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Abstract

Background

Pyrazinamide is an important drug against the latent stage of tuberculosis and is used in

both first- and second-line treatment regimens. Pyrazinamide-susceptibility test usually

takes a week to have a diagnosis to guide initial therapy, implying a delay in receiving appro-

priate therapy. The continued increase in multi-drug resistant tuberculosis and the preva-

lence of pyrazinamide resistance in several countries makes the development of assays for

prompt identification of resistance necessary. The main cause of pyrazinamide resistance is

the impairment of pyrazinamidase function attributed to mutations in the promoter and/or

pncA coding gene. However, not all pncA mutations necessarily affect the pyrazinamidase

function.

Objective

To develop a methodology to predict pyrazinamidase function from detected mutations in

the pncA gene.

Methods

We measured the catalytic constant (kcat), KM, enzymatic efficiency, and enzymatic activity

of 35 recombinant mutated pyrazinamidase and the wild type (Protein Data Bank ID = 3pl1).

From all the 3D modeled structures, we extracted several predictors based on three catego-

ries: structural stability (estimated by normal mode analysis and molecular dynamics), phys-

icochemical, and geometrical characteristics. We used a stepwise Akaike’s information

criterion forward multiple log-linear regression to model each kinetic parameter with each
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category of predictors. We also developed weighted models combining the three categories

of predictive models for each kinetic parameter. We tested the robustness of the predictive

ability of each model by 6-fold cross-validation against random models.

Results

The stability, physicochemical, and geometrical descriptors explained most of the variability

(R2) of the kinetic parameters. Our models are best suited to predict kcat, efficiency, and

activity based on the root-mean-square error of prediction of the 6-fold cross-validation.

Conclusions

This study shows a quick approach to predict the pyrazinamidase function only from the

pncA sequence when point mutations are present. This can be an important tool to detect

pyrazinamide resistance.

Introduction

Tuberculosis (TB) is a major infectious disease caused by Mycobacterium tuberculosis (MTB)

which mostly affects people in developing countries. According to the WHO’s global TB report

of 2018, TB is one of the top 10 causes of death and in 2017 there were about 1.6 million TB

deaths and 10 million infections [1]. Emerging drug resistance hinders the progress and efforts

to control this disease [2]. Among all drugs available, pyrazinamide (PZA) is an important

anti-tuberculosis drug against the dormant or semi-dormant latent stage of MTB [3]. Despite

its importance, PZA is also responsible for a relevant proportion of treatment abandons

because of side effects [4]. In Peru, over 30% of multidrug-resistant (MDR) TB strains are also

resistant to PZA [5]. Moreover, in other countries exists a large prevalence of PZA resistance

[6].

The mechanism of action and resistance to PZA in MTB is not entirely understood [3].

PZA, the pro-drug, enters the cytoplasm of MTB by passive diffusion and is hydrolyzed into

pyrazinoic acid (POA) by the enzyme pyrazinamidase (PZAse), encoded by the pncA gene [7].

POA, the active drug, accumulates in the cytoplasm and enters a cycle of entry and exit from

MTB aided by an efflux pump not yet identified. Outside, in an acidic environment, POA is

protonated and when re-enters to the cytoplasm, releases the protons and causes membrane

disruption and cellular damage [8].

The major mechanism of PZA resistance, according to several studies, is the loss of PZAse

activity due to mutations in the pncA gene, suppressing its ability to hydrolyze PZA [9–12].

Mutations directly affecting the active site (AS) (Cys138, Asp8, and Lys96), or the metal coor-

dination site (MCS) (Asp49, His51, His57, and His71) are more likely to impair PZAse func-

tion [13]. Current knowledge of pncA gene sequences has shown that PZA resistant strains are

associated with pncA mutations scattered throughout the entire gene which deplete the PZAse

function [10,14–16]. It is important to highlight that a failure in the PZAse function strictly

causes resistance to PZA.

The current gold standard test to detect PZA resistance is the colorimetric MGIT 960-TB

liquid culture. Alternate assays comprise the MODS [17] and MODS-PZA [18] methods,

based on microscopic observation and the colorimetric Wayne test and variants like the

reported by Aono et al., 2018 [19] or Alcántara et al., 2019 [20]. The latter detect expelled POA
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in the extracellular environment, a biomarker of PZA resistance [14,21], and indirectly mea-

sures the PZAse activity [20]. Nevertheless, the high cost, duration, or lack of reproducibility

of these tests limit their use. Therefore, an accurate, simple, and fast test to determine PZA

resistance is required to prevent the unnecessary use of PZA during anti-tuberculous

treatment.

Given the current extensive use of next-generation sequencing (NGS), it has been proposed

as an alternative to detect PZA-resistance by the detection of mutations in the pncA gene [22–

24]. Nowadays, the sequencing of this gene is more affordable, numerous studies have reported

pncA polymorphisms associated with PZA resistance with high accuracy [10,22,25–27]. Never-

theless, most of them are focused on susceptible/resistant binary prediction instead of predict-

ing PZAse function and PZA resistance level. The main limitation of this approach is the fact

that not every pncA mutation impairs the PZAse enzymatic function. To overcome this limita-

tion, a method to predict the enzymatic function based only on the pncA sequence is needed.

Several studies have addressed the prediction of the enzymatic function of enzymes based

on the predicted structure of mutated enzymes [28–34]. The approach of these studies used

several features as predictors, including electrostatic potentials used in quantitative structure-

activity relationships (QSAR) [35–37] and geometrical descriptors that are measurements of

distances between specific points of interest and indirectly involve short and long-range inter-

actions between residues [38–40].

Amino acidic mutations affecting protein function may alter the protein structural stability

[31,41,42]. In particular, structural stability has been correlated with the enzymatic function in

PZAse [43]. This property could be studied by several techniques like molecular dynamics

(MD) simulations, using the root-mean-square fluctuation (RMSF) of residues, to find unsta-

ble regions with a high degree of movement and flexibility [44,45]. In PZAse the most unstable

region is the flap region, a loop from His51 to His71 [45–49], which is the lid of the PZA/ Fe2

binding cavity [13], and alterations of its stability have been reported in mutated PZAses asso-

ciated with PZA resistance [46–49].

An alternative, faster and reliable method to analyze protein stability, is the Normal Mode

Analysis (NMA), which is based on the protein structure [50,51]. NMA considers oscillating

movements that describe relevant motions of small amplitude at the atomic or aminoacidic

level [52,53]. It assumes that proteins oscillate harmonically around a given conformation [54]

and calculates the normal modes of vibrations to describe the overall motion. From this, fluc-

tuation scores for each position in the protein are calculated [55].

In this study, we developed statistical models to predict PZAse function, based on structural

stability, physicochemical, and geometrical descriptors inferred from 3D modeled structures

of PZAse based only on the mutated sequence. Multiple log-linear regressions and 6-fold

cross-validation were used to get the best linear predictors and to verify robustness.

