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Abstract Germ cell differentiation, the cellular pro-
cess by which a diploid progenitor cell produces by
meiotic divisions haploid cells, is conserved from the
unicellular yeasts to mammals. Over the recent years,
yeast germ cell differentiation process has proven to
be a powerful biological system to identify and
study several long noncoding RNAs (IncRNAs) that
play a central role in regulating cellular differentia-
tion by acting directly on chromatin. Remarkably, in
the well-studied budding yeast Saccharomyces
cerevisiae and fission yeast Schizosaccharomyces
pombe, the IncRNA-based chromatin regulations of
germ cell differentiation are quite different. In this
review, we present an overview of these regulations
by focusing on the mechanisms and their respective
functions both in S. cerevisiae and in S. pombe. Part
of these IncRNA-based chromatin regulations may
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be conserved in other eukaryotes and play critical
roles either in the context of germ cell differentiation
or, more generally, in the development of multicel-
lular organisms.
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Abbreviations

IME Inducer of meiosis

IRT IME] regulatory transcript

IncRNA  Long noncoding RNA

RITS RNA-induced transcriptional silencing
complex

RME Repressor of IME]

RNAi RNA interference

Introduction

The widespread implication of nuclear long noncoding
RNAs (IncRNAs) in the regulation of gene expression is
now established in a broad range of eukaryotes (Mercer
and Mattick 2013; Sabin et al. 2013). However, in most
instances, our understanding of the mechanisms involv-
ing these RNAs and the specific roles played by RNA
are largely unknown. Studies conducted in yeast have
greatly contributed to our current knowledge of one of
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the most detailed RNA-based chromatin silencing pro-
cess, which is the small RNA-mediated formation of
heterochromatin, or silent chromatin, in the fission yeast
Schizosaccharomyces pombe (Lejeune and Allshire
2011; Moazed 2009; Verdel et al. 2009). In this process,
small RNAs produced by activation of a conserved
pathway, known as RNA interference (RNAi), guide
the RNAi effector complex RNA-induced tran-
scriptional silencing (RITS) to chromatin to induce
the formation of heterochromatin (Verdel et al. 2004).
It is believed that IncRNAs, under synthesis by the RNA
polymerase II, serve as RNA platforms to recruit RITS
and other chromatin-modifying complexes to chroma-
tin, to initiate the formation of heterochromatin (Moazed
2009; Motamedi et al. 2004; Verdel and Moazed 2005).
Similar RNA-based chromatin silencing mechanisms
have since been found in other eukaryotes (Verdel
et al. 2009). For example, in plants, RNA mediates the
deposition of DNA methylation through an RNAi-based
mechanism in a process known as RNA-directed DNA
methylation (RADM) (Zhang and Zhu 2011). In ani-
mals, such RNAi-mediated chromatin silencing mecha-
nism has been proposed to be acting also at transposons,
although direct evidence is still missing (Bourc’his and
Voinnet 2010; Castel and Martienssen 2013). These
examples indicate that small RNA-guided chromatin
modification is probably conserved in a large number
of eukaryotes (Castel and Martienssen 2013; Verdel
et al. 2009).

Importantly, in addition to the discovery of RNAi-
mediated heterochromatin formation in S. pombe
(Volpe et al. 2002), other RNA-based chromatin
silencing mechanisms have recently been found to
act both in S. pombe and in Saccharomyces
cerevisiae. In these cases, RNAi and the production
of small RNAs do not seem to play a major role in
these processes. Moreover, IncRNAs mostly silence
the expression of protein-coding genes, and exert
important biological functions rather related to the
induction or the progression of yeast germ cell
differentiation.

Yeast germ cell differentiation, or sporulation, is the
critical developmental program that produces from a
diploid cell four haploid cells after two rounds of mei-
otic divisions. The induction of sporulation has been
extensively studied in yeast. Entry into sporulation
depends both on the environmental conditions and on
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the mating type status of the yeast. When nitrogen and
carbon sources become limiting, yeast can switch to a
pseudohyphal growth where cells dramatically change
their morphology by elongating and staying attached
after cell division. This leads to formation of long fila-
ments of cells that can invade the medium to search for
better growth conditions. Upon further nutrient starva-
tion, yeast ceases growth. In the situation where no yeast
of opposite mating type is present in its immediate
environment, the cell enters a reversible quiescent state,
the GO phase. In the presence of a yeast of opposite
mating type, sporulation can be induced. After conjuga-
tion and karyogamy, the newly formed diploid zygote
can proceed with premeiotic DNA replication followed
by two meiotic divisions. During the first meiotic divi-
sion, homologous chromosomes pair to allow homolo-
gous recombination and crossing overs, and later on
separate in two different nuclei. The second round of
meiosis resembles mitosis in that it leads to separation of
sister chromatids. Following the two meiotic divisions,
four nuclei mature into spores by forming a thick wall
and compacting their genome. Spores are highly resis-
tant to environment stresses. Once the environmental
conditions become favorable to growth, the spores ger-
minate and enter a new cycle of vegetative growth.
These major events of sporulation are controlled by a
series of successive transcriptional waves that have been
characterized particularly in the yeasts S. cerevisiae and
S. pombe (Chu et al. 1998; Mata et al. 2002; Primig et al.
2000).

