation, as well as, their ability
to solve complex optimization problems. As such, neural network models have promising potential
for applications in numerous engineering tasks [3,4], including engineering design tasks [5]. It is also
observed that an efficient neural network’s training is related to entropy phenomena [6]. In addition,
in many cases, entropy is used to measure the complexity in a neural network architecture [6,7].

On the other hand, since impulsive phenomena may affect the neural network behavior,
some important and interesting results about different classes of impulsive neural networks have been
obtained. See, for example [8–15], and the references therein.

Recently, fractional calculus has become an emerging tool in numerous fields of science and
technology. The concept of fractional derivatives generalizes the classical definitions of integer-order
derivatives and integrals [16,17]. Due to the hereditary and memory characteristics of fractional
derivatives, many real world processes and phenomena are better described by fractional-order models,
such as system identification of thermal dynamics of buildings, entropy and information [18–21].
In addition, the dynamics, chaotic behavior, stability and synchronization of numerous fractional-order
neural network models have been investigated in the recent literature [22–25], including the behavior
of fractional impulsive neural networks [26–30]. Besides the most applicable Riemann-Liouville and
Caputo types of fractional derivatives, many new types of fractional derivatives were introduced by
the researchers. See, for example [31–35], and the references therein.

Despite the great opportunities for applications in modeling of real-world processes, the use of
all these derivatives leads to computational complexities. For example, the Riemann–Liouville and
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Caputo derivatives do not obey the Leibniz rule and chain rule. To overcome these difficulties, new
concepts has been proposed in [36–40]. Furthermore, important notes about some of the new concepts
are given, for example, in [41–45] and the references therein.

In our early paper [46], we introduced the notion of "fractional-like derivative“ (FLD) which
offers some computational simplifications related to FLDs of compositions of functions. Since then,
the interest of the researchers to the theory of equations with FLDs has begun. Some basic results
on the fundamental and qualitative theory of such equations has been established very recently. See,
for example [47–50] and some of the references therein.

However, the theory of impulsive equations with FLDs is still in a very initial stage. The first
results on impulsive equations with conformable derivatives and FLDs have been derived in [51–53],
where some generalizations of FLDs and integrals have been introduced. Due to the computational
convenience that offer generalized FLDs, the theory of such equations needs more developments.
Furthermore, the theory of impulsive systems with generalized FLDs has not been applied to real-world
models of diverse interest.

The first aim of the present research is to introduce a design of impulsive fractional-like neural
network models. The second contribution of our paper is to present efficient stability conditions to the
model under consideration. To this end, we investigate its practical stability behavior with respect
to manifolds.

It is well known that the stability properties of a neural network are essential for its performance.
Furthermore, in numerous cases the model can be unstable in the classical Lyapunov’s sense, but its
performance may be sufficient for the practical point of view. For such situations, when the dynamic
of systems contained within particular bounds during a fixed time interval, the researchers introduced
the notion of practical stability [54–57]. Due to the great opportunities for applications, the notion has
been considered for fractional-order systems [58,59]. For impulsive systems with FLDs, the concept
has been investigated only in the paper [52]. However, to the best of the authors’ knowledge, practical
stability results have not been derived for impulsive fractional-like neural network systems.

In addition, we will consider the practical stability properties of the designed neural network
model with FLDs with respect to manifolds [60–62]. Thus, our results are more general than stability
(practical stability) results for single solutions: zero solutions, equilibrium, periodic solutions, etc.
The case when the behavior of the neural network is affected by some uncertain parameters will also be
discussed. Indeed, considering parameters with uncertain values is very important for its qualitative
properties [63–65].

The rest of the paper is organized as follows. In Section 2, some main definitions and lemmas on
generalized FLDs and integrals are presented. We propose a design of an impulsive neural network
model with generalized FLDs in Section 3. Some preliminaries are also given. In Section 4, we apply
the elaborated in [52] definition of FLDs of piecewise continuous Lyapunov-type functions to derive
sufficient conditions for practical stability with respect to manifolds defined by functions. The obtained
results are also applied to an impulsive Hopfield fractional-like BAM neural network. In addition,
two examples are also presented. Section 5 is devoted to practical stability results for impulsive neural
networks with FLDs and uncertain parameters. Finally, the paper concludes in Section 6.

2. Generalized FLDs and Integrals

In this Section, we will state some main definitions and lemmas following [51–53].
Let R+ = [0, ∞), Rn be the n-dimensional Euclidean space, and let Ω ⊂ Rn be a bounded domain

that contains the origin.
For given t̃ ∈ R+ and 0 < q ≤ 1, we will consider a generalized qth−order fractional-like

derivative Dq
t̃ x(t) for a function x : [t̃, ∞)→ Rn defined as [52]

Dq
t̃ x(t) = lim

{
x(t + θ(t− t̃)1−q)− x(t)

θ
, θ → 0

}
, t > t̃.
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Let t0 ∈ R+, t0 < t1 < t2 · · · < tk < tk+1 < . . . and lim
k→∞

tk = ∞. According to [51–53]:

• if t̃ = t0, then Dq
t̃ (x(t)) has the form

Dq
t0

x(t) = lim
{

x(t + θ(t− t0)
1−q)− x(t)

θ
, θ → 0

}
which has been applied in systems without impulsive perturbations [36–39,46–50];

• if t̃ = 0, then Dq
t̃ (x(t)) has the form

Dq
0x(t) = lim

{
x(t + θt1−q)− x(t)

θ
, θ → 0

}
;

• if t̃ = tk for some k = 1, 2, . . . , then Dq
t̃ (x(t̃)) has the form

Dq
tk

x(tk) = lim
t→t+k
Dq

tk
x(t).

If the generalized fractional-like derivative Dq
t̃ x(t) of order q of a continuous function x(t) exists

at any point of an open interval of the type (t̃, b) for some b > t̃, t > t̃, t̃ ∈ R+, then we will say that
the function x(t) is q-differentiable on (t̃, b). The class of all q-differentiable on (t̃, b) functions will be
denoted by Cq((t̃, b),Rn).

Analogous to above, the generalized fractional-like integral of order 0 < q ≤ 1 with a lower limit
t̃, t̃ ≥ 0, of a function x : [t̃, ∞)→ Rn is defined by (see [52])

Iq
t̃ x(t) =

t∫
t̃

(s− t̃)q−1x(s)ds.

Throughout this paper, we will use the following properties of the generalized FLDs Dq
t̃ x(t), t > t̃

for some t̃ ∈ R+ [52].

Lemma 1. Let l(y(t)) : (t̃, ∞)→ R. If l(·) is differentiable with respect to y(t) and y(t) is q-differentiable on
(t̃, ∞), where 0 < q ≤ 1, then for any t ∈ R+, t 6= t̃ and y(t) 6= 0

Dq
t̃ l(y(t)) = l′(y(t))Dq

t̃ y(t),

where l′ is a partial derivative of l(·).

Lemma 2. Let the function x(t) : (t̃, ∞)→ R be q-differentiable for 0 < q ≤ 1. Then for all t > t̃

Iq
t̃ (D

q
t̃ x(t)) = x(t)− x(t̃).

Remark 1. For more results on FLDs and integrals we refer the reader to [36–39,46–50], and for results on the
generalized FLDs and integrals see [51–53].
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3. Impulsive Fractional-Like Neural Networks: Main Notions and Definitions

In this paper, we consider the next system of impulsive Hopfield fractional-like neural networks
defined as

Dq
tk

xi(t) = −
1

Ci(t)Ri(t)
xi(t) +

n

∑
j=1

αij(t) f j(xj(t)) + γi(t), t 6= tk, k = 0, 1, . . . ,

∆xi(tk) = xi(t+k )− xi(tk) = Iik(xi(tk)), k = 1, 2, . . . ,

(1)

where x(t) = col(x1(t), x2(t), . . . , xn(t)), x ∈ Ω, Ci, Ri ∈ Cq(R+, (0, ∞)), αij, γi ∈ Cq(R+,R), f j ∈
Cq(R,R), xi(t+k ) = lim

h→0+
xi(tk + h), xi(t−k ) = xi(tk), Iik ∈ C(R,R), i, j = 1, 2 . . . , n, n ≥ 2, k = 1, 2, . . . .

In the above impulsive fractional-like neural network model, xi(t) represents the state of the i−th
node at time t, n corresponds to the number of neurons in the neural network, the positive functions
Ci, Ri are, respectively, the capacitance and the resistance for the node i at time t, αij are the connection
weights, f j denotes the activation function which determines the output f j(xj(t)) of the jth unit at time
t, γi denotes the external bias of the node i at time t, and tk, k = 1, 2, ... are the moments of impulsive
perturbations and satisfy t0 < t1 < t2 · · · < tk < tk+1 < . . . , lim

k→∞
tk = ∞. The numbers xi(t−k ) and

xi(t+k ) are, respectively, the states of the ith node before and after an impulse perturbation at the
moment tk and the functions Iik represent the magnitudes of the impulsive changes of the states xi(t)
at the impulsive moments tk.

Remark 2. The designed impulsive fractional-like neural network model generalizes many existing integer-order
neural networks [1–4,8–15]. The main advantages of the proposed model are in (i) incorporating of the hereditary
and memory characteristics of fractional derivatives [26–30]; (ii) using the computational simplicity of the
generalized FLDs and integrals; (iii) taking into account the effects of some impulsive perturbations that can be
used as controls of the neural network’s performance.

Let x0 = col(x01, x02, . . . , x0n) ∈ Ω. We will denote by x(t) = x(t; t0, x0) the solution of the
fractional-like impulsive neural network system (1) that satisfies the initial condition

xi(t+0 ) = x0i, i = 1, 2, . . . , n. (2)

Following the theory of impulsive fractional-order neural network systems [27,30], and the new
theory of impulsive fractional-like systems [51–53], the solutions x(t) of the neural network models (1)
are piecewise continuous functions that have points of discontinuity of the first kind tk and are left
continuous at these moments. For such functions, the following identities are satisfied:

xi(t−k ) = xi(tk), xi(t+k ) = xi(tk) + Iik(xi(tk)), i = 1, 2, . . . , n, k = 1, 2, . . . .

All of these piecewise continuous functions formed the space PCq(R+,Rn).
Let h : [t0, ∞)×Ω → R be a continuous function. The next sets will be called h− mani f olds

defined by the function h:
Mt = {x ∈ Ω : h(t, x) = 0, t ∈ [t0, ∞)},

Mt(ε) = {x ∈ Ω : |h(t, x)| < ε, t ∈ [t0, ∞)}, ε > 0.

To guarantee that the solution x(t; t0, x0) of the initial value problem (IVP) (1)–(2) exists on [t0, ∞),
and for the future investigations we will need the following assumptions.

A1. The function h is continuous on [t0, ∞)×Ω and the sets Mt, Mt(ε) are (n− 1)-dimensional
manifolds in Rn.
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A2. Each solution x(t; t0, x0) of the IVP (1)-(2) satisfying

|h(t, x(t; t0, x0))| ≤ H < ∞

is defined on the interval [t0, ∞), H = const > 0.
A3. There exist constants Lj > 0 such that

| f j(u)− f j(v)| ≤ Lj|u− v|, f j(0) = 0

for all u, v ∈ R, j = 1, 2, . . . , n.
In this paper we will use the following definition for practical exponential stability of the neural

network system (1) with respect to manifolds defined by the function h given in [51].

Definition 1. The fractional-like impulsive system (1) is:
(a) (λ, A)-practically exponentially stable with respect to the function h, if given (λ, A) with 0 < λ < A

for any x0 ∈ Mt+0
(λ) we have

x(t; t0, x0) ∈ Mt(A + µ|h(t+0 , x0)|Eq(−κ, t− t0)), t ≥ t0 f or some t0 ∈ R+,

where 0 < q < 1, µ, κ > 0;
(b) (λ, A)-globally practically exponentially stable with respect to the function h, if (a) holds for Ω ≡ Rn.

Remark 3. The problems of exponential stability of integer-order neural networks have been investigated
by numerous authors [3,4,8,11–14]. Indeed, the concept of exponential stability is one of the the most
important qualitative concepts for such models because it guarantees the fast convergent rate [13]. The notion
of exponential stability has been generalized in [66] to this of Mittag–Leffler stability for fractional-order
systems. For Mittag–Leffler stability results of fractional neural networks see, for example [27,28,30] and the
bibliography therein. With the present research, we will complement the existing results and will present results
on (λ, A)-practical exponential stability for impulsive fractional-like neural network systems.

4. Practical Stability of Impulsive Fractional-Like Neural Networks

4.1. Main Practical Stability Results

In this Section, we will state our main practical exponential stability results. Since we consider
impulsive effects in the designed neural network model, we will use the following sets

Gk = (tk−1, tk)×Ω, k = 1, 2, . . . , G =
∞⋃

k=1

Gk,

and piecewise continuous auxiliary functions [8–15,26–30,52].
What follows is the definition of the class Vq

tk
of Lyapunov-like functions defined in [52] for any

tk ∈ R+, k = 0, 1, 2, . . . .

Definition 2. The function V ∈ Vq
tk

, if:

1. V is defined on G, V has non-negative values and V(t, 0) = 0 for t ≥ tk;
2. V is continuous in G, q−differentiable in t and locally Lipschitz continuous with respect to its second

argument on each of the sets Gk;
3. For each k = 0, 1, 2, . . . and x ∈ Ω, there exist the finite limits

V(t−k , x) = lim
t→tk
t<tk

V(t, x), V(t+k , x) = lim
t→tk
t>tk

V(t, x),
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and V(t−k , x) = V(tk, x).

For a function V ∈ Vq
tk

, t > tk, we define its the upper right fractional-like derivative as [52]:

+Dq
tk

V(t, x)

= lim sup
{

V(t + θ(t− tk)
1−q, x(t + θ(t− tk)

1−q; t, x))−V(t, x)
θ

, θ → 0+
}

. (3)

Let for simplicity denote by F(t, x) = (F1(t, x), F2(t, x), . . . , Fn(t, x)), where

Fi(t, x) = − 1
Ci(t)Ri(t)

xi(t) +
n

∑
j=1

αij(t) f j(xj(t)) + γi(t), i = 1, 2, . . . , n.

Then [46,52] the fractional-like derivative of the function V(t, x) with respect to the solution x(t)
of the IVP (1)–(2) is defined by

+Dq
tk

V(t, x)

= lim sup
{

V(t + θ(t− tk)
1−q, x + θ(t− tk)

1−qF(t, x))−V(t, x)
θ

, θ → 0+
}

. (4)

If V(t, x(t)) = V(x(t)), 0 < q ≤ 1, V is differentiable on x, and x(t) is q -differentiable on t for
t > tk, then

+Dq
tk

V(t, x) = V′(x(t)) Dq
tk

x(t),

where V′ is a partial derivative of the function V.
From (3) and (4) it follows

+Dq
tk

V(t, x(t; t0, x0)) =
+Dq

tk
V(t, x) |(1),

t > tk, k = 0, 1, 2, . . . .
We will also need the following result from [52].

Lemma 3. Assume that the function V ∈ Vq
tk

is such that for t ∈ [t0, ∞), x ∈ Ω,

V(t+k , x) ≤ V(tk, x), k = 1, 2, . . . ,

+Dq
tk

V(t, x) ≤ −κV(t, x) + g(t), t 6= tk, k = 0, 1, 2, . . . ,

where κ = const > 0, g ∈ Cq(R+,R+).
Then

V(t, x(t)) ≤ V(t+0 , x0)Eq(−κ, t− t0) +
∫ t

tk

Wq(t− tk, s− tk)g(s)
(s− tk)

1−q ds

+
k

∑
j=1

k

∏
l=k−j+1

Eq(−κ, tl − tl−1)
∫ tk−j+1

tk−j

Wq(t− tk, s− tk−j)g(s)
(s− tkj

)1−q ds, t ≥ t0,

where Wq(t− tk, s− tk) = Eq(−κ, t− tk)Eq(κ, s− tk) and Eq(ν, s) is the fractional-like exponential function
defined as [37,39]

Eq(ν, s) = exp
(

ν
sq

q

)
, ν ∈ R, s ∈ R+.

In what follows, for a bounded continuous function f defined on R+, we set

f = sup
t∈R+

f (t), f = inf
t∈R+

f (t).
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Theorem 1. Assume that 0 < λ < A are given, and:
1. Assumptions A1–A3 hold.
2. The models’ parameters Ci, Ri and αij, i, j = 1, 2, . . . , n, satisfy

min
1≤i≤n

1
CiRi

> max
1≤i≤n

(
Li

n

∑
j=1
|αji|

)

and κ∗ > 0 is such that

min
1≤i≤n

1
CiRi

− max
1≤i≤n

(
Li

n

∑
j=1
|αji|

)
≥ κ∗ > 0.

3. For t ≥ t0 the system’s parameters γi, i = 1, 2, . . . , n , satisfy

g(t) =
∫ ∞

t0

Wq(t− tk, s− tk)

(s− t0)1−q

n

∑
i=1
|γi(s)|ds

+
k

∑
j=1

k

∏
l=k−j+1

Eq(−κ∗, tl − tl−1)
∫ tk−j+1

tk−j

Wq(t− tk, s− tk−j)

(s− tkj
)1−q

n

∑
i=1
|γi(s)|ds < ∞.

4. The functions Ik = diag(I1k, I2k, . . . , Ink) are such that

Iik(xi(tk)) = −γikxi(tk), 0 < γik < 2, i = 1, 2, . . . n, k = 1, 2, . . .

and x ∈ Ω implies x + Ik(x) ∈ Ω for k = 1, 2, . . . .
5. The function h(t, x) satisfies

|h(t, x)| <
n

∑
i=1
|xi(t)| ≤ Λ(H)|h(t, x)|, t ∈ [t0, ∞),

where Λ(H) ≥ 1 exists for any 0 < H ≤ ∞.
Then the neural network system (1) is (λ, A)-practically exponentially stable with respect to the function h.

Proof. Let
x(t) = (x1(t, x2(t), . . . , xn(t))T

be a solution of (1) for x0 ∈ Ω.
Consider the Lyapunov-like function

V(x(t)) =
n

∑
i=1
|xi(t)|.

We can easily check that V ∈ Vq
tk

. For tk > t0 ≥ 0, k = 1, 2, . . . , from condition 4 of Theorem 1 we
have that x(tk) ∈ Ω implies x(t+k ) ∈ Ω for k = 1, 2, . . . , and

V(x(t+k )) =
n

∑
i=1
|xi(t+k )| =

n

∑
i=1
|(1− γik)xi(tk)| ≤ V(x(tk)). (5)

From A3 for t ∈ (tk, tk+1], k = 0, 1, 2, . . . , we get

+Dq
tk

V(x(t)) ≤ −
n

∑
i=1

1
Ci(t)Ri(t)

|xi(t)|+
n

∑
i=1

n

∑
j=1
|αij(t)|| f j(xj(t))|+

n

∑
i=1
|γi(t)|
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≤ −
n

∑
i=1

1
CiRi

|xi(t)|+
n

∑
i=1

n

∑
j=1
|αij(t)|Lj|xj(t)|+

n

∑
i=1
|γi(t)|

≤ − min
1≤i≤n

1
CiRi

n

∑
i=1
|xi(t)|+ max

1≤i≤n

(
Li

n

∑
j=1
|αji|

)
n

∑
i=1
|xi(t)|+

n

∑
i=1
|γi(t)|

= −(κ1 − κ2)V(x(t)) +
n

∑
i=1
|γi(t)|,

where

κ1 = min
1≤i≤n

1
CiRi

, κ2 = max
1≤i≤n

(
Li

n

∑
j=1
|αji|

)
.