Methods

Cloning and expression of PZAse

The sequences of 35 pncA mutant genes from clinical strains, among the H37Rv wild-type

were cloned and expressed in Escherichia coli LEMO21 as reported before [7]. Briefly, each

pncA gene sequence was amplified by PCR from genomic DNA using primers containing

restriction sites for NcoI and XhoI and inserted into pET28a plasmid containing a COOH-ter-

minal 6-His tag. Both PCR product and pET28a plasmid were digested with NcoI and XhoI,

ligated and transformed into E. coli LEMO21. Proteins were purified by affinity chromatogra-

phy using a HisTrap HP column (Novagen).
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Kinetic parameters of recombinant PZAses

PZAse kinetic parameters were calculated using the hydrolysis reaction of PZA. Briefly, PZA

was used from 0 to 5 mM and incubated with 1 μM PZAse in 50 mM sodium phosphate pH

6.5. To prevent the hydrolysis of more than 10% of the initial PZA, an incubation period of 1

min was used. It was increased to 2 h for mutants with very low activity. 10 μL of 20% Ferrous

ammonium sulfate was added, followed immediately by adding 445 μL of 0.2 mM glycine-HCl

(pH 3.4) to stop the reaction. Precipitates were removed by centrifugation (11,000 rpm for 5

min). Absorbance (OD) was measured at 450 nm in a 96-well plate using 200 μL of reaction.

The amount of POA produced was estimated by interpolation in a standard curve of known

concentrations. Each recombinant PZAse was tested at least 5 times, and at least 2 different

groups of recombinant proteins were analyzed for each strain. Finally, we estimated kcat, KM,

efficiency, and activity as before [7].

To make the measurements of the kinetic parameters comparable between the two batches

of recombinant proteins, we normalized each kinetic parameter by dividing its value by the

one of the wild type (WT) H37RV PZAse of the corresponding batch.

Theoretical structural modeling of mutated PZAses

All mutants were modeled using the protein modeling server SWISS-MODEL [56] with the

crystal structure of the WT PZAse available in Protein Data Bank (PDB ID: 3PL1, 2.2 Å resolu-

tion) as a template.

Stability analysis of amino-acidic fluctuations by NMA

We evaluated structural stability using the fluctuation scores for each amino acid position cal-

culated by NMA [57]. Briefly, a potential energy function at residue level is constructed for

each structure using an elastic network model that connects all the Cα’s of residues that inter-

act with each other with a spring. The original code was modified to consider connected the

Cα’s of pairs of residues for which the distance between any main chain or side chain atoms

was less than 5 Å. All Cα- Cα pairwise forces were modeled as a harmonic oscillator with the

same spring constant. Then, the modes are calculated by solving the following equation:

HX ¼ DTX ð1Þ

Where H is the Hessian matrix of the potential energy function, T the kinetic energy, X the

eigenvectors, and D a diagonal matrix containing the eigenvalues [57]. The frequency of oscil-

lation of each normal mode is related to the eigenvalues and is the same for all the residues in

the respective normal mode. Each normal mode has an associated eigenvector of length equal

to the number of residues (or 3N). The components of the eigenvector corresponding to the

amplitude and the direction of movement of each Cα.

We considered 40 modes, from the 7th up to the 46th eigenvalues. The first six were left out

because they correspond to the 3 translations and 3 rotations and were almost zero. After that,

the fluctuations for each amino acid in each mutated structure were calculated by the equation

[55]:

< x2

i >¼
kBT
mi

Pn
j¼i

a2
ij

w2
j

ð2Þ

Where kB is the Boltzmann constant, T the absolute temperature, mi the mass of residue i, n

the number of modes, aij the eigenvector for residue i in mode j, and wj the square root of the

eigenvalue for mode j. A final dataset of 185 variables for each structure was produced.
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Stability analysis of amino-acidic RMSF by MD

As an alternative approach to stability calculated by NMA, molecular dynamics (MD) simula-

tions were performed on each PZAse structure. For this purpose, the software GROMACS ver-

sion 2018.3 [58] in GPU configuration was used to simulate the behavior in a solvent of the

mutated structures modeled with SWISS-MODEL [56] and the WT-PZAse (PDB ID: 3PL1)

[13].

During the simulation, topologies were generated with the PDB2GMX module, using the

OPLS-AA/L all-atom force field [59]. Additionally, each structure was centered in a 10 Å cubic

box, with periodic boundary conditions. Water molecules from the SPC/E model [60] were

used for solvation, and charges were neutralized by adding Na+ and Cl- ions.

Afterward, energy minimization of the system was performed using the steepest descent

algorithm with 50 000 steps until obtaining energy lower than 1000 Kcal mol-1. The tempera-

ture and the pressure of the system were equilibrated by using NVT and NPT assembling,

respectively. In the first stage, the temperature was equilibrated to 310.15 K and constantly

maintained with the Berendsen thermostat [61] for 2 ns. In the second stage, the system’s pres-

sure was equilibrated to 1 bar and constantly maintained with the Parrinello-Rahman barostat

[62,63] for 4 ns. Finally, the simulation time was 500 ns, with 2 fs integration step and constant

pressure and temperature conditions, using the integration algorithm leap-frog [64]. For gen-

erating the trajectories, the LINCS algorithm [65] was used to restrict interactions during equi-

librium, while the Particle-Mesh Ewald algorithm [66] was used to restrict the long-range

ionic interactions.

The trajectories obtained from each simulation were centered and used to calculate the

root-mean-square deviation (RMSD) of the protein of each structure. Likewise, the trajectories

corresponding to the last 100 ns of each molecular dynamics (400 to 500 ns) were extracted to

calculate the root-mean-square-fluctuations (RMSF) of the backbone. The data was extracted

in �.XGV format and RMSD and RMSF plots were generated using an in-house python script

using the Matplotlib library [67]. A final dataset of 185 RMSF variables for each structure was

generated.

Calculation of physicochemical descriptors

The physicochemical descriptors evaluated were the differences in electrostatic potential (EP)

between residues from each mutated protein and residues from the WT-PZAse and the sum of

all differences in electrostatic potential in the entire protein. The MutantElec server [68] was

used to calculate EPs, this server uses an Adaptive Poisson-Boltzmann Solver (APBS) to ana-

lyze the effect of solvents in proteins and as input requires the dielectric constant of protein

(εprotein) and water (εwater) at a fixed temperature. We assumed a value of εprotein of 4 as a

mean for proteins and calculated εwater = 74.1522 at T = 37˚C (which represents lung tempera-

ture) as previously reported [69]. A final dataset of 185 physicochemical variables for each

structure was generated.

Calculation of geometrical descriptors for WT and mutated PZAses

For every mutated PZAse structure, we calculated 4 references as described previously [38] (S2

Fig): (i) Point B: the barycenter of the AS (Asp8, Lys96, and Cys138) and the MCS (Asp49,

His51, and His71 excluding His57). (ii) Point P: the point of projection of the Cα of the resi-

dues on the plane formed by the trio of amino acids (AS/MCS). (iii) Point I: the point of inter-

section between the resulting vector (Vr) of each amino acid regarding the Cα and the plane

formed by the trio of amino acids (AS/MCS). (iv) Point T: the barycenter of the MCS including

His57.
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Using the points of interest, 24 different descriptors were calculated on each of the 185 ami-

noacidic positions of PZAse resulting in 4440 variables. The exact meaning of each geometrical

descriptor is available in the S1 Appendix.