The signaling pathways sensing the presence of
nutrients or monitoring the mating-type identity of the
yeast that control the induction of sporulation have been
described in detail both for S. cerevisiae and S. pombe in
several excellent reviews (Govin and Berger 2009;
Harigaya and Yamamoto 2007; Neiman 2011; Otsubo
and Yamamoto 2012; van Werven and Amon 2011). In
this review, we thus only briefly describe these
regulatory aspects of sporulation. Instead, we focus
on recent advances made in identifying mecha-
nisms by which IncRNA molecules act on chro-
matin to regulate sporulation in S. cerevisiae and
in S. pombe. Interestingly, although both yeasts use
RNA as key molecules to control germ cell differentia-
tion, the RNA-dependent mechanisms involved are
quite different and act at different steps during
sporulation.
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RNA-based chromatin silencing mechanisms control
the entry into sporulation in S. cerevisiae

Induction of sporulation is a cell-fate decision governed
by the tight transcriptional control of IME gene in S.
cerevisiae

Auvailability of nutritional sources, particularly nitrogen
and carbon, are continuously sensed by S. cerevisiae to
adapt its proliferation status to the growth conditions
offered by its environment. Nutrient sensing signaling
pathways transmit this information into the nucleus to
properly control the induction of the sporulation tran-
scription program. These signaling pathways mostly
converge onto the promoter of Inducer of MEiosis 1
(IME1T) gene. IME] gene encodes the master transcrip-
tion regulator of sporulation, and ectopic expression of
IME] in diploid cells is sufficient to induce sporulation
(Kassir et al. 1988; Smith et al. 1990). When nutrients
are not limiting, S. cerevisiae undergoes vegetative
growth, either as a haploid or a diploid cell, thanks to
the repression of IME1 gene expression by these path-
ways (Fig. 1) (Neiman 2011; van Werven and Amon
2011). Upon privation of nitrogen and carbon, IME]
gene repression is relieved. In a haploid cell, the sporu-
lation program must be constitutively inhibited even in
the absence of nutrients to avoid the deleterious induc-
tion of sporulation in a cell containing only one set of
chromosomes as this will lead inevitably to cell death.
This block of sporulation is achieved thanks to a mating-
type signaling pathway that controls /IME gene expres-
sion in parallel to the nutrient sensing signaling path-
ways. When S. cerevisiae grows in the haploid state,
harboring either the MATa or MAT & mating type, IME
gene expression is constitutively repressed by the tran-
scription factor Rmel (Repressor of IMET) (Fig. 1)
(Covitz and Mitchell 1993; Shimizu et al. 1998). Thus,
under nutrient starvation conditions, /ME [ expression is
kept silenced until the haploid yeast conjugates with a
yeast of opposite mating type to give rise to a diploid
cell with a heterozygote MATa/MATo mating type. Co-
expression of MATa and MAT « in the diploid cell leads
to the production of the heterodimeric al/«2 transcrip-
tion factor that free IME] expression from the constitu-
tive silencing by repressing the expression of RME]
(Covitz et al. 1991; Mitchell and Herskowitz 1986).
This event is key to the induction of sporulation. Until

recently, the actors and mechanisms involved in the
constitutive repression of /ME! imposed by Rmel
remained poorly understood. Remarkably, at the heart
of this silencing mechanism is the production of a
IncRNA from the promoter of /ME].

An RNA-based chromatin mechanism silences IME]
in cis

For more than two decades, the exact mode of action of
Rmel-mediated repression remained unsolved. Rmel
binds to IMEI promoter and it efficiently inhibits its
transcription (Covitz and Mitchell 1993; Shimizu et al.
1998). Large-scale studies aimed at identifying all
RNAs expressed in vegetative cells reported the exis-
tence of hundreds of IncRNAs across the entire genome
of S. cerevisiae (Xu et al. 2009). One of these IncRNAs
was found to match the sequence of the IME promoter.
Expression of this IncRNA, named /ME! Regulatory
Transcript 1 (IRT1), tightly correlates to the growth and
differentiation status of the yeast. In cells undergoing
vegetative growth, /RT1 RNA level is relatively high,
while upon and during sporulation it goes down
(Lardenois et al. 2011; van Werven et al. 2012). RNA
accumulation of /RT1 and IME1 are thus anticorrelated.
This is because Rmel induces the production of /R7,
which blocks in cis IME] gene expression by different
means (van Werven et al. 2012). Production of IRT/
inhibits the fixation of the transcriptional activator Pogl.
In addition, it increases nucleosome occupancy and
promotes the recruitment of the histone methyltransfer-
ases Set2 and Set3, which have been proposed to estab-
lish a repressive chromatin environment repressing
IME1 gene expression. In agreement with such silencing
mechanism, Set2 H3K36 methylation mediates the
recruitment of the repressive histone deacetylase com-
plex Rpd3S (Fig. 1) (Carrozza et al. 2005; Keogh et al.
2005). Interestingly, a similar silencing mechanism acts
at least on one other gene, SER3, in S. cerevisiae. In this
case, transcription of a long noncoding transcript from
the promoter region interferes with the binding of tran-
scription factors required for the activation of SER3
(Martens et al. 2004; Martens et al. 2005). Other genes
are also regulated by the transcription of their promoter,
which modifies the histone modification pattern of their
promoter (Houseley et al. 2008; Pinskaya et al. 2009).
Recently, a genome-wide study showed that the
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Fig. 1 Schematic representation of the IncRNA-based chromatin
silencing mechanisms controlling entry into sporulation in S.
cerevisiae. Lefi box is a scheme of S. cerevisiae sporulation. When
environmental conditions are compatible with rapid growth S.
cerevisiae proliferates by mitotic divisions in either haploid or
diploid state. Upon nutrient privation, haploid cells of opposite
mating type (a or «) conjugate to form a diploid, which then
undergoes premeiotic DