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Objective: Spinal fusion is one of the most common surgical interventions for spine reconstruction. Despite the
efforts to promote osteogenesis after spinal fusion, osteogenesis after spinal fusion remains a clinical challenge and
new methods are still needed. The bone morphogenetic protein-2 (BMP-2) is a widely reported factor that can facilitate
the osteogenesis in spinal fusion. In previous research, we found that the delivery of chitosan nanospheres could pro-
mote the effects of BMP-2 on osteogenic activity. The coralline hydroxyapatite (CHA) is one of the most frequently
used implants in bone fusion. However, up to now no study has focused on the osteogenic efficacy of the CHA com-
posite with recombinant human BMP-2 (rhBMP-2)-loaded chitosan nanospheres. This study aimed to investigate the
effects of the CHA implant with rhBMP-2-loaded chitosan nanospheres on osteogenesis in spinal fusion.

Methods: The rhBMP-2-loaded microspheres and CHA composite (rhBMP-2 microspheres/CHA) were prepared and
were used for implantation of the rats. All SD rats were divided into four groups: the rhBMP-2 microspheres/CHA com-
posite group (containing 0.5 mg rhBMP-2), the rhBMP-2-loaded CHA (rhBMP-2/CHA) composite group (containing
0.5 mg rhBMP-2), the blank CHA group, and the negative control group. The microsphere morphology was scanned
and analyzed using a scanning electron microscope. Micro-computed tomography examination and three-dimensional
reconstruction were performed 4 weeks after the surgery. Hematoxylin and eosin staining was conducted for histologi-
cal analysis. Both alkaline phosphatase (ALP) and calcium content were measured.

Results: The rhBMP-2-loaded CHA (rhBMP-2/CHA) composite was successfully prepared. Spherical regularity and a
smooth and unwrinkled surface of the spheres were observed in all chitosan (CS)/rhBMP-2 microspheres. No side effects,
infections, or abnormal behaviors were found in the animals. After 4 weeks of surgery, obvious new bone formation and
bone fusion could be observed around the implant in both the rhBMP-2 microspheres/CHA composite group and the
rhBMP-2/CHA composite group. No ectopic osteogenesis was found in the vertebral canal or other muscle tissues. After
4 weeks of implantation, in both the rhBMP-2 microspheres/CHA composite group and the rhBMP-2/CHA composite group,
osteoid tissues could be found, and bone cells, bone marrow, and trabecular bone turned into mature sclerotin, obvious
bone tissue formation could be also seen. Both ALP activity and calcium content in the rhBMP-2 microspheres/CHA com-
posite group (6.52 ± 0.50 kat/g and 17.54 ± 2.49 μg/mg) were significantly higher than in all other groups.

Conclusion: The composite with rhBMP-2-loaded CS nanospheres could enhance osteogenic efficacy and increase
the ALP activity and calcium content. These results might provide a novel method for osteogenesis in spinal fusion
and offer new insight into the role of BMP-2 in osteogenesis.
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Introduction

Spinal fusion is one of the most common surgical inter-
ventions for spine reconstruction, and is widely applied

in a variety of spine conditions, including degeneration,
deformity, tumors, and trauma1–3. Osteogenic ability after
surgery is an important index for the evaluation of spinal
fusion4. Many methods are reported to be of benefit in pro-
moting osteogenesis after spinal fusion. Lin et al. report that
the PLGA/β-TCP composite scaffold incorporating
salvianolic acid B could promote bone fusion by angiogenesis
and osteogenesis in a rat spinal fusion model5. Johnson
(2011) found that oxysterols had the ability to promote osteo-
genesis, protect lipogenesis, and induce spinal fusion6. In
recent years, spinal instrumentation has been developed to
enhance osteogenesis and fusion7. However, despite the stud-
ies that have been produced, osteogenesis after spinal fusion
remains a clinical challenge and new methods are still needed
to enhance the efficacy of osteogenesis after spinal fusion.

Among the factors involved in the progress of osteogen-
esis, the bone morphogenetic protein-2 (BMP-2) is a widely
reported factor that can facilitate the osteogenesis8–10. BMP-2
belongs to the BMP family, which are osteoinductive proteins
originally identified in demineralized bone11. Most BMP,
including BMP-2, are proven to promote bone healing with-
out bone tissue transferring12. It is considered that BMP-2 can
promote the healing process of segmental bone defects.
Numerous studies also show BMP-2 can facilitate the osteo-
genic ability of bone marrow stromal cells (BMSCs)13. In
many other studies, BMP-2 is reported to promote osteogene-
sis and bone regeneration. Kolk et al. show that both recombi-
nant human BMP-2 (rhBMP-2) and plasmid DNA of BMP-2
can facilitate the bone regeneration behavior14. Xie et al. dem-
onstrate that mineralized short nanofibers coupled with
BMP-2 peptides promote the alveolar bone regeneration15.
Despite the osteogenic ability, the application of BMP-2 is
limited due to its short circulation half-life16. BMP-2 easily
dilutes and interacts with enzymes in blood, which further
leads to its inactivation, if injected alone by intravenous injec-
tion17. Injection of BMP-2 can also cause side effects like the
burst effect, resulting in the soft tissue hematoma and bone
absorption phenomenon18. Thus, to extend the circulation
time and to reduce possible side effects, it is necessary to
develop appropriate delivery systems for BMP-2.

In recent decade, diverse local delivery systems are
reported to enhance the bioavailability of BMP-2, such as the
chitosan (CS) nanospheres19. Bouyer et al. reported an
adaptable polymeric scaffold that could deliver tunable doses
of BMP-2 and induced volumetric bone regeneration20.
Loozen et al. (2019) compared inclusion of bone progenitor
cells with non-osteogenic target cells in gene delivery con-
structs and found that non-viral gene delivery of BMP-2 was

a potential method to induce transgene expression21. Het-
tiaratchi (2020) found that heparin-mediated delivery of
BMP-2 improved spatial localization of bone regeneration22.
In our previous research, we demonstrated that the
CS/rhBMP-2 microsphere delivery system could remarkably
enhance the induction and promotion effects of rhBMP-2 in
ectopic osteogenesis23. However, the effects of CS/rhBMP-2
microsphere on spinal fusion are still unknown.

For the implant system, it was found that the polyelec-
trolyte multilayer film coating loaded with BMP-2 on tita-
nium and PEEK implants could facilitate the bone growth;
however, a high dose of BMP-2 might result in localized and
temporary bone impairment24. The combination of the
BMP-2 delivery system and implants is also reported in sev-
eral studies. Teng et al. show that biomimetic coating incor-
porated with BMP-2co could enhance the peri-implant
osteogenesis for zirconia implants25. Another study demon-
strated that micro-porous polyetheretherketone implants
decorated with BMP-2 via phosphorylated gelatin coating
could remarkably enhance the cell adhesion and osteogenic
differentiation26. Among the delivery and implant systems,
the coralline hydroxyapatite (CHA) implant is one of the
most commonly used in bone fusion27, 28. Day et al. showed
that the human umbilical cord mesenchymal stem cells could
envelope the surface of the CHA/calcium carbonate micro-
particles and had high osteogenic differentiation capability29.
It was also found that by incorporating BMP-2 into a biomi-
metic coating, the biocompatibility and osteogenicability of
CHA could be improved30. However, up to now no study
has focused on the osteogenic efficacy of the CHA composite
with rhBMP-2-loaded chitosan nanospheres.

In the present study, we aimed to: (i) prepare the CHA
implant with rhBMP-2-loaded chitosan nanospheres; (ii)
evaluate its osteogenic efficacy in spinal fusion model; and
(iii) demonstrate the potential use of the CHA implant with
rhBMP-2-loaded chitosan nanospheres in spinal fusion treat-
ment. We demonstrated for the first time that the CHA
implant with rhBMP-2-loaded chitosan nanospheres could
enhance osteogenic efficacy and increase the alkaline phos-
phatase (ALP) activity and calcium content. These results
could provide a novel method for osteogenesis in spinal
fusion and provide a deeper understanding of the
CS/rhBMP-2 system.

Methods and Materials

Preparation of Chitosan Blank Microspheres and
Chitosan/Recombinant Human Bone Morphogenetic
Protein-2 Microspheres
The preparation of CS blank microspheres and CS/rhBMP-2
microspheres was performed as reported in a previous
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study23. Briefly, CS with a concentration of 1.52 mg/mL,
pH5.4, was obtained by mixing CS (molecular weight,
50,000–190,000; Aladdin Reagent, Shanghai, China), 1%
(v/v) acetic acid, and NaOH solution. The mixture was then
filtered and stirred for 1 h at room temperature. Then, 0.5
mg/mL thiamine pyrophosphate solution was added to form
the nanospheres. The mixture was then stirred for another
30 min and centrifuged for 15 min at 25,000 g at room tem-
perature. The precipitate was washed and dried under cryo-
genic conditions with reduced pressure.

The CS/rhBMP-2 microspheres were prepared by using
100 mg dried CS blank microspheres and 5 mg rhBMP-2,
followed by addition of 25 mL double-distilled water, stirring
and centrifugation for 15 min at 25,000 × g at room
temperature.

Characterization of Chitosan/Recombinant Human Bone
Morphogenetic Protein-2 Microspheres
The microsphere morphology was scanned and analyzed
using a scanning electron microscope (S-4800; Hitachi,
Tokyo, Japan) and a laser diffraction particle size analyzer
(N5; Beckman Coulter, Brea, CA, USA). All experiments
were performed in triplicate.

Preparation of Recombinant Human Bone
Morphogenetic Protein-2-Loaded Chitosan Nanospheres
and Coralline Hydroxyapatite Composite
To obtain the rhBMP-2-loaded microspheres and CHA com-
posite (rhBMP-2microspheres/CHA), an appropriate amount
of the microspheres was added to 10 mL double distilled
water, before stirring for 5 min at room temperature. Then
the CHA artificial bone (pore size 100–250 μm, porosity rate
80%, produced by Guangdong Key Laboratory of Orthope-
dics and Implant Materials, China) was immersed into the
suspension and the water was removed under negative pres-
sure at 15 �C to form the rhBMP-2-loaded chitosan
nanospheres and CHA composite. For preparation of
rhBMP-2-loaded CHA composite (without CS micro-
spheres), rhBMP-2 with a concentration of 1.2 mg/mL was
added to the CHA artificial bone dropwise, and the water
was removed under negative pressure at 15 �C. The CHA
artificial bone composite was sterilized by irradiation of
3000 Gy 60Co and stored at 4�C prior to the experiments.

Animals, Treatment and General Observation
A total of 24 male Sprague Dawley (SD) rats were provided
by the Experimental Animal Center of Southern Medical
University (Guangzhou, China); they were 4 weeks old and
weighted 120–140 g. The rats were kept under a 12-h light/
dark cycle and at a constant temperature (23–25 �C) and
relative humidity (70%). All animals were housed in micro-
isolator cages with free access to food and water. The proto-
col of the present study was approved by the authors’
affiliation.

All rats were divided into four groups, with six rats in
each group: (i) the rhBMP-2microspheres/CHA composite

group (containing 0.5 mg rhBMP-2); (ii) the rhBMP-
2-loaded CHA (rhBMP-2/CHA) composite (containing
0.5 mg rhBMP-2); (iii) the blank CHA group; and (iv) the
negative control group, which was implanted with the same
size gelatin sponge instead of microspheres.

The rats were anesthetized with 50 m/kg ketamine and
5 mg/kg hydrochloride diazepam. Then the rats were fixed
on the operation table. The hair on their backs was cut off
and the skin was incised. After the L5 and L6 transverse pro-
cesses of spine were exposed, the right inferior margin of L5
and the right upper margin of L6 were worn away using a
high-speed grinding drill. Then the composite was implanted
between the L5 and L6 transverse processes. The incision was
sutured and penicillin (800 × 103 U/d) was used for protec-
tion from infection for the first 3 days after surgery.

Four weeks after the surgery, the rats were observed
for side effects, infections, or abnormal behaviors. The palpa-
tion method was used to detect the fusion position and the
joint instability.

Micro-Computed Tomography Assessment
The micro-computed tomography (CT) examination and
three-dimensional (3D) reconstruction were performed
4 weeks after the surgery using a micro-CT apparatus for
animals (Little Chalfont, UK). The formation of a continuous
bone bridge was considered successful fusion.

Histology
For histological analysis, the animals were killed at 4 weeks
after the surgery and tissues around the implants were
obtained and fixed in formalin buffer. Hematoxylin and
eosin (H&E) staining was applied to observe the histologic
morphology of the tissues using an inverted microscope.

Measurement of Alkaline Phosphatase Activity
The implants were taken out 4 weeks after the surgery. For
each animal, 0.5 g of tissue around the implants was
weighted and washed with deionized water. The ALP activity
was determined using an ALP Detection Kit (cat.
no. A059-2; Nanjing Jiancheng Biotechnology, Nanjing,
China) according to manufacturer’s protocols.

Measurement of the Calcium Content
The centrifugal precipitate was collected and digested, and
the calcium content of the tissues was determined using an
Atomic absorption spectrophotometer (i7500; Hitachi) apply-
ing the following formula: calcium content = calcium content
(μg)/sample wet weight (mg).

Statistical Analysis
The measurement data are expressed as the mean ± SD.
Comparison among three or more groups was performed
using one-way analysis of variance followed by Tukey’s post-
hoc test. P < 0.05 was considered to indicate a statistically
significant difference. All calculations were made using SPSS
20.0 (SPSS, Chicago, IL, USA).
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Results

Preparation and Characterization of Chitosan/
Recombinant Human Bone Morphogenetic Protein-2
Microspheres
The characterization of CS/rhBMP-2 microspheres is shown
in Fig. 1. Similar to our previous research, spherical regular-
ity and a smooth and unwrinkled surface of the spheres was
observed in all CS/rhBMP-2 microspheres, indicating suc-
cessful preparation of the CS/rhBMP-2 microspheres.

General Observation
Observation and palpation of the rats were undertaken. No
side effects, infections, or abnormal behaviors were found in
the animals. Using palpation, we found that at 4 weeks after
surgery, the fusion position of all rats in the rhBMP-2 micro-
spheres/CHA composite group and the rhBMP-2/CHA com-
posite group showed good fusion, with no joint instability
observed.

Micro-Computed Tomography Evaluation for Fusion of
the Coralline Hydroxyapatite Composite
To evaluate fusion of the CHA composite, micro-CT and 3D
reconstruction were performed. Four weeks after surgery,
obvious new bone formation and bone fusion could be
observed around the implant in both the rhBMP-2 micro-
spheres/CHA composite group and the rhBMP-2/CHA com-
posite group (Fig. 2). No ectopic osteogenesis was found in
the vertebral canal or other muscle tissues. No new bone for-
mation or bone fusion was observed in the CHA blank group
or the negative group. This result suggested that rhBMP-2
significantly facilitated the bone fusion of the CHA
composite.

Histological Assay
Based on H&E staining, after 4 weeks of implantation, in
both the rhBMP-2 microspheres/CHA composite group and
the rhBMP-2/CHA composite group, osteoid tissues could be
found, and bone cells, bone marrow, and trabecular bone
turned into mature sclerotin; obvious bone tissue formation

Fig 1 Characterization of chitosan (CS)/recombinant human bone morphogenetic protein-2 (rhBMP-2) microspheres. The CS/rhBMP-2 microspheres

under transmission electron microscopy (TEM). Spherical regularity and smooth and unwrinkled surface of the spheres were observed in all

microspheres.

1950
ORTHOPAEDIC SURGERY

VOLUME 12 • NUMBER 6 • DECEMBER, 2020
RHBMP-2-LOADED CHITOSAN IMPLANT IN SPINAL FUSION



could be also seen (Fig. 3). However, no bone tissue forma-
tion was observed around the implants in the CHA blank
group and the negative group, further indicating the promo-
tion of rhBMP-2 for bone fusion of the CHA composite.

Measurement of Alkaline Phosphatase Activity and
Calcium Content
Finally, we evaluated the ALP activity and calcium content
in rats of different groups. As shown in Table 1, both ALP
activity and calcium content in the rhBMP-2 microspheres/
CHA composite group were significantly higher than in all
other groups (P < 0.05). The rhBMP-2/CHA composite
group also showed remarkably higher values of ALP activity
and calcium content than the CHA blank and the negative
groups (P < 0.05). These results suggested that the rhBMP-2
microsphere-loaded CHA composite had the best ability for
spinal fusion.

Discussion

The osteogenesis after spinal fusion remains a challenge in
clinic. In the present study, we demonstrated for the first

time that rhBMP-2-loaded chitosan nanospheres could facili-
tate the spinal fusion process without any side effects.

The effect of BMP-2 on bone fusion has already been
reported in many studies. Salehi (2018) reported that BMP-2
could induce bone formation in spinal fusion and anti-
inflammatory peptides could promote the effect31. Park et al.
also demonstrated that BMP-2 could enhance the early bone
formation in spine fusion using a rat ovariectomy osteoporo-
sis model32. Some other studies also reported that application
of BMP-2 in spinal fusion might also cause ectopic osteogen-
esis33 and might be associated with increased risk of cancer,
which is still controversial34. However, up to now, no study
has focused on the spinal fusion effect of rhBMP-2-loaded
chitosan nanospheres. In this research, we successfully pre-
pared CHA composite with rhBMP-2-loaded chitosan

Fig 2 Micro-computed tomography (CT) evaluation for fusion of the coralline hydroxyapatite (CHA) composite. CT and three-dimensional

reconstruction for different groups. The red cycle showed the fusion place of the implant. New bone formation and bone fusion could be observed

around the implant in both the recombinant human bone morphogenetic protein-2 (rhBMP-2) microspheres/CHA composite group and the rhBMP-2/

CHA composite group. No ectopic osteogenesis was found in the vertebral canal or other muscle tissue ×5.
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nanospheres and found that rhBMP-2-loaded chitosan
nanospheres could facilitate the spinal fusion process.

Chitosan nanospheres are considered a good carrier
for BMP-2. Refaat et al. demonstrated that binding with
COMP could significantly enhance the efficacy of BMP and
reduce the dose of BMP in spinal fusion35. In a long-term
study, authors found that long-term delivery of BMP-2 by
heparin-conjugated PLGA nanospheres could improve the
osteogenic efficacy of BMP-236. In our previous research, we
also found that BMP-2-loaded chitosan nanospheres could
enhance the ectopic osteogenic ability of rats, and chitosan
nanospheres themselves did not change the ectopic osteogen-
esis ability23. We also demonstrated that microspheres based
on chitosan–dextran sulfate polyion complexes were a highly
efficient vehicle for delivery of rhBMP-2 protein and could
promote the osteogenesis, and chitosan nanospheres them-
selves did not influence the osteogenesis37. All these results
indicated that chitosan could enhance the effects of BMP-2

Fig 3 Histological assay. Hematoxylin and eosin staining for tissues around the implant in different groups. Osteoid tissues, bone cells, bone

marrow, trabecular bone turning into mature sclerotin, and bone tissue formation could be seen in both the recombinant human bone morphogenetic

protein-2 (rhBMP-2) microspheres/coralline hydroxyapatite (CHA) composite group and the rhBMP-2/CHA composite group. No bone tissue formation

was observed around the implants in the CHA blank group and the negative group.

TABLE 1 ALP activity and calcium content in different groups
(mean ± SD)

Groups ALP (kat/g)
Calcium
(μg/mg)

rhBMP-2 microspheres/CHA
composite

6.52 ± 0.50 17.54 ± 2.49

rhBMP-2/CHA composite 5.86 ± 0.35 13.97 ± 3.45
Blank CHA 5.86 ± 0.35 4.59 ± 1.15
Negative control 5.86 ± 0.35 4.37 ± 1.12
F-value 42.959 39.242
P-value 0.000 0.000

ALP, alkaline phosphatase; CHA, coralline hydroxyapatite; rhBMP-2,
recombinant human bone morphogenetic protein-2; SD, standard
deviation.
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on osteogenesis. However, this is the first time we found that
chitosan nanospheres could also enhance the promotion
ability of rhBMP-2 in the spinal fusion process. The present
study also has some limitations. The biomolecular mecha-
nisms for the osteogenic effects of rhBMP-2-loaded micro-
spheres and CHA composite are still unclear. More in vitro
and clinical research is needed in the future to confirm our
results.

In conclusion, we successfully prepared the CHA com-
posite with rhBMP-2-loaded chitosan nanospheres and
found that the composite with rhBMP-2-loaded chitosan

nanospheres could enhance osteogenic efficacy and increase
the ALP activity and calcium content in an in vivo spinal
fusion model. These results could provide a novel method
for osteogenesis in spinal fusion.
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