Construction and validation of predictive linear models

Since kinetic parameters of enzymes are strictly positive variables and tend to follow a log-nor-

mal distribution in nature [70], we assumed them as log-normally distributed. The following

transformation was used to go from the mean of the kinetic parameters to the mean of the log-

arithmic kinetic parameters:

log
10
ðxÞ ¼ log

10

x2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ s2

x

p

 !

ð3Þ

Where x refers to the mean value of the respective kinetic parameter, and s2
x to its variance.

We worked with these estimates to construct the log-linear models. Each kinetic parame-

ter was combined with the stability, physicochemical and geometrical datasets separately.

Observations with a missing value in the respective kinetic parameter were removed

from each dataset. Then, covariates with missing values or variance equal to zero were

dropped.

To avoid correlation between covariates, simple log-linear regressions between the kinetic

parameter and the rest of covariates were performed for each dataset. The p-value for each

regression was used to sort covariates in ascending order. Then, we went through the sorted

list and calculated Pearson’s correlation coefficient between the top covariate and the rest of

the covariates under it. If the correlation coefficient was greater than 0.8, the covariates down

in the list were removed from the dataset and the procedure continue with the next covariate

in the reduced list until the last covariate is reached.

Once the datasets were reduced, covariates were selected using a stepwise Akaike’s informa-

tion criterion (AIC) forward regression until having 10 covariates. The final individual models

include the best combination of 6 out of the 10 selected covariates that display the highest

adjusted R2. The weighted models were constructed for each kinetic parameter using the fitted

values of their respective individual models as covariates.

To prevent overfitting, we performed a repeated 6-fold cross-validation for the weighted

models and the individual models of stability, physicochemical, and geometrical descriptors

using the R’s package Caret [71]. The root-mean-square error (RMSE) calculation was used to

evaluate the predictive ability of each model. To have a clear idea of the distribution of RMSE

values of our models, we performed a repeated 6-fold cross-validation 1000 times and compare

the distribution of the RMSE for individual models with the one produced by models with ran-

dom descriptors (random models). For the weighted model, the RMSE distribution was com-

pared against the one produced by the individual models.

Results

Kinetic parameters of recombinant PZAses

The kinetic parameters measured for the 35 mutated and WT PZAses revealed a wide

range of variation (Table 1 and S1 Table). Due to experimental error, the WT H37Rv

PZAse showed slightly different estimates of the kinetic parameters between the two

batches of proteins produced. To prevent a batch-bias, we expressed all the kinetic param-

eters as the corresponding percentage of the WT-PZAse within each batch and worked

with these new variables defined as Relative-kcat, Relative-KM, Relative-efficiency, and
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Relative-activity. The relative kinetic parameters revealed a high Pearson correlation coef-

ficient (R) between kcat and efficiency (R = 0.787), kcat and activity (R = 0.947) and effi-

ciency and activity (R = 0.865), while KM, was neither well correlated with kcat (R = 0.072),

efficiency (R = -0.286), nor activity (R = -0.160).

Table 1. Kinetic parameters of two batches of mutated PZAses from M. tuberculosis.

Mutant kcat (min-

1)

Relative kcat

(%)

KM

(mM)

Relative KM

(%)

Efficiency (mM-

1min-1)

Relative Efficiency

(%)

Activity

(μmol POA min-1 mg-1

PZAse)

Relative Activity

(%)

Batch

1

WT 1005.410 100.000 1.240 100.000 806.600 100.000 38.400 100.000

A102V 1084.220 107.839 1.581 127.479 685.890 85.035 34.316 89.364

C14G 25.110 2.497 1.327 107.014 18.920 2.346 0.902 2.350

D12A 245.170 24.385 0.990 79.839 248.790 30.844 9.240 24.063

D12G 368.460 36.648 0.550 44.355 716.830 88.871 14.000 36.458

D136G 490.270 48.763 3.680 296.774 133.030 16.493 12.340 32.135

D49N 1.530 0.152 3.090 249.194 0.550 0.068 0.045 0.117

F58L 355.880 35.397 1.297 104.627 274.300 34.007 14.132 36.801

F94L 712.920 70.908 2.000 161.290 348.600 43.218 21.190 55.182

G24D 100.130 9.959 0.420 33.871 236.200 29.283 4.280 11.146

G78C 105.160 10.459 1.070 86.290 97.650 12.106 6.960 18.125

H51R 0.170 0.017 1.410 113.710 0.120 0.015 0.006 0.016

H57R 12.020 1.196 1.099 88.609 10.940 1.356 0.505 1.316

H71Y 69.840 6.946 10.657 859.464 9.320 1.155 1.425 3.710

K48T 241.820 24.052 0.440 35.484 551.200 68.336 10.450 27.214

L116P 1324.500 131.737 1.560 125.806 847.660 105.091 50.150 130.599

L4S 0.001 0.000 0.201 16.173 0.003 0.000 0.015 0.039

P54L 141.195 14.044 1.001 80.763 140.989 17.479 5.529 14.398

P62L 203.859 20.276 0.779 62.802 261.782 32.455 10.129 26.378

Q10P 37.665 3.746 0.650 52.431 57.932 7.182 1.978 5.151

R29P 59.000 5.868 0.225 18.117 262.881 32.591 2.761 7.189

T135P 0.450 0.045 0.930 75.000 - - 0.020 0.052

T142A 0.040 0.004 1.130 91.090 0.040 0.005 0.002 0.005

T160K 3.500 0.348 13.630 1099.194 0.260 0.032 0.038 0.100

T76P 202.980 20.189 0.310 25.000 650.330 80.626 8.990 23.411

V139A 628.710 62.533 25.422 2050.140 24.730 3.066 3.455 8.997

W119L 17.090 1.700 1.234 99.508 13.850 1.717 0.883 2.299

Y34D 386.400 38.432 0.830 66.935 460.190 57.053 20.580 53.594

Y64D 1357.250 134.995 1.548 124.870 876.550 108.672 57.830 150.598

Batch

2

WT 739.480 100.000 1.162 100.000 648.776 100.000 27.607 100.000

A171T 408.035 55.179 1.501 129.177 283.986 43.773 16.422 59.484

A46V 244.662 33.086 1.121 96.436 260.875 40.210 11.433 41.411

L172P 11.730 1.586 1.469 126.390 10.877 1.677 0.500 1.811

M175V 199.743 27.011 2.260 194.516 96.922 14.939 5.776 20.921

P62R 206.273 27.894 1.469 126.430 141.472 21.806 7.889 28.574

V125F 609.467 82.418 1.678 144.418 407.886 62.870 19.996 72.428

V180F 474.632 64.185 6.309 542.873 149.531 23.048 9.104 32.975

The relative kinetic parameters are expressed as percentages of the corresponding WT-PZAse kinetic parameters. The mutants previously reported by our group (Sheen

et al., 2009) are in bold. For the mutant T135P, the experimental measurements of efficiency are not available.

https://doi.org/10.1371/journal.pone.0235643.t001
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Structural modeling of mutated PZAses and stability, physicochemical, and

geometrical structural analysis

The modeled structures of the mutated PZAses, showed an average root-mean-square devia-

tion (RMSD) of 0.094 Å, at all-atoms level, compared to the WT-PZAse crystal structure

(PDB: 3PL1) (S1 Fig).

