Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Poly[[tetraaquabis(μ-hydroxyacetato$\left.\kappa^{4} O^{1}, O^{2}: O^{1}, O^{1^{\prime}}\right)$ - μ_{2}-sulfato- $\kappa^{2} O: O^{\prime}$ dicadmium(II)] monohydrate]

Urszula Rychlewska, ${ }^{\text {a* }}$ Beata Warzajtis, ${ }^{a}$ Mirjana Dj. Dimitrijević, ${ }^{\text {b }}$ Nenad S. Draskovic ${ }^{\text {b }}$ and Miloš I. Djuran ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland, and ${ }^{\mathbf{b}}$ Department of Chemistry, Faculty of Science, University of Kragujevac, R. Domanovića 12, PO Box 60, 34000 Kragujevac, Serbia
Correspondence e-mail: urszular@amu.edu.pl

Received 28 April 2009; accepted 7 May 2009
Key indicators: single-crystal X-ray study; $T=295 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.015 ; w R$ factor $=0.038$; data-to-parameter ratio $=16.8$.

The title compound, $\left\{\left[\mathrm{Cd}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{3}\right)_{2}\left(\mathrm{SO}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, was obtained unintentionally in a transmetallation reaction. The crystal structure contains a two-dimensional metalorganic framework based on $\mathrm{Cd}^{\mathrm{II}}-(\mu$-hydroxyacetato$\left.\kappa^{4} O^{1}, O^{2}: O^{1}, O^{1^{\prime}}\right)-\mathrm{Cd}^{\text {II }}$ zigzag chains joined together by bridging SO_{4} anions. The resulting layers are shifted with respect to each other and are stacked along the c axis. Their construction is supported by hydrogen bonds between water molecules and between water molecules and carboxylate or sulfate groups. Neighbouring layers are bridged by hydrogen bonds between the hydroxyl substituent and a sulfate anion. The sulfate anion and solvent water molecule are located on twofold axes. The results demonstrate that care must be taken when preparing ethylenediaminetetraacetic acid-type complexes by transmetallation, in order to avoid precipitation of metal complexes with the α-hydroxyacetate ligand.

Related literature

For examples of the successful application of transmetallation reactions in the synthesis of metal(II) complexes with hexadentate 1,3-propanediaminetetraacetate and 1,4-butanediaminetetraacetate ligands, see: Radanović et al. (2003, 2004, 2007); Rychlewska et al. $(2000,2005,2007)$.

Crystal data

$\left[\mathrm{Cd}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{3}\right)_{2}\left(\mathrm{SO}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	$V=1529.34(5) \AA^{3}$
$M_{r}=561.03$	$Z=4$
Monoclinic, $C 2 / c$	Mo $K \alpha$ radiation
$a=13.5750(3) \AA$	$\mu=2.99 \mathrm{~mm}^{-1}$
$b=8.5777(1)$	$T=295 \mathrm{~K}$
$c=13.7734(3) \AA$	$0.30 \times 0.30 \times 0.20 \mathrm{~mm}$

$\beta=107.528(2)^{\circ}$

8842 measured reflections
Kuma KM4 CCD κ-geometry diffractometer
Absorption correction: multi-scan
(CrysAlis RED; Oxford 1710 independent reflections 1602 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.018$

Diffraction, 2007)
$T_{\text {min }}=0.388, T_{\text {max }}=0.550$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.015$	102 parameters
$w R\left(F^{2}\right)=0.038$	H -atom parameters constrained
$S=1.13$	$\Delta \rho_{\max }=0.46 \mathrm{e}^{-3}$
1710 reflections	$\Delta \rho_{\min }=-0.31 \mathrm{e}^{-3}$

Table 1
Selected bond lengths (\AA).