From condition 2 of Theorem 1, it follows that there exits a real number κ∗ > 0 such that

κ1 − κ2 ≥ κ∗

and for t ∈ (tk, tk+1], k = 0, 1, 2, . . . , along (1) we obtain

+Dq
tk

V(x(t)) ≤ −κ∗V(x(t)) +
n

∑
i=1
|γi(t)|. (6)

From the last inequality, (5) and Lemma 1 we get

V(x(t)) ≤ V(x(t+0 ))Eq(−κ∗, t− t0) +
∫ ∞

t0

Wq(t− tk, s− tk)

(s− t0)1−q

n

∑
i=1
|γi(s)|ds

+
k

∑
j=1

k

∏
l=k−j+1

Eq(−κ∗, tl − tl−1)
∫ tk−j+1

tk−j

Wq(t− tk, s− tk−j)

(s− tkj
)1−q

n

∑
i=1
|γi(s)|ds. (7)

Let x0 ∈ Mt+0
(λ), i.e., |h(t+0 , x0)| < λ . Then from condition 3 of Theorem 3 it follows that can

choose A so that g(t) < A.
From (7) and condition 5 of Theorem 1 we obtain

|h(t, x(t; t0, x0))| < V(x(t; t0, x0)) ≤ A + Λ(H)|h(t+0 , x0)|Eq(−κ∗, t− t0), t ≥ t0.

Therefore,
x(t; t0, x0) ∈ Mt

(
A + Λ(H)|h(t+0 , x0)|Eq(−κ∗, t− t0)

)
for t ≥ t0, i.e., the system (1) is (λ, A)-practically exponentially stable with respect to the function
h.

Remark 4. If the assumptions of Theorem 1 hold globally on Rn, i.e., if Ω ≡ Rn, then the system (1) is
(λ, A)-globally practically exponentially stable with respect to the function h. Note that, in this case the
condition x ∈ Ω implies x + Ik(x) ∈ Ω for k = 1, 2, . . . is obvious.

Remark 5. Theorem 1 offers sufficient conditions for practical exponential stability (global practical exponential
stability) with respect to a function h for the designed fractional-like impulsive neural network model. Exponential
stability results for single solutions of the model (1) (equilibrium, zero solution, periodic solution) can be obtained
as corollaries for particular choices of the function h. For example, in the case when h(t, x) = ||x − x∗||,
where x∗ is a single solution of (1) and ||.|| is the norm in Rn, our results extend and improve the existing
exponential stability results for integer-order neural networks [3,4,8,11–14].
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Remark 6. Our results also complement the existing Mittag–Leffler stability results for fractional neural
networks [27,28,30]. The key features of FLDs provide less complicated from the computational aspects criteria.
Thus, the new results are more appropriate for the numerous applications of neural network models with
derivatives of non integer order.

The new exponential stability results proved in Theorem 1 can be useful for various classes of
fractional-like neural network models. Next, we will apply the obtained criteria to study the practical
stability properties of following system of impulsive Hopfield fractional-like bidirectional associative
memory (BAM) neural networks:

Dq
tk

yi(t) = − 1
Cy

i Ry
i
yi(t) +

n1

∑
j=1

wji f z
j (zj(t)) + γ

y
i (t),

Dq
tk

zj(t) = − 1
Cz

j Rz
j
zj(t) +

n2

∑
i=1

hijg
y
i (yi(t)) + γz

j (t), t 6= tk, k = 0, 1, 2, . . . ,

∆yi(tk) = Qikyi(tk),

∆zj(tk) = Tjkzj(tk), k = 1, 2, . . . ,

(8)

where t0 ∈ R+, t0 < t1 < t2, . . . , j = 1, 2, . . . , n1, i = 1, 2, . . . , n2, n = n1 + n2, xi(t) and yj(t)
correspond to the states of the ith unit and jth unit, respectively, at time t, Cy

i , Ry
i , Cz

i , Rz
i are positive

constants, the real constants wji, hij are the connection weights, f z
j , gy

i ∈ Cq[R,R] are the activation

functions; γ
y
i , γz

j ∈ Cq[R+,R] denote external inputs at time t, and the constants Qik, Tjk determine the
abrupt changes of the states at the impulsive moments tk.

Note that different types of BAM neural networks of integer order have been intensively
investigated due to the great opportunities for their application in many fields such as pattern
recognition and automatic control [11,12]. Results on fractional BAM neural network models with
Caputo fractional derivatives have been also published in the recent literature. See, for example [27]
and the references therein. In this Section, we will extend the existing results to the fractional-like case.

Let t0 ∈ R+ and y0 ∈ Rn2 , z0 ∈ Rn1 . Denote by

(y(t), z(t))T = (y1(t), . . . , yn2(t), z1(t), . . . , zn1(t))
T ∈ Rn

the solution of system (8) satisfying the initial conditions:{
y(t+0 ; t0, y0) = y0,
z(t+0 ; t0, z0) = z0.