We estimated, first, 4440 geometrical descriptors of distances between specific points of

interest related to the AS/MCS and all the residue positions of the protein (S1 Dataset). A

more detailed explanation of the geometrical meaning of these descriptors is available as sup-

plementary material (S2 Fig and S1 Appendix). Second, 185 physicochemical descriptors that

include the difference in electrostatic potential per residue (DEPR) against the WT-PZAse and

the global difference in electrostatic potential (GDEP) (S2 Dataset and S3 Fig). Third, 185 sta-

bility descriptors of amino-acidic fluctuations calculated by NMA that describe the degree of

fluctuation of each residue averaged over 40 normal modes of vibration (S3 Dataset and S4

Fig). Alternatively, we performed MD simulations of 500 ns (S5 Fig) on each structure to cal-

culate the RMSF of the protein backbone and to use it as an alternative descriptor of stability

for each position; other 185 descriptors were generated (S4 Dataset and S6 Fig).

For the profile of stability per position, although sharing the same overall shape with the

highest peak in the flap region going from His49 until His71, the fluctuations calculated with

NMA (Fig 1A) showed a lower variability than the RMSF calculated with MD (Fig 1B). Con-

cerning the DEPR, the profile also exhibits a high variability compared to the WT-PZAse (Fig

1C), illustrating the effect in electrostatic potential introduced by missense mutations.

Comparing the different PZAses with a relative-kcat higher or equal than 50%, against the

mutated PZAses with a relative-kcat lower than it, we found almost similar patterns of stability

descriptors in both groups for NMA (S7A Fig and S7B Fig) and MD (S7C Fig and S7D Fig)

approaches. In the case of physicochemical descriptors, a higher dispersion with outliers is

observed for the group with relative-kcat less than 50 (S7E Fig and S7F Fig). After performing a

two-sided Mann-Whitney-U non-parametric test for stability descriptors derived from NMA,

we found statistically significant differences in the positions Leu27 (P-value = 0.022), Pro70

(P-value = 0.011), Tyr103 (P-value = 0.014), Val109 (P-value = 0.029), and Ser179 (P-

value = 0.024). On the other hand, no statistically significant differences were found in any

position for stability descriptors derived from MD simulations. Concerning DEPR, the posi-

tions Val45 (P-value = 0.026), Ala46 (P-value = 0.047), Asp49 (P-value = 0.032), His51 (P-

value = 0.029), His57 (P-value = 0.029), Ser65 (P-value = 0.047), Arg121 (P-value = 0.024),

Val131 (P-value = 0.047), and Asp166 (P-value = 0.016) showed a significant difference. Inter-

estingly, three out of four residues of the MCS are included in that list. However, after correct-

ing for multiple testing using the Bonferroni correction or the Benjamini-Hochberg procedure

for an FDR of 10%, any significant position is found in any dataset.

Log-linear models for kinetic parameters: Kcat, KM, efficiency, and activity

For each kinetic parameter, six log-linear models were constructed. Four of them correspond

to individual linear models of six covariates of only physicochemical, geometrical, stability

(NMA) or stability (MD) descriptors. The other two are weighted log-linear models built over

the fitted values of the individual physicochemical, geometrical, and stability (NMA) or stabil-

ity (MD) models.

The selected descriptors in individual models involve different positions along PZAse (Fig

2 and Table 2). The Pearson correlation between descriptors in individual models is less than

0.8. We compared the distribution of the root-mean-square error (RMSE) of prediction calcu-

lated by 6-fold cross-validation for individual models against one of the random models of the
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Fig 1. Fluctuation, RMSF, and DPER profiles for PZAses obtained from normal mode analysis (NMA), molecular

dynamics (MD), and MutantElec server. (A) Fluctuation profiles. The red trace represents the WT profile. Low

variability is observed for the fluctuation score along with all the positions. The overall shape of the profile is

maintained along with the flap region spanning from His51 up to His71 being the most flexible part of PZAse. (B)

RMSF profiles. The red trace represents the WT profile. A higher variability than in the case of NMA fluctuations is

observed. The flap region going from His51 up to His71 shows the maximum values for RMSF. Additionally, two other

regions with high RMSF are observed near the N and C-terminal of the protein. (C) DEPR profiles. The red trace

represents the WT profile. Differences greater than ±400 mV are observed as extreme peaks, some of them belonging

to the flap region of PZAse.

https://doi.org/10.1371/journal.pone.0235643.g001
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same number and kind of descriptors. We found that individual models always have a mean

RMSE lower than the random models, although the amount of the difference varies between

different models (S8 Fig–S23 Fig).

Fig 2. Structures of WT-PZAse highlighting the positions associated with the selected descriptors for individual models. In green, residues from each descriptor of

the model; in gray, residues from the AS; in sky blue, residues from the MCS; in pink, residues from alpha-helix and in yellow, residues from beta-strands.

https://doi.org/10.1371/journal.pone.0235643.g002
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An interesting result when comparing the alternative stability models is that RMSF descrip-

tors generated by MD simulations always produce models with higher R2 and lower mean

RMSE, probably due to the higher degree of variability between structures detected with this

approach.

The weighted models have three covariates, representing the predictions of the stability,

physicochemical and geometrical models for kcat (S24 Fig and S25 Fig), KM (S26 Fig and S27

Fig), efficiency (S28 Fig and S29 Fig) and activity (S30 Fig and S31 Fig). The coefficients for

each covariate assign a weight to the prediction of the corresponding individual model. Over-

all, the six models for KM have the lowest mean RMSE, always below 0.4. For kcat, efficiency,

and activity only the weighted models have a mean RMSE lower than 0.51. Regarding their

individual models, the mean RMSE ranges from 0.906 to 1.37. A summary of the statistics of

all the models for each kinetic parameter including R2, adjusted R2, p-value and mean RMSE

is displayed in Table 3.

Biological significance of the selected descriptors

Although the descriptors selected by individual models are not necessarily involved in the

mechanism of action, we found that some positions associated with the selected descriptors

are relatively close to the AS or the MCS. Thus, the distances between the Cα of each residue in

Table 2. Selected descriptors for individual models of each kinetic parameter.