$\mathrm{Cd} 1-\mathrm{O} 1$	$2.3584(14)$	$\mathrm{Cd} 1-\mathrm{O} 2 W$	$2.3245(14)$
$\mathrm{Cd} 1-\mathrm{O} 2$	$2.3013(14)$	$\mathrm{Cd} 1-\mathrm{O} 2^{\mathrm{i}}$	$2.5937(14)$
$\mathrm{Cd} 1-\mathrm{O} 4$	$2.2386(16)$	$\mathrm{Cd} 1-\mathrm{O} 3^{\mathrm{i}}$	$2.3379(17)$
$\mathrm{Cd} 1-\mathrm{O} 1 W$	$2.2731(15)$		
Symmetry code: (i) $-x+\frac{1}{2}, y-\frac{1}{2},-z+\frac{1}{2}$			

Table 2
Hydrogen-bond geometry $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 W-\mathrm{H} 1 W \cdots \mathrm{O} 2 W^{\text {ii }}$	0.85	1.94	2.784 (2)	170
$\mathrm{O} 1 W-\mathrm{H} 2 \mathrm{w} \cdots \mathrm{O} 3^{\text {iii }}$	0.85	1.88	2.723 (2)	172
$\mathrm{O} 2 W-\mathrm{H} 3 W \cdots \mathrm{O} 3 W$	0.85	1.88	2.720 (2)	172
$\mathrm{O} 2 W-\mathrm{H} 4 W \cdots \mathrm{O}^{\text {i }}$	0.85	1.82	2.648 (2)	162
$\mathrm{O} 1-\mathrm{H} 1 O \cdots \mathrm{O}^{\text {iv }}$	0.85	1.81	2.659 (2)	175
$\mathrm{O} 3 W-\mathrm{H} 5 W \cdots \mathrm{O}^{\text {v }}$	0.85	2.25	2.813 (3)	124

Symmetry codes: (i) $-x+\frac{1}{2}, y-\frac{1}{2},-z+\frac{1}{2}$; (ii) $-x+\frac{1}{2},-y+\frac{3}{2},-z$; (iii) $x, y-1, z$; (iv) $x,-y+2, z-\frac{1}{2}$; (v) $x+\frac{1}{2}, y+\frac{1}{2}, z$.

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1989) and Mercury (Bruno et al., 2002); software used to prepare material for publication: SHELXL97.

This work was funded in part by the Ministry of Science and Technological Development of the Republic of Serbia (Project No. 142008). The authors are grateful to Dr Dušanka D. Radanović (Institute of Chemistry, Technology and Metallurgy, University of Belgrade) for her valuable suggestions.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2209).

References

Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. \& Taylor, R. (2002). Acta Cryst. B58, 389-397.
Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
Radanović, D. D., Rychlewska, U., Djuran, M. I., Drašković, N. S., Vasojević, M. M., Hodžić, I. M. \& Radanović, D. J. (2003). Polyhedron, 22, 2745-2753.

Radanović, D. D., Rychlewska, U., Djuran, M. I., Warżajtis, B., Drašković, N. S. \& Gurešić, D. M. (2004). Polyhedron, 23, 2183-2192.
Radanović, D. D., Rychlewska, U., Warżajtis, B., Cvijović, M. S., Dimitrijević, M. Dj. \& Djuran, M. I. (2007). Polyhedron, 26, 4799-4808.

Rychlewska, U., Gurešić, D. M., Warżajtis, B., Radanović, D. D. \& Djuran, M. I. (2005). Polyhedron, 24, 2009-2016.

Rychlewska, U., Radanović, D. D., Jevtović, V. S. \& Radanović, D. J. (2000). Polyhedron, 19, 1-5.
Rychlewska, U., Warżajtis, B., Cvetić, D., Radanović, D. D., Gurešić, D. M. \& Djuran, M. I. (2007). Polyhedron, 26, 1717-1724.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Siemens (1989). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

supplementary materials

Poly[[tetraaquabis $\left(\mu_{\text {-hydroxyacetato- }} \boldsymbol{K}^{4} O^{1}, O^{2}: O^{1}, O^{1}\right.$) - μ_{2}-sulfato- $\kappa^{2} O: O^{\prime}$-dicadmium(II)] monohydrate]