We introduce the following conditions:
A4. There exist constants Lz

j > 0 and My
i > 0 such that

| f z
j (u)− f z

j (v)| ≤ Lz
j |u− v|, f z

j (0) = 0, |gy
i (u)− gy

i (v)| ≤ My
i |u− v|, gy

i (0) = 0

for all u, v ∈ R, j = 1, 2, . . . , n1, i = 1, 2, . . . , n2.
A5. The constants Qik and Tjk are such that

−2 < Qik < 0, −2 < Tjk < 0

for j = 1, 2, . . . , n1, i = 1, 2, . . . , n2, k = 1, 2, . . . .
The next result follows directly from Theorem 1.
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Theorem 2. Assume that 0 < λ < A are given, and:
1. Assumptions A1, A2, A4, A5 hold.
2. For j = 1, 2, . . . , n1, i = 1, 2, . . . , n2 it follows

max
1≤i≤n2

(
My

i

n1

∑
j=1
|hij|

)
< min

1≤i≤n2

1
Cy

i Ry
i

, max
1≤j≤n1

(
Lz

j

n2

∑
i=1
|wji|

)
< min

1≤j≤n1

1
Cz

j Rz
j

and κ∗ is such that

0 < κ∗ ≤ min

{
min

1≤i≤n2

1
Cy

i Ry
i
− max

1≤i≤n2

(
My

i

n1

∑
j=1
|hij|

)
, min

1≤j≤n1

1
Cz

j Rz
j
− max

1≤j≤n1

(
Lz

j

n2

∑
i=1
|wji|

)}
.

3. For t ∈ [t0, ∞) we have

G(t) =
∫ ∞

t0

Wq(t− tk, s− tk)

(s− t0)1−q

(
n2

∑
i=1
|γy

i (s)|+
n1

∑
j=1
|γz

j (s)|
)

ds

+
k

∑
j=1

k

∏
l=k−j+1

Eq(−κ∗, tl − tl−1)
∫ tk−j+1

tk−j

Wq(t− tk, s− tk−j)

(s− tkj
)1−q

(
n2

∑
i=1
|γy

i (s)|+
n1

∑
j=1
|γz

j (s)|
)

ds < ∞;

4. For the function h(t, y, z) we have

|h(t, y, z)| ≤
n1

∑
i=1
|zi(t)|+

n2

∑
j=1
|yj(t)| ≤ Λ(H)|h(t, y, z)|, t ∈ [t0, ∞),

where Λ(H) ≥ 1 exists for any 0 < H ≤ ∞.
Then (8) is (λ, A)-globally practically exponentially stable with respect to the function h.

Proof. The proof of Theorem 2 follows the steps in the proof of Theorem 1. In this case we can use the
Lyapunov’s function

V(y(t), z(t)) =
n1

∑
i=1
|zi(t)|+

n2

∑
j=1
|yj(t)|.

Then, inequalities in the form (5) follow from the condition A5 and instead of (7), from condition
1 of Theorem 2, we get

+Dq
tk

V(y(t), z(t)) ≤
n1

∑
j=1

( n2

∑
i=1
|wji|Lz

j −
1

Cz
j Rz

j

)
|zj(t)|+

n2

∑
i=1

( n1

∑
j=1
|hij|M

y
i −

1
Cy

i Ry
i

)
|yi(t)|

+
n1

∑
j=1
|γz

j (t)|+
n2

∑
i=1
|γy

i (t)|.

Condition 2 of Theorem 2 implies the existence of a positive number κ∗ such that

κ∗ ≤ min

{
min

1≤i≤n2

1
Cy

i Ry
i
− max

1≤i≤n2

(
My

i

n1

∑
j=1
|hij|

)
, min

1≤j≤n1

1
Cz

j Rz
j
− max

1≤j≤n1

(
Lz

j

n2

∑
i=1
|wji|

)}
,

and, hence
+Dq

tk
V(y(t), z(t)) ≤ −κ∗V(y(t), z(t)) + G(t).

The proof is completed by applying conditions 3 and 4 of Theorem 2.
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4.2. Examples

Example 1. Consider the following 2-D impulsive fractional-like Hopfield neural network model

Dq
tk

xi(t) = −
1

Ci(t)Ri(t)
xi(t) +

2

∑
j=1

αij(t) f j(xj(t)) + γi(t), t 6= tk, k = 0, 1, . . . ,

∆x(tk) =

(
− 3

4 0
0 − 2

3

)
x(tk), k = 1, 2, . . . ,

(9)

where i = 1, 2, t0 = 0,

x(t) =

 x1(t)

x2(t)

 , γ1(t) = γ2(t) = 0, C1 = e−t/4, C2 = e−t/3,

R1 = R2 = 1, f j(xj) =
|xj + 1| − |xj − 1|

2
, j = 1, 2,

α11(t) = 0.3 + sin(t), α12(t) = 0.1− 0.6 cos(t)− 0.4 sin t,

α21(t) = 0.3 cos(t) + 0.7, α22(t) = 0.8− 0.3 cos(t) + 0.2 sin(t),

0 < t1 < t2 < . . . and tk → ∞ as k→ ∞.
Since

α11 = 1.3, α12 = 1.1, α21 = 1, α22 = 1.3,

C1 =
1
4

, C1 =
1
3

, R1 = R2 = 1,

then condition 2 of Theorem 1 is satisfied and 0 < κ∗ ≤ 0.6.
Also, for ∑n

i=1 |γi(t)| = 0, we can choose 0 < λ < A so that g(t) < A.
In addition, conditions 4 of Theorem 1 is satisfied, since

0 < γ1k =
3
4
< 2, 0 < γ2k =

2
3
< 2, k = 1, 2, . . . .