Kinetic parameters

kcat KM Efficiency Activity

Selected descriptors Stability model (NMA) Fluctuation Leu 35 Fluctuation Asp 158 Fluctuation Thr 168 Fluctuation Thr 168

Fluctuation Met 175 Fluctuation Ala 36 Fluctuation Ala 79 Fluctuation Ala 79

Fluctuation Gly 132 Fluctuation Glu 111 Fluctuation Val 157 Fluctuation Glu 144

Fluctuation Val 7 Fluctuation Val 169 Fluctuation Phe 50 Fluctuation Val 163

Fluctuation Ala 79 Fluctuation Ser 74 Fluctuation Val 163 Fluctuation Thr 22

Fluctuation Ala 28 Fluctuation Thr 168 Fluctuation Glu 144 Fluctuation Val 155

Stability model (MD-RMSF) RMSF Gly 150 RMSF Gly 17 RMSF Gly 150 RMSF Asp 40

RMSF Gly 124 RMSF Glu 107 RMSF Gly 124 RMSF Gly 150

RMSF Asp 53 RMSF Val 169 RMSF Arg 176 RMSF Leu 120

RMSF Glu 173 RMSF Asp 166 RMSF Asp 53 RMSF Tyr 34

RMSF Ser 185 RMSF Val 73 RMSF Tyr 34 RMSF Thr 167

RMSF Asp 158 RMSF His 82 RMSF Ala 165 RMSF Ala 98

Physicochemical model DEPR Leu 4 DEPR Val 139 DEPR Leu 4 DEPR His 51

DEPR His 51 DEPR Thr 153 DEPR Phe 50 DEPR Thr 160

DEPR Gln 141 DEPR Val 128 DEPR Thr 160 DEPR Gly 162

DEPR Phe 106 DEPR Ser 179 DEPR Ala 79 DEPR Thr 153

DEPR Leu 182 DEPR His 71 DEPR Thr 142 DEPR Thr 142

DEPR Gly 162 DEPR Val 147 DEPR Ser 104 DEPR Tyr 41

Geometrical model B_I (AS) Leu 4 C_C138 Ser 74 B_I (AS) Leu 4 B_I (AS) Thr 142

B_I (AS) Thr 142 B_I (AS) Leu 4 B_I (AS) Thr 142 P_C (MCS) Gly 97

C_C138 Ala 161 B_P (MCS) Thr 160 C_C138 Val 157 B_I (AS) Leu 4

I_P (MCS) Ser 65 C_K96 Ala 25 C_C138 Ala 102 C_C138 Ala 161

C_D49 Val 131 C_D49 Asp 145 P_T (MCS) Leu 172 I_P (MCS) Ser 65

I_C (MCS) Thr 160 B_I (AS) Val 139 I_P (MCS) Phe 50 C_C138 Val 157

The descriptors selected in more than one model are in bold. The meaning of geometrical descriptors is available at S1 Appendix.

https://doi.org/10.1371/journal.pone.0235643.t002
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the WT-PZAse and the Cα of the residues of the AS and MCS were calculated and sorted to

highlight the closest positions to these points (Fig 3 and S2 Table). To select the closest posi-

tions a cutoff of 7 Å was arbitrarily chosen. The residues with positions included in the selected

descriptors close to at least one of the residues of the AS or MCS are Phe50, Ser74, Gly97,

Ala102, Val139, and Thr142 for the geometrical models, Phe50, His51, His71, Ser104, Val139,

Gln141, and Thr142 for the physicochemical models, and Val7, Phe50, Asp53, Val73, Ser74,

Ala98, Glu107, and Gly132 and for the stability models (NMA and MD). These positions

reflect the importance of the stability, electrostatic potential, and geometrical distances near

the AS/MCS, while the rest of positions the effect of long-range interactions in the kinetics

parameters of PZAse.

Discussion

In this study, we developed a method to predict PZAse kinetic parameters (kcat, Km, efficiency,

and activity) based on recognizing a mutation in the pncA coding gene sequence. Stability,

physicochemical, and geometrical descriptors got from the modeled 3D structure were used to

build multiple log-linear models to predict the kinetic parameters. Our weighted models can

predict the experimentally measured enzymatic kinetic parameters with high accuracy, with

adjusted R2 values ranging from 85.1% to 93.3%. These models confirmed to be robust after a

6-fold cross-validation analysis, with the models for activity and KM having the lowest mean

RMSE.

The kinetic parameters studied belong to two groups. A group related to the catalytic activ-

ity (kcat, efficiency, and activity) and a group related to substrate affinity (KM). Even though

efficiency depends inversely on KM, it showed to be highly correlated with kcat and activity.

While a low value for the group related to catalytic activity has a deleterious effect in the enzy-

matic reaction, the opposite is true for the group related to substrate affinity, where a high

value of KM implies that a higher concentration of substrate is needed to have the enzyme

working at its maximum velocity. In our data, the distribution of KM showed that most

mutants have similar values to the WT-PZAse, while only six mutants (D49N, D136G, V180F,

Table 3. Summary statistics of models.

kcat KM

p-value R2 Adjusted R2 <RMSE> p-value R2 Adjusted R2 <RMSE>

Weighted Model (NMA) 7.44E-16 0.897 0.887 0.5057 6.13E-14 0.864 0.851 0.1586

Weighted Model (MD) 8.70E-18 0.922 0.914 0.4299 3.20E-14 0.869 0.857 0.1562

Stability model (NMA) 7.76E-03 0.432 0.314 1.2514 6.93E-04 0.531 0.434 0.3441

Stability model (MD) 4.52E-05 0.619 0.54 1.0708 8.67E-06 0.662 0.593 0.2764

Physicochemical model 1.85E-08 0.784 0.739 0.9215 3.54E-08 0.773 0.727 0.247

Geometrical model 2.26E-11 0.866 0.838 1.3692 4.11E-08 0.771 0.724 0.265

Efficiency Activity

p-value R2 Adjusted R2 <RMSE> p-value R2 Adjusted R2 <RMSE>

Weighted Model (NMA) 4.34E-17 0.92 0.912 0.4265 3.77E-16 0.901 0.892 0.4013

Weighted Model (MD) 6.80E-19 0.939 0.933 0.3707 4.45E-16 0.9 0.891 0.4001

Stability model (NMA) 4.51E-03 0.467 0.353 1.2189 2.05E-02 0.384 0.257 1.0487

Stability model (MD) 9.96E-06 0.671 0.601 0.9883 7.61E-05 0.603 0.521 0.9065

Physicochemical model 4.01E-10 0.845 0.812 1.1132 4.02E-08 0.771 0.724 0.91

Geometrical model 1.16E-12 0.899 0.877 1.2126 1.68E-08 0.785 0.741 1.0839

P-value refers to significance; R2 is the coefficient of determination and <RMSE> is the mean of Root-Mean-Square Error.

https://doi.org/10.1371/journal.pone.0235643.t003
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Fig 3. Distance matrix of WT-PZAse residues position against AS and MCS. The distance between pairs of Cα is sorted ascendingly. The matrix shows the 13

positions closest to the residues of the AS and MCS. The residues whose position is included in the selected descriptors are depicted in red for (A) stability models

(NMA and MD), (B) physicochemical models, and (C) geometrical models.

https://doi.org/10.1371/journal.pone.0235643.g003
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H71Y, T160K, and V139A) have values of KM 2-fold greater than the WT. For kcat, efficiency,

and activity, several mutants have very low values, showing that missense mutations affect cat-

alytic activity rather than substrate affinity most of the time.

Regarding the physicochemical descriptors, the cavity formed by the AS and the MCS of

PZAse is rich in residues with a negative charge at neutral pH. At physiological pH, POA and

PZA are negatively charged (pKa 2.9 and 0.5 respectively [72]. Based on this evidence, we

hypothesize that an increase in the DEPR (compared to the WT-PZAse) at positions close to

this cavity will increase the affinity for PZA of the enzyme but decrease the release rate of the

POA. This is important to consider, since PZA is a prodrug and does not act as an inhibitor,

but needs to be hydrolyzed into POA and then released from the PZAse to perform its lethal

effect.

Theoretically, increasing or decreasing DEPR may eventually cause enzymatic dysfunction.