U. Rychlewska, B. Warzajtis, M. D. Dimitrijevic, N. S. Draskovic and M. I. Djuran

Comment

Research concerning metal-organic frameworks (MOF) has recently become important due to their potential application in a number of areas, including gas storage and catalysis. Prominent in this class of materials are frameworks that involve α-hydroxycarboxylate ligands spanning network nodes. We have recently obtained one such MOF by serendipity, when trying to synthesize cadmium(II) homometallic complex with 1,4-bdta ligand (1,4-bdta stands for 1,4-butanediaminetetraactetate) by the process of transmetallation. So far we have successfully used this strategy for obtaining M (II) complexes with both 1,3-pdta (1,3-propanediaminetetraacetate) (Rychlewska et al., 2000; Radanović et al., 2003; Radanović et al., 2004; Rychlewska et al., 2005, 2007) and 1,4-bdta ligands (Radanović et al., 2007). In this procedure, barium(II) cations, forming the homometallic barium 1,3-pdta or 1,4-bdta complex, are being exchanged by much smaller in size metal(II) cations. At the very first step of this reaction we synthesize the ligands by reacting 1,3-propanediamine (or 1,4-butanediamine) with sodium chloracetate. It turned out that, when trying to synthesize 1,4-bdta ligand, we have obtained, in the reaction mixture, besides the expected H_{4}-1,4-bdta, some amount of α-hydroxycarboxylic acid. Most probably, this α-hydroxycarboxylic acid has originated from the chloracetic acid when heated at $\mathrm{pH}>10$. Consequent addition of BaCl_{2} to the solution resulted in formation of two types of barium(II) salts, one formed by $\mathrm{H}_{4}-1,4$-bdta and the other by $\mathrm{HOCH}_{2} \mathrm{COOH}$. An attempt to exchange barium(II) by cadmium(II) cations by addition of CdSO_{4} resulted in percipitation of two-dimensional homometallic MOF formed by $\mathrm{Cd}^{\text {II }}$ cations, hydroxyacetate and sulfate anions, instead of the expected $\mathrm{Cd}{ }^{\text {II }}$ 1,4-bdta complex. This has been unequivocally established by the X-ray crystal structure analysis, the results of which are reported in this paper. We next attempted to verify this hypothetical synthetic route by synthesizing the very same $\mathrm{Cd}^{\text {II }}$ complex starting from $\left(\mathrm{HOCH}_{2} \mathrm{COO}\right)_{2} \mathrm{Ba}$ salt. For both samples we have performed elemental microanalyses and NMR measurements which confirmed their identity.

In the crystal the $\mathrm{Cd}^{\mathrm{II}}$ nodes bind together by a singly deprotonated hydroxyacetate and doubly deprotonated sulfate linkers. The hydroxyacetate acts as a tetradentate ligand with α-hydroxyacetate group $\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 2$ acting as a bidentate chelate to Cd 1 , and carboxylate group $\mathrm{O} 2-\mathrm{C} 2-\mathrm{O} 3$ acting as a bidentate chelate to Cd 1 at $1 / 2-x, 1 / 2+y, 1 / 2-z$. The two $\mathrm{Cd}^{\mathrm{II}}$ centers sharing the same $(\mathrm{O} 2)$ carboxylate oxygen and bridged by the $\mathrm{O} 2-\mathrm{C} 2-\mathrm{O} 3$ carboxylate group are 4.736 (1) \AA apart, and extend in a zigzag manner along the b-direction. Each $\mathrm{Cd}^{\mathrm{II}}$ cation is chelated by a hydroxyacetate residue and a carboxylate group, and is coordinated by two water molecules, and one sulfate anion, resulting in a sevenfold coordination mode (Fig. 1). The hydroxyacetate anions and one coordinated water molecule (O1W) lie in the equatorial plane while the other water molecule (O 2 W) and the sulfate anion take the axial positions. Hence, the coordination polyhedron formed around Cd 1 is a distorted pentagonal bipyramid with the in-plane cis bond angles in the range $52.37(4)-83.68(5)^{\circ}$, the smallest angle reflecting chelation by the carboxylate ligand, and with the out-of-plane trans angle of 170.76 (6) ${ }^{\circ}$. Sulfate anions lie on the twofold axis and connect the neighbouring $\mathrm{Cd}^{\mathrm{II}}$ centers, related by this symmetry axis via O 4 oxygen atoms. Separation of the two $\mathrm{Cd}^{\mathrm{II}}$ metal centers bridged by the sulfate group measures 6.773 (1) \AA. The sulfate bridges help

supplementary materials

to extend the basic structural motif in the a-direction, thus forming a (001) layer (Fig. 2). This polymeric two-dimensional construction is additionally supported by hydrogen bonds (Table 2) that involve crystalline water molecule, which also occupies the twofold axis (O 3 w). This water molecule acts as a double hydrogen bond donor to two coordinated sulfate O atoms (O 4 and its symmetry equivalent) and a double hydrogen bond acceptor from the axially coordinated water molecule (O2W and its twofold equivalent). The equatorially coordinated water molecule (O1W) acts as a hydrogen bond donor to carboxylate O 3 and the axially coordinated water O 2 W . The neighbouring two-dimensional layers are bridged by a hydrogen bond formed between a hydroxyl group (O1) acting as a hydrogen-bond donor and the uncoordinated oxygen atom (O5) from the sulfate anion. The hydrogen bond parameters are provided in Table 2.

The reported X-ray analysis allowed us to identify and structurally characterize the unintentionally synthesized two-dimensional MOF and to demonstrate that care must be taken when preparing the edta-type complexes by transmetallation to avoid precipitation of metal complexes with α-hydroxyacetate bridges. To remove the excess of Ba (II) α-hydroxyacetate, a water washing procedure should be repeated several times.

Experimental

$2.56 \mathrm{~g}(0.003 \mathrm{~mol})$ of $\mathrm{CdSO}_{4} .8 \mathrm{H}_{2} \mathrm{O}$ were dissolved in $50 \mathrm{~cm}^{3}$ of distilled water at $70^{\circ} \mathrm{C}$. To this solution, 6.27 g of solid $\mathrm{Ba}[\mathrm{Ba}(1,4-\mathrm{bdta})] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ containing $\mathrm{Ba}\left(\mathrm{HOCH}_{2} \mathrm{COO}\right)_{2}$ in ratio $3: 1$, respectively, was added and the reaction mixture was heated at $90^{\circ} \mathrm{C}$ with stirring for 6 h . The precipitated BaSO_{4} was removed by filtration and the filtrate was evaporated to $c a$ $10 \mathrm{~cm}^{3}$ and then left in a refrigerator for several days. Colorless crystals of the title compound were collected, washed with ethanol, and air-dried. Yield $0.98 \mathrm{~g}(59.5 \%)$. The complex was recrystallized from hot water while cooling in a refrigerator. Analysis calculated for $\mathrm{C}_{4} \mathrm{H}_{14} \mathrm{Cd}_{2} \mathrm{O}_{14} \mathrm{~S} . \mathrm{H}_{2} \mathrm{O}(\mathrm{FW}=561.03$; m. p. 416 K): C 8.84, H 2.87, S 5.90\%; found: C 8.93, H 2.83, S 6.28\%.

Refinement

All H atoms attached to C atoms were placed in their idealized positions, the hydroxyl and water H atoms were located on difference Fourier maps. All H atoms were refined as riding on their carrier atoms with constraints imposed on the bond lengths and displacement parameters, i.e. $\mathrm{C}-\mathrm{H}=0.96 \AA \mathrm{O}-\mathrm{H}=0.85 \AA$ with $U_{\text {iso }}(\mathrm{H}) 20 \%$ higher than $U_{\text {eq }}$ of the carrier atom.

Figures

Fig. 2. View down the monoclinic c-direction showing hydrogen bonding (dashed lines), water channels and two-dimensional structure of the complex.

Poly[[tetraaquabis(μ_{2}-hydroxyacetato- $\left.\kappa^{4} O^{1}, O^{2}: O^{1}, O^{1}\right)$ - μ_{2}-sulfato- $\kappa^{2} O: O^{1}$-dicadmium(II)] monohydrate]

Crystal data

$\left[\mathrm{Cd}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{3}\right)_{2}\left(\mathrm{SO}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=561.03$
Monoclinic, C2/c
Hall symbol: -C 2yc
$a=13.5750$ (3) \AA
$b=8.57770(10) \AA$
$c=13.7734$ (3) \AA
$\beta=107.528$ (2) ${ }^{\circ}$
$V=1529.34(5) \AA^{3}$
$Z=4$

Data collection

Kuma KM4 CCD к-geometry
diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=295 \mathrm{~K}$
ω and φ scans
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
$T_{\text {min }}=0.388, T_{\text {max }}=0.550$
8842 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.015$
$w R\left(F^{2}\right)=0.038$
$S=1.13$
$F_{000}=1088$
$D_{\mathrm{x}}=2.437 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point: 416 K
Mo K α radiation
$\lambda=0.71073 \AA$
Cell parameters from 5972 reflections
$\theta=2.9-28.0^{\circ}$
$\mu=2.99 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
Prismatic, colourless
$0.30 \times 0.30 \times 0.20 \mathrm{~mm}$

1710 independent reflections
1602 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.018$
$\theta_{\text {max }}=28.0^{\circ}$
$\theta_{\text {min }}=2.9^{\circ}$
$h=-17 \rightarrow 17$
$k=-10 \rightarrow 10$
$l=-17 \rightarrow 17$

Hydrogen site location: inferred from neighbouring
sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0212 P)^{2}+0.9781 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.46$ e \AA^{-3}

supplementary materials

1710 reflections

102 parameters
$\Delta \rho_{\text {min }}=-0.31$ e \AA^{-3}
Extinction correction: SHELXL97 (Sheldrick, 2008),
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.00703 (18) Primary
methods

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
Cd1	$0.215433(10)$	$0.885016(14)$	$0.174423(9)$	$0.02516(7)$
O1W	$0.15455(14)$	$0.67573(17)$	$0.07284(12)$	$0.0463(4)$
H1W	0.1546	0.6610	0.0118	0.056^{*}
H2W	0.1641	0.5894	0.1046	0.056^{*}
O2W	$0.36889(11)$	$0.85773(16)$	$0.13399(12)$	$0.0344(3)$
H3W	0.4134	0.9233	0.1669	0.041^{*}
H4W	0.3970	0.7714	0.1573	0.041^{*}
O1	$0.14443(14)$	$1.02774(17)$	$0.02309(11)$	$0.0499(4)$
H1O	0.1128	1.0004	-0.0376	0.060^{*}
C1	$0.12548(16)$	$1.1879(2)$	$0.03179(14)$	$0.0323(4)$
H1A	0.0528	1.2052	0.0191	0.039^{*}
H1B	0.1474	1.2454	-0.0178	0.039^{*}
C2	$0.18369(14)$	$1.2435(2)$	$0.13702(13)$	$0.0254(4)$
O2	$0.23446(11)$	$1.14930(16)$	$0.20257(11)$	$0.0310(3)$
O4	$0.07190(15)$	$0.87150(18)$	$0.22208(19)$	$0.0617(6)$
S1	0.0000	$0.97501(7)$	0.2500	$0.02325(13)$
O5	$0.05131(16)$	$1.0737(2)$	$0.33543(12)$	$0.0570(5)$
O3W	0.5000	$1.0723(3)$	0.2500	$0.0749(10)$
H5W	0.5380	1.1144	0.2183	0.090^{*}
O3	$0.17860(15)$	$1.38542(15)$	$0.15667(12)$	$0.0396(3)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	$0.03149(10)$	$0.02054(9)$	$0.02099(9)$	$0.00182(4)$	$0.00418(6)$	$-0.00095(5)$
O1W	$0.0858(12)$	$0.0209(7)$	$0.0251(7)$	$-0.0006(7)$	$0.0062(7)$	$-0.0006(6)$
O2W	$0.0402(8)$	$0.0289(7)$	$0.0334(8)$	$0.0051(6)$	$0.0098(6)$	$0.0019(6)$
O1	$0.0872(12)$	$0.0260(8)$	$0.0193(7)$	$0.0107(7)$	$-0.0098(7)$	$-0.0061(6)$
C1	$0.0445(11)$	$0.0231(9)$	$0.0224(9)$	$0.0022(8)$	$-0.0001(8)$	$0.0011(7)$
C2	$0.0323(9)$	$0.0211(9)$	$0.0218(8)$	$-0.0040(7)$	$0.0067(7)$	$0.0000(7)$
O2	$0.0416(7)$	$0.0226(6)$	$0.0214(6)$	$-0.0032(5)$	$-0.0018(6)$	$0.0001(5)$

sup-4

supplementary materials

O3	$0.0629(10)$	$0.0208(7)$	$0.0274(8)$	$-0.0011(6)$	$0.0021(7)$	$-0.0030(5)$
O4	$0.0565(11)$	$0.0353(9)$	$0.1112(18)$	$0.0121(7)$	$0.0524(13)$	$0.0067(9)$
S1	$0.0263(3)$	$0.0186(3)$	$0.0233(3)$	0.000	$0.0051(2)$	0.000
O5	$0.0940(15)$	$0.0310(8)$	$0.0250(8)$	$-0.0193(8)$	$-0.0139(8)$	$0.0032(7)$
O3W	$0.0500(15)$	$0.0271(12)$	$0.140(3)$	0.000	$0.0168(17)$	0.000

Geometric parameters ($\AA,{ }^{\circ}$)

Cd1-O1	2.3584 (14)
$\mathrm{Cd} 1-\mathrm{O} 2$	2.3013 (14)
Cd1-O4	2.2386 (16)
Cd1-O1W	2.2731 (15)
Cd1-O2W	2.3245 (14)
$\mathrm{Cd} 1-\mathrm{O} 2^{\mathrm{i}}$	2.5937 (14)
$\mathrm{Cd} 1-\mathrm{O} 3{ }^{\text {i }}$	2.3379 (17)
O1W-H1W	0.8500
O1W-H2W	0.8500
O2W-H3W	0.8500
O2W-H4W	0.8500
$\mathrm{O} 1-\mathrm{C} 1$	1.410 (2)
O4-Cd1-O1W	87.27 (7)
$\mathrm{O} 4-\mathrm{Cd} 1-\mathrm{O} 2$	93.73 (5)
O1W-Cd1-O2	152.03 (5)
O4-Cd1-O2W	170.76 (6)
$\mathrm{O} 1 \mathrm{~W}-\mathrm{Cd} 1-\mathrm{O} 2 \mathrm{~W}$	87.65 (6)
$\mathrm{O} 2-\mathrm{Cd} 1-\mathrm{O} 2 \mathrm{~W}$	94.38 (5)
$\mathrm{O} 4-\mathrm{Cd} 1-\mathrm{O} 3^{\mathrm{i}}$	92.14 (8)
$\mathrm{O} 1 \mathrm{~W}-\mathrm{Cd} 1-\mathrm{O3}^{\text {i }}$	127.91 (5)
$\mathrm{O} 2-\mathrm{Cd} 1-\mathrm{O} 3{ }^{\text {i }}$	80.02 (5)
$\mathrm{O} 2 \mathrm{~W}-\mathrm{Cd} 1-\mathrm{O3}^{\text {i }}$	84.91 (6)
$\mathrm{O} 4-\mathrm{Cd} 1-\mathrm{O} 1$	97.23 (7)
O1W-Cd1-O1	83.68 (5)
$\mathrm{O} 2-\mathrm{Cd} 1-\mathrm{O} 1$	68.45 (5)
$\mathrm{O} 2 \mathrm{~W}-\mathrm{Cd} 1-\mathrm{O} 1$	89.87 (6)
$\mathrm{O} 3{ }^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{O} 1$	147.55 (5)
$\mathrm{O} 4-\mathrm{Cd} 1-\mathrm{O} 2{ }^{\text {i }}$	81.27 (6)
$\mathrm{O} 1 \mathrm{~W}-\mathrm{Cd} 1-\mathrm{O} 2^{\mathrm{i}}$	76.21 (5)
$\mathrm{O} 2-\mathrm{Cd} 1-\mathrm{O} 2{ }^{\text {i }}$	131.594 (18)
$\mathrm{O} 2 \mathrm{~W}-\mathrm{Cd} 1-\mathrm{O} 2^{\text {i }}$	90.02 (5)
$\mathrm{O} 3{ }^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{O} 2^{\mathrm{i}}$	52.37 (4)
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{O} 2{ }^{\text {i }}$	159.88 (5)
Cd1-O1W-H2W	113.6
Cd1-O1W-H1W	128.1
H2W-O1W-H1W	109.5
Cd1-O2W-H4W	109.2

$\mathrm{O} 1 — \mathrm{H} 1 \mathrm{O}$	0.8500
$\mathrm{C} 1-\mathrm{C} 2$	$1.504(3)$
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	0.9601
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	0.9599
$\mathrm{C} 2-\mathrm{O} 2$	$1.252(2)$
$\mathrm{C} 2-\mathrm{O} 3$	$1.253(2)$
$\mathrm{O} 2-\mathrm{Cd1}$	
O 4	$2.5937(14)$
$\mathrm{S} 1-\mathrm{S} 1$	$1.4543(16)$
$\mathrm{O} 3 \mathrm{~W}-\mathrm{H} 5 \mathrm{~W}$	$1.4468(16)$
$\mathrm{O} 3-\mathrm{Cd1}$	

Cd1-O2W-H3W	110.5
H4W-O2W-H3W	102.0
C1-O1-Cd1	117.86 (11)
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{H} 1 \mathrm{O}$	107.6
$\mathrm{Cd} 1-\mathrm{O} 1-\mathrm{H} 1 \mathrm{O}$	132.6
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	109.54 (15)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.8
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.8
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.7
C2- $21-\mathrm{H} 1 \mathrm{~B}$	109.8
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	108.2
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{O} 3$	121.68 (18)
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 1$	120.37 (17)
O3-C2-C1	117.95 (17)
C2-O2-Cd1	120.32 (12)
$\mathrm{C} 2-\mathrm{O} 2-\mathrm{Cd} 1^{\text {ii }}$	86.96 (11)
Cd1-O2-Cd1 ${ }^{\text {ii }}$	150.69 (6)
S1-O4-Cd1	139.34 (10)
O5-S1-O5 ${ }^{\text {iii }}$	108.34 (13)
O5-S1-O4 $4^{\text {iii }}$	109.84 (12)
$\mathrm{O} 5^{\mathrm{iii}}-\mathrm{S} 1-\mathrm{O} 4{ }^{\text {iii }}$	112.05 (13)
O5-S1-O4	112.05 (13)
$\mathrm{O} 5^{\text {iiii }}-\mathrm{S} 1-\mathrm{O} 4$	109.84 (12)
$\mathrm{O} 4{ }^{\text {iiii }}$-S1-O4	104.74 (14)
C2-O3-Cd1 ${ }^{\text {ii }}$	98.98 (12)