Therefore, according to Theorem 1, the impulsive fractional-like neural network system (9) is (λ, A)-globally
practically exponentially stable with respect to the function h(x1, x2) = |x1|+ |x2|. The global exponentially
stable behavior is shown in Figure 1 for λ = 5, A = 9.

x

t

1 x

t

2

(a) (b)

Figure 1. The (λ, A)-global exponentially stable behavior of the fractional-like neural network model
(9) with respect to the function h = |x1|+ |x2| for λ = 5, A = 9. (a) Behavior of the state variable x1(t);
(b) Behavior of the state variable x2(t).
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Example 2. Consider the following impulsive BAM fractional-like Hopfield neural network model

Dq
tk

yi(t) = − 1
Cy

i Ry
i
yi(t) +

2

∑
j=1

wji f z
j (zj(t)) + γ

y
i (t),

Dq
tk

zj(t) = − 1
Cz

j Rz
j
zj(t) +

2

∑
i=1

hijg
y
i (yi(t)) + γz

j (t), t 6= tk, k = 0, 1, 2, . . . ,

∆y1(tk) = Q1k(y1(tk)− 2), ∆y2(tk) = Q2k(y2(tk)− 1),
∆z1(tk) = T1k(z1(tk)− 2), ∆z2(tk) = T2k(z2(tk)− 3), k = 1, 2, . . . ,

(10)

where i, j = 1, 2, t0 = 0, γ
y
1(t) = 2.2, γ

y
2(t) = 3.6, γz

1(t) = γz
2(t) = 2.8,

y(t) =

 y1(t)

y2(t)

 , z(t) =

 z1(t)

z2(t)

 , Cy
1 =

1
2

, Cy
2 =

1
3

, Cz
1 =

1
5

, Cz
2 =

1
4

,

Ry
1 =

4
3

, Ry
2 =

3
4

, Rz
1 =

5
2

, Rz
2 = 4, f z

j (zj) =
|zj + 1| − |zj − 1|

2
, j = 1, 2,

gy
i (yi) =

|yi + 1| − |yi − 1|
2

, i = 1, 2, w11 = 0.3, w12(t) = 0.6, w21 = 0.5, w22(t) = −0.2,

h11 = 0.7, w12(t) = 0.5, w21 = 0.3, w22(t) = −0.1, Qik = −
(

1 +
1
2i

cos(2k3)
)

,

Tjk = −
(

1 +
2
5j

sin(1 + k)
)

, i, j = 1, 2, k = 1, 2, . . . , 0 < t1 < t2 < . . .

and tk → ∞ as k→ ∞.
We can easily find that the neural network system (10) has an equilibrium

(y∗, z∗)T = (y∗1 , y∗2 , z∗1 , z∗2)
T = (2, 1, 2, 3)T . (11)

Set ȳi = yi − y∗i , z̄j = zj − z∗j , i, j = 1, 2. Then



Dq
tk

ȳi(t) = − 1
Cy

i Ry
i
ȳi(t) +

2

∑
j=1

wji
(

f z
j (zj(t))− f z

j (z
∗
j )
)
,

Dq
tk

z̄j(t) = − 1
Cz

j Rz
j
z̄j(t) +

2

∑
i=1

hij
(

gy
i (yi(t))− gy

i (y
∗
i )
)
, t 6= tk, k = 0, 1, 2, . . . ,

∆ȳ1(tk) = Q1k ȳ1(tk), ∆ȳ2(tk) = Q2k ȳ2(tk),
∆z̄1(tk) = T1k z̄1(tk), ∆z̄2(tk) = T2k z̄2(tk), k = 1, 2, . . . .

(12)

For the system (12) all conditions of Theorem 2 are satisfied. Indeed, we have that Lz
j = My

i = 1, i, j = 1, 2,

1.2 = max
1≤i≤2

(
My

i

2

∑
j=1
|hij|

)
< min

1≤i≤2

1
Cy

i Ry
i
= 1.5,

0.8 = max
1≤j≤2

(
Lz

j

2

∑
i=1
|wji|

)
< min

1≤j≤2

1
Cz

j Rz
j
= 1,

−2 < Qik < 0, −2 < Tjk < 0

for i, j = 1, 2, k = 1, 2, . . . and 0 < κ∗ ≤ 0.2.
Hence, the fractional-like impulsive BAM neural network system (10) is (λ, A)-globally

practically exponentially stable with respect to the function h(y1, y2, z1, z2) =
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√
(y1 − y∗1)

2 + (y2 − y∗2)
2 + (z1 − z∗1)

2 + (z2 − z∗2)
2. The global exponentially stable behavior is shown in

Figure 2 for λ = 8, A = 11.

y

t

1

2

y

t

2

1

z

t

1

2

z

t

2

3

(a) (b)

(c) (d)

Figure 2. The (λ, A)-global exponentially stable behavior of model (10) with respect to the function

h(y1, y2, z1, z2) =
√
(y1 − y∗1)

2 + (y2 − y∗2)
2 + (z1 − z∗1)

2 + (z2 − z∗2)
2 for λ = 8, A = 11. (a) Behavior

of the state variable y1(t); (b) Behavior of the state variable y2(t); (c) Behavior of the state variable
z1(t); (d) Behavior of the state variable z2(t).