Interestingly, variation in the DEPR of positions His51 and His71 from MCS are negatively

correlated with kcat, and KM, respectively, showing that a higher DEPR will reduce the catalytic

activity (slower release) and the dissociation constant (stronger interaction, lower amounts of

substrate needed to saturate the enzyme). Also, for DEPR, three positions belonging to the

MCS (Asp49, His51, and His57) showed a statistically significant difference, suggesting that

the difference in electrostatic potentials could be informative for classifying functional and

non-functional PZAses. To confirm this hypothesis, further experimental studies are required

to evaluate a larger number of mutants.

Our stability data from NMA and MD approaches shows that the fluctuation profile is over-

all conserved among PZAses, with the flap region from His51 to His71 being the most flexible

part of the enzyme, as previously reported [45–49,73]. This loop is in the binding’s lid cavity

and contributes to the ability of PZA to enter the PZAse active site cavity [13]. At the predic-

tion level, stability predicted by MD simulations performed better than that predicted by

NMA. This could be because of the different degrees of variation detected by NMA and MD.

While NMA detects almost no variation in the fluctuation profiles of PZAses (S4 Fig), MD

allows a better resolution of the effect of punctual mutations in the stability of PZAse. How-

ever, in terms of prediction time, NMA based stability and weighted models will provide much

faster estimates than MD based models [51].

After dichotomizing the PZAses in two groups using a value of relative-kcat of 50% as a cut-

off (high relative-kcat group and low relative-kcat group), we did not find statistically significant

differences in the RMSF values, but for the fluctuation scores, only one position from the flap

region (Pro70) was significant. Although previous studies showed that PZAse function

decreases with an increment in the RMSF of the flap region, [42–46,74], we did not find statis-

tical evidence for that. This apparent discrepancy may occur because other studies only com-

pared the fluctuation profiles visually with few data or performing no statistical test.

A previous study from our group reported a predictive model based on 16 geometrical

descriptors that predicted PZAse kinetic parameters, explaining approximately 87% of the var-

iability in kcat [38]. Compared to our previous study and based on the recent availability of the

WT-PZAse crystal structure [13], we considered Lys96 as part of the AS, and His57 as part of

the MCS. Therefore, this study is a considerable improvement in our previous work, plus it

includes stability and physicochemical aspects, besides the geometric descriptors. In contrast

to previous studies based on a small number of mutants [42–46,74–76], our study includes a

deeply statistical analysis based on 500 nanoseconds MD of every mutant PZAse. Therefore,

discrepancies are expected to occur.

PZAse is a metalloenzyme that in-vitro could be activated by the coordination of several

ions in the MCS [77,78]. Co, Cd, and Mn are the most important metal cofactors in vitro,

although they may not have a significant effect in vivo given its low abundance in the
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intracellular environment. In vivo, previous studies found Fe [78] and Zn [77] to be coordi-

nated with the PZAse in MTB. Therefore, it is likely that several metals may coordinate PZAse

in vivo, with different abundances. Because of the lack of knowledge of this exact distribution

of coordinated metals, plus the high computational demand for including the several 3D struc-

tural models for each metal coordinated, we decided as a first approach to only consider the

apo-PZAse structure, in our calculations. We believe that the correct selection of metal coordi-

nated PZAse and quantum mechanics calculations [79,80], may improve the prediction of the

enzymatic function. For this, further studies are required.

There are several limitations during the development of a predictive model as the one

described here. The experimental measurements of the kinetic parameters are highly variable

between different batches; however, we controlled this by normalizing the parameters against

the corresponding to the WT-PZAse. Also, available information about mutated PZAses and

the measurement of its kinetic parameters is scarce compared with information related to the

strain susceptibility. Also, we have focused our models on predicting enzymatic parameters of

point mutations in PZAse without considering insertions or deletions, because the effects of

this kind of mutations are not reliably predicted.

Based on this data, several studies pretended to dichotomous predict PZA susceptibility

(resistant or susceptible) only from mutations in PZAse detected by pncA sequencing [81–83].

These approaches may be biased, with a risk of missing the correct physical/biological implica-

tions of PZAse mutations because PZA resistance could also be attributed to other factors

besides PZAse activity itself, like differential PZAse expression levels [84] or dysfunction in

other targets like panD [85], and many others still unknown [86]. This problem is explicit

when a strain has PZAse mutations that do not affect the PZAse enzymatic function, but muta-

tions in other critical genes [14,87,88] that generate PZA resistance in the bacteria. These cases

would erroneously attribute PZAse mutations that do not affect the enzymatic function, the

apparent effect of causing PZA resistance. This approach could be improved using whole-

genome sequencing [89–92], but the expression and environmental factors are still present.

For these reasons, and considering that resistance to PZA can be attributed to multiple

mechanisms, it is important to first predict PZAse enzymatic function from the pncA
sequence. The only certain interpretation is to infer resistance to PZA when the pncA mutation

causes a significant loss of enzymatic function. However, those mutations that do not signifi-

cantly affect function, do not necessarily predict that the bacterium is susceptible, as mutations

in genes associated with other resistance mechanisms may be present. In these cases, it is

important to analyze mutations in other genes associated with alternative mechanisms of resis-

tance to PZA.

In conclusion, the present work we show the construction of log-linear models based on

geometrical, physicochemical, and stability descriptors derived from the modeled structure of

the M. tuberculosis PZAse. This is useful to predict functional kinetic parameters of PZAse

related to PZA resistance, based on the high certainty of PZAse dysfunction, from only the

pncA gene sequence. This can be an important tool to contribute to efforts to detect early resis-

tance to PZA.

Supporting information

S1 Fig. Ribbon representation of the structure of the M. tuberculosis PZAse protein.

Highlighted in pink, residues from alpha helixes; in yellow, residues from beta-strands and in

orange, residues from the flap region.

(TIF)
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S2 Fig. Tridimensional representations of geometrical reference points. (A) Points related

to the active site (AS) and (B) points related to the metal coordination site (MCS). Vr repre-

sents the resultant vector of each residue.

(TIF)

S3 Fig. DEPR profiles for WT and thirty-five mutated PZAses. Profiles of wild-type and

mutated PZAses sorted by relative-kcat, each plot represent the difference in electrostatic

potential respect to the wild-type for a given position.

(TIF)

S4 Fig. NMA fluctuation profiles for WT and thirty-five mutated PZAses. Profiles of wild-

type and mutated PZAses sorted by relative-kcat.

(TIF)

S5 Fig. MD RMSD profiles for WT and thirty-five mutated PZAses. Profiles of wild-type

and mutated PZAses sorted by relative-kcat, trajectories of 500 ns molecular dynamics of the

entire protein were used as input.

(TIF)

S6 Fig. MD RMSF profiles for WT and thirty-five mutated PZAses. Profiles of wild-type

and mutated PZAses sorted by relative-kcat, trajectories of the last 100ns of a 500ns molecular

dynamics of the protein backbone were used as input.

(TIF)

S7 Fig. Per-position Boxplots for stability and physicochemical descriptors. In blue, PZAses

with a kcat greater or equal than 50. In red, PZAses with a kcat lower than 50. (A, B) Fluctua-

tions from NMA analysis. (C, D) RMSFs of the last 100ns from MD analysis (E, F) DEPRs

from the MutantElec server.