supplementary materials

$\mathrm{O} 4-\mathrm{Cd} 1-\mathrm{O} 1-\mathrm{C} 1$	74.77 (15)	$\mathrm{O} 2-\mathrm{Cd} 1-\mathrm{O} 2-\mathrm{C} 2$	-163.19 (14)
$\mathrm{O} 1 \mathrm{~W}-\mathrm{Cd1}-\mathrm{O} 1-\mathrm{C} 1$	161.19 (16)	$\mathrm{O} 4-\mathrm{Cd} 1-\mathrm{O} 2-\mathrm{Cd} 1^{\text {ii }}$	74.85 (14)
$\mathrm{O} 2-\mathrm{Cd} 1-\mathrm{O} 1-\mathrm{C} 1$	-16.41 (14)	$\mathrm{O} 1 \mathrm{~W}-\mathrm{Cd} 1-\mathrm{O} 2-\mathrm{Cd1}{ }^{\text {ii }}$	166.05 (11)
$\mathrm{O} 2 \mathrm{~W}-\mathrm{Cd} 1-\mathrm{O} 1-\mathrm{C} 1$	-111.16 (15)	$\mathrm{O} 2 \mathrm{~W}-\mathrm{Cd} 1-\mathrm{O} 2-\mathrm{Cd1}{ }^{\text {ii }}$	-100.72 (13)
$\mathrm{O} 3-\mathrm{Cd} 1-\mathrm{O} 1-\mathrm{Cl}$	-30.9 (2)	$\mathrm{O} 3-\mathrm{Cd1}-\mathrm{O} 2-\mathrm{Cd1}^{\text {ii }}$	-16.67 (13)
$\mathrm{O} 2-\mathrm{Cd} 1-\mathrm{O} 1-\mathrm{C} 1$	159.13 (13)	$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{O} 2-\mathrm{Cd1}{ }^{\text {ii }}$	171.15 (15)
$\mathrm{Cd} 1-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	16.3 (2)	$\mathrm{O} 2-\mathrm{Cd} 1-\mathrm{O} 2-\mathrm{Cd1}{ }^{\text {ii }}$	-6.79 (12)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 2$	-3.4 (2)	O1W-Cd1-O4-S1	-144.9 (2)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 3$	177.33 (17)	$\mathrm{O} 2-\mathrm{Cd} 1-\mathrm{O} 4-\mathrm{S} 1$	7.1 (2)
$\mathrm{O} 3-\mathrm{C} 2-\mathrm{O} 2-\mathrm{Cd} 1$	167.52 (14)	$\mathrm{O} 3-\mathrm{Cd} 1-\mathrm{O} 4-\mathrm{S} 1$	87.2 (2)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 2-\mathrm{Cd} 1$	-11.7 (2)	$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{O} 4-\mathrm{S} 1$	-61.6 (2)
$\mathrm{O} 3-\mathrm{C} 2-\mathrm{O} 2-\mathrm{Cd} 1^{\mathrm{ii}}$	-1.16 (18)	$\mathrm{O} 2-\mathrm{Cd} 1-\mathrm{O} 4-\mathrm{S} 1$	138.6 (2)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 2-\mathrm{Cd} 1^{\text {ii }}$	179.64 (15)	Cd1-O4-S1-O5	-57.4 (2)
$\mathrm{O} 4-\mathrm{Cd} 1-\mathrm{O} 2-\mathrm{C} 2$	-81.55 (15)	Cd1-O4-S1-O5 ${ }^{\text {iii }}$	63.0 (2)
$\mathrm{O} 1 \mathrm{~W}-\mathrm{Cd} 1-\mathrm{O} 2-\mathrm{C} 2$	9.6 (2)	Cd1-O4-S1-O4 ${ }^{\text {iii }}$	-176.5 (3)
$\mathrm{O} 2 \mathrm{~W}-\mathrm{Cd} 1-\mathrm{O} 2-\mathrm{C} 2$	102.89 (14)	$\mathrm{O} 2-\mathrm{C} 2-\mathrm{O} 3-\mathrm{Cd} 1^{\text {ii }}$	1.3 (2)
$\mathrm{O} 3{ }^{\text {i }}-\mathrm{Cd} 1-\mathrm{O} 2-\mathrm{C} 2$	-173.07 (15)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 3-\mathrm{Cd} 1^{\text {ii }}$	-179.48 (13)
O1-Cd1-O2-C2	14.76 (13)		

Symmetry codes: (i) $-x+1 / 2, y-1 / 2,-z+1 / 2$; (ii) $-x+1 / 2, y+1 / 2,-z+1 / 2$; (iii) $-x, y,-z+1 / 2$.

Hydrogen-bond geometry ($\AA,^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1W—H1W $\cdots \mathrm{O}^{2} W^{\text {iv }}$	0.85	1.94	$2.784(2)$	170
O1W—H2w $\cdots \mathrm{O}^{\mathrm{v}}$	0.85	1.88	$2.723(2)$	172
O2W—H3W $\cdots \mathrm{O} 3 \mathrm{~W}$	0.85	1.88	$2.720(2)$	172
O2W—H4W $\cdots \mathrm{O}^{\mathrm{i}}$	0.85	1.82	$2.648(2)$	162
O1—H1O $\cdots \mathrm{O}^{\text {vi }}$	0.85	1.81	$2.659(2)$	175
O3W—H5W $\cdots \mathrm{O}^{\text {vii }}$	0.85	2.25	$2.813(3)$	124

Symmetry codes: (iv) $-x+1 / 2,-y+3 / 2,-z$; (v) $x, y-1, z$; (i) $-x+1 / 2, y-1 / 2,-z+1 / 2$; (vi) $x,-y+2, z-1 / 2$; (vii) $x+1 / 2, y+1 / 2, z$.

Fig. 1

Fig. 2