5. Impulsive Fractional-Like Neural Networks with Uncertain Parameters

In this Section, we will consider an impulsive neural network system with FLDs and uncertain
parameters given by

Dq
tk

xi(t) = −
(

1
Ci(t)Ri(t)

+ ãi(t)

)
xi(t)

+
n

∑
j=1

(
αij(t) + α̃ij(t)

)
f j(xj(t)) + γi(t) + γ̃i(t), t 6= tk, k = 0, 1, . . . ,

∆xi(tk) =
(
− γik + P̃ik

)
xi(tk), k = 1, 2, . . . ,

(13)

where the functions ãi ∈ Cq[R+, (0, ∞)], α̃ij, γ̃i ∈ Cq[R+,R], i, j = 1, 2, . . . , n, k = 1, 2, . . . and constants
P̃ik, i = 1, 2, . . . , n, k = 1, 2, . . . , represent the uncertainty of the system [63]. In the case when all
of these functions and constants are zeros the system (13) will be reduced to the “nominal system”
(1). [63–65].

Definition 3. The system (1) is called (λ, A)-practically robustly exponentially stable with respect to the
function h if for given (λ, A) with 0 < λ < A, t0 ∈ R+, x0 ∈ Mt+0

(λ) and for any ãi, α̃ij, γ̃i, P̃ik, i, j =
1, 2, . . . , n, k = 1, 2, . . . , the system (13) is (λ, A)-practically exponentially stable with respect to the function h.

Using Theorem 1, we can prove the next result.
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Theorem 3. Assume that:
1. Conditions of Theorem 1 hold.
2. For i, j = 1, 2, . . . , n the functions γ̃i(t), ãi(t) and α̃ij(t) are bounded for t ∈ [t0, ∞),

min
1≤i≤n

(
1

CiRi
+ ãi

)
> max

1≤i≤n

(
Li

n

∑
j=1

(|αji|+ |α̃ji|)
)

,

κ∗ > 0 is such that

min
1≤i≤n

(
1

CiRi
+ ãi

)
− max

1≤i≤n

(
Li

n

∑
j=1

(|αji|+ |α̃ji|)
)
≥ κ∗ > 0,

and ∫ ∞

t0

Wq(t− tk, s− tk)

(s− t0)1−q

n

∑
i=1

(
|γi(s)|+ |γ̃i(s)|

)
ds

+
k

∑
j=1

k

∏
l=k−j+1

Eq(−κ∗, tl − tl−1)

∫ tk−j+1

tk−j

Wq(t− tk, s− tk−j)

(s− tkj
)1−q

n

∑
i=1

(
|γi(s)|+ |γ̃i(s)|

)
ds < ∞.

3. The unknown constants P̃ik are bounded such that 0 < P̃ik < 1− γik, i = 1, 2, . . . , n, k = 1, 2, . . . .
Then the system (1) is (λ, A)- practically robustly exponentially stable with respect to the function h.

Example 3. Consider the following 2-D uncertain impulsive fractional-like Hopfield neural network model

Dq
tk

xi(t) = −
(

1
Ci(t)Ri(t)

+ ãi(t)

)
xi(t)

+
2

∑
j=1

(
αij(t) + α̃ij(t)

)
f j(xj(t)) + γi(t) + γ̃i(t), t 6= tk, k = 0, 1, . . . ,

∆x(tk) =

(
− 3

4 + P̃1k 0
0 − 2

3 + P̃2k

)
x(tk), k = 1, 2, . . . ,

(14)

where i = 1, 2, t0 = 0, for which system (9) is the nominal system, and ãi ∈ Cq[R+, (0, ∞)], α̃ij, γ̃i ∈
Cq[R+,R], i, j = 1, 2, k = 1, 2, . . . and constants P̃ik, i = 1, 2, k = 1, 2, . . . are the uncertain parameters.

Then we have that, if all uncertain terms are bounded, and satisfied all conditions of Theorem 3,
the system (9) is (λ, A)- globally practically robustly exponentially stable with respect to the function
h(x1, x2) = |x1|+ |x2|.

Note that, if some of the uncertain terms is unbounded, Theorem 3 cannot guarantee the robust practical
stability of the fractional-like model (9). For example, for P̃2k = 2, k = 1, 2, . . . , the unstable behavior of the
model (14) is shown in Figure 3 for λ = 5, A = 9.
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x

t

2

Figure 3. The unstable behavior of the state variable x2(t) of (14) for P̃2k = 2, k = 1, 2, . . . and λ = 5,
A = 9.

6. Conclusions

In this paper a new class of impulsive neural network systems with FLDs has been proposed.
Practical stability analysis is performed and efficient sufficient conditions are established. With this
research we extend the results on impulsive neural network Hopfield-type models to the fractional-like
case. In addition, the obtained results are applied to neural networks with uncertain valued of
parameters. Since the use of FLDs overcome some difficulties in evaluating fractional derivatives the
obtained results are more appropriate for applications.
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