(TIF)

S8 Fig. Stability model (NMA) for kcat. (A) Table with estimated coefficients and statistics for

the selected stability descriptors (fluctuations). (B) Comparison of statistics (R2, Adjusted R2,

P-value, and RMSE) between the stability model and a random stability model. (C) Fitted val-

ues and experimental values for mean log10 (relative-kcat). (D) Heatmap showing the correla-

tion coefficient between the selected descriptors. (E) Confidence intervals for the coefficients

of each stability descriptor. (F) Distribution of RMSEs calculated by 6-fold cross-validation for

the stability model (red) and a random model (blue).

(TIF)

S9 Fig. Stability model (MD) for kcat. (A) Table with estimated coefficients and statistics for

the selected stability descriptors (RMSFs). (B) Comparison of statistics (R2, Adjusted R2, P-

value, and RMSE) between the stability model and a random stability model. (C) Fitted values

and experimental values for mean log10 (relative-kcat). (D) Heatmap showing the correlation

coefficient between the selected descriptors. (E) Confidence intervals for the coefficients of

each stability descriptor. (F) Distribution of RMSEs calculated by 6-fold cross-validation for

the stability model (red) and a random model (blue).

(TIF)

S10 Fig. Physicochemical model for kcat. (A) Table with estimated coefficients and statistics

for the selected physicochemical descriptors (DEPRs) (B) Comparison of statistics (R2,

Adjusted R2, P-value, and RMSE) between the physicochemical model and a random physico-

chemical model. (C) Fitted values and experimental values for mean log10 (relative-kcat). (D)

Heatmap showing the correlation coefficient between the selected descriptors. (E) Confidence
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intervals for the coefficients of each physicochemical descriptor. (F) Distribution of RMSEs

calculated by 6-fold cross-validation for the physicochemical model (red) and a random model

(blue).

(TIF)

S11 Fig. Geometrical model for kcat. (A) Table with estimated coefficients and statistics for

the selected geometrical descriptors (B) Comparison of statistics (R2, Adjusted R2, P-value,

and RMSE) between the geometrical model and a random geometrical model. (C) Fitted val-

ues and experimental values for mean log10 (relative-kcat). (D) Heatmap showing the correla-

tion coefficient between the selected descriptors. (E) Confidence intervals for the coefficients

of each geometrical descriptor. (F) Distribution of RMSEs calculated by 6-fold cross-validation

for the geometrical model (red) and a random model (blue).

(TIF)

S12 Fig. Stability model (NMA) for KM. (A) Table with estimated coefficients and statistics

for the selected stability descriptors (fluctuations), (B) Comparison of statistics (R2, Adjusted

R2, P-value, and RMSE) between the stability model and a random stability model. (C) Fitted

values and experimental values for mean log10 (relative-KM). (D) Heatmap showing the corre-

lation coefficient between the selected descriptors. (E) Confidence intervals for the coefficients

of each stability descriptor. (F) Distribution of RMSEs calculated by 6-fold cross-validation for

the stability model (red) and a random model (blue).

(TIF)

S13 Fig. Stability model (MD) for KM. (A) Table with estimated coefficients and statistics for

the selected stability descriptors (RMSFs). (B) Comparison of statistics (R2, Adjusted R2, P-

value, and RMSE) between the stability model and a random stability model. (C) Fitted values

and experimental values for mean log10 (relative-KM). (D) Heatmap showing the correlation

coefficient between the selected descriptors. (E) Confidence intervals for the coefficients of

each stability descriptor. (F) Distribution of RMSEs calculated by 6-fold cross-validation for

the stability model (red) and a random model (blue).

(TIF)

S14 Fig. Physicochemical model for KM. (A) Table with estimated coefficients and statistics

for the selected physicochemical descriptors (DEPRs). (B) Comparison of statistics (R2,

Adjusted R2, P-value, and RMSE) between the physicochemical model and a random physico-

chemical model. (C) Fitted values and experimental values for mean log10 (relative-KM). (D)

Heatmap showing the correlation coefficient between the selected descriptors. (E) Confidence

intervals for the coefficients of each physicochemical descriptor. (F) Distribution of RMSEs

calculated by 6-fold cross-validation for the physicochemical model (red) and a random model

(blue).

(TIF)

S15 Fig. Geometrical model for KM. (A) Table with estimated coefficients and statistics for

the selected geometrical descriptors. (B) Comparison of statistics (R2, Adjusted R2, P-value,

and RMSE) between the geometrical model and a random geometrical model. (C) Fitted val-

ues and experimental values for mean log10 (relative-KM). (D) Heatmap showing the correla-

tion coefficient between the selected descriptors. (E) Confidence intervals for the coefficients

of each geometrical descriptor. (F) Distribution of RMSEs calculated by 6-fold cross-validation

for the geometrical model (red) and a random model (blue).

(TIF)
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S16 Fig. Stability model (NMA) for efficiency. (A) Table with estimated coefficients and sta-

tistics for the selected stability descriptors (fluctuations). (B) Comparison of statistics (R2,

Adjusted R2, P-value, and RMSE) between the stability model and a random stability model.

(C) Fitted values and experimental values for mean log10 (relative efficiency). (D) Heatmap

showing the correlation coefficient between the selected descriptors. (E) Confidence intervals

for the coefficients of each stability descriptor. (F) Distribution of RMSEs calculated by 6-fold

cross-validation for the stability model (red) and a random model (blue).

(TIF)

S17 Fig. Stability model (MD) for efficiency. (A) Table with estimated coefficients and statis-

tics for the selected stability descriptors (RMSFs). (B) Comparison of statistics (R2, Adjusted

R2, P-value, and RMSE) between the stability model and a random stability model. (C) Fitted

values and experimental values for mean log10 (relative efficiency). (D) Heatmap showing the

correlation coefficient between the selected descriptors. (E) Confidence intervals for the coeffi-

cients of each stability descriptor. (F) Distribution of RMSEs calculated by 6-fold cross-valida-

tion for the stability model (red) and a random model (blue).

(TIF)

S18 Fig. Physicochemical model for efficiency. (A) Table with estimated coefficients and sta-

tistics for the selected physicochemical descriptors (DEPRs). (B) Comparison of statistics (R2,

Adjusted R2, P-value, and RMSE) between the physicochemical model and a random physico-

chemical model. (C) Fitted values and experimental values for mean log10 (relative efficiency).

(D) Heatmap showing the correlation coefficient between the selected descriptors. (E) Confi-

dence intervals for the coefficients of each physicochemical descriptor. (F) Distribution of

RMSEs calculated by 6-fold cross-validation for the physicochemical model (red) and a ran-

dom model (blue).

(TIF)

S19 Fig. Geometrical model for efficiency. (A) Table with estimated coefficients and statistics

for the selected geometrical descriptors. (B) Comparison of statistics (R2, Adjusted R2, P-value,

and RMSE) between the geometrical model and a random geometrical model. (C) Fitted val-

ues and experimental values for mean log10 (relative efficiency). (D) Heatmap showing the cor-

relation coefficient between the selected descriptors. (E) Confidence intervals for the

coefficients of each geometrical descriptor. (F) Distribution of RMSEs calculated by 6-fold

cross-validation for the geometrical model (red) and a random model (blue).

(TIF)

S20 Fig. Stability model (NMA) for activity. (A) Table with estimated coefficients and statis-

tics for the selected stability descriptors (fluctuations). (B) Comparison of statistics (R2,

Adjusted R2, P-value, and RMSE) between the stability model and a random stability model.

(C) Fitted values and experimental values for mean log10 (relative activity). (D) Heatmap

showing the correlation coefficient between the selected descriptors. (E) Confidence intervals

for the coefficients of each stability descriptor. (F) Distribution of RMSEs calculated by 6-fold

cross-validation for the stability model (red) and a random model (blue).

(TIF)

S21 Fig. Stability model (MD) for activity. (A) Table with estimated coefficients and statistics

for the selected stability descriptors (RMSFs). (B) Comparison of statistics (R2, Adjusted R2, P-

value, and RMSE) between the stability model and a random stability model. (C) Fitted values

and experimental values for mean log10 (relative activity). (D) Heatmap showing the correla-

tion coefficient between the selected descriptors. (E) Confidence intervals for the coefficients
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of each stability descriptor. (F) Distribution of RMSEs calculated by 6-fold cross-validation for

the stability model (red) and a random model (blue).

(TIF)

S22 Fig. Physicochemical model for activity. (A) Table with estimated coefficients and statis-

tics for the selected physicochemical descriptors (DEPRs). (B) Comparison of statistics (R2,

Adjusted R2, P-value, and RMSE) between the physicochemical model and a random physico-

chemical model. (C) Fitted values and experimental values for mean log10 (relative activity).

(D) Heatmap showing the correlation coefficient between the selected descriptors. (E) Confi-

dence intervals for the coefficients of each physicochemical descriptor. (F) Distribution of

RMSEs calculated by 6-fold cross-validation for the physicochemical model (red) and a ran-

dom model (blue).

(TIF)

S23 Fig. Geometrical model for activity. (A) Table with estimated coefficients and statistics

for the selected geometrical descriptors. (B) Comparison of statistics (R2, Adjusted R2, P-

value00, and RMSE) between the geometrical model and a random geometrical model. (C) Fit-

ted values and experimental values for mean log10 (relative activity). (D) Heatmap showing the

correlation coefficient between the selected descriptors. (E) Confidence intervals for the coeffi-

cients of each geometrical descriptor. (F) Distribution of RMSEs calculated by 6-fold cross-val-

idation for the geometrical model (red) and a random model (blue).

(TIF)

S24 Fig. Weighted model (NMA) for kcat. (A) Table with estimated coefficients and statistics

for the individual predictions of stability (NMA), physicochemical and geometrical models.

(B) Comparison among the individual models and the weighted model (NMA) for kcat. (C)

Fitted values and experimental values for mean log10 (relative-kcat) for the weighted model

(NMA). (D) Distribution of RMSE calculated by 6-fold cross-validation for the weighted and

individual models.

(TIF)

S25 Fig. Weighted model (MD) for kcat. (A) Table with estimated coefficients and statistics

for the individual predictions of stability (MD), physicochemical and geometrical models. (B)

Comparison among the individual models and the weighted model (MD) for kcat. (C) Fitted

values and experimental values for mean log10 (relative-kcat) for the weighted model (MD).

(D) Distribution of RMSE calculated by 6-fold cross-validation for the weighted and individual

models.

(TIF)

S26 Fig. Weighted model (NMA) for KM. (A) Table with estimated coefficients and statistics

for the individual predictions of stability (NMA), physicochemical and geometrical models.

(B) Comparison among the individual models and the weighted model (NMA) for KM. (C) Fit-

ted values and experimental values for mean log10 (relative- KM) for the weighted model

(NMA). (D) Distribution of RMSE calculated by 6-fold cross-validation for the weighted and

individual models.

(TIF)

S27 Fig. Weighted model (MD) for KM. (A) Table with estimated coefficients and statistics

for the individual predictions of stability (MD), physicochemical and geometrical models. (B)

Comparison among the individual models and the weighted model (MD) for KM. (C) Fitted

values and experimental values for mean log10 (relative-KM) for the weighted model (MD).

(D) Distribution of RMSE calculated by 6-fold cross-validation for the weighted and individual
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models.

(TIF)

S28 Fig. Weighted model (NMA) for efficiency. (A) Table with estimated coefficients and

statistics for the individual predictions of stability (NMA), physicochemical and geometrical

models. (B) Comparison among the individual models and the weighted model (NMA) for

efficiency. (C) Fitted values and experimental values for mean log10 (relative efficiency) for the

weighted model (NMA). (D) Distribution of RMSE calculated by 6-fold cross-validation for

the weighted and individual models.

(TIF)

S29 Fig. Weighted model (MD) for efficiency. (A) Table with estimated coefficients and sta-

tistics for the individual predictions of stability (MD), physicochemical and geometrical mod-

els. (B) Comparison among the individual models and the weighted model (MD) for

efficiency. (C) Fitted values and experimental values for mean log10 (relative efficiency) for the

weighted model (MD). (D) Distribution of RMSE calculated by 6-fold cross-validation for the

weighted and individual models.

(TIF)

S30 Fig. Weighted model (NMA) for activity. (A) Table with estimated coefficients and sta-

tistics for the individual predictions of stability (NMA), physicochemical and geometrical

models. (B) Comparison among the individual models and the weighted model (NMA) for

activity. (C) Fitted values and experimental values for mean log10 (relative activity) for the

weighted model (NMA). (D) Distribution of RMSE calculated by 6-fold cross-validation for

the weighted and individual models.

(TIF)

S31 Fig. Weighted model (MD) for activity. (A) Table with estimated coefficients and statis-

tics for the individual predictions of stability (MD), physicochemical and geometrical models.

(B) Comparison among the individual models and the weighted model (MD) for activity. (C)

Fitted values and experimental values for mean log10 (relative activity) for the weighted model

(MD). (D) Distribution of RMSE calculated by 6-fold cross-validation for the weighted and

individual models.

(TIF)

S1 Dataset. Dataset of geometrical descriptors per residue of WT-PZAse and 35 mutants.

In gray, mutants from the second batch.

(XLSX)

S2 Dataset. Dataset of physicochemical descriptors per residue of WT-PZAse and 35

mutants. In gray, mutants from the second batch.

(XLSX)

S3 Dataset. Dataset of fluctuations per residue from NMA analysis of WT-PZAse and 35

mutants. In gray, mutants from the second batch.

(XLSX)

S4 Dataset. Dataset of fluctuations per residue from MD analysis of WT-PZAse and 35

mutants. In gray, mutants from the second batch.

(XLSX)
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S1 Table. Absolute and relative standard errors for kinetic parameters of two batches of

mutated PZAses from M. tuberculosis.
(XLSX)

S2 Table. The distance matrix for selected residues for each model to the residues of AS

and MCS. The descriptors that were selected in more than one model are in bold.

(XLSX)

S1 Appendix. List of geometrical descriptors used in geometrical modeling. A generalized

meaning of each of them.

(XLSX)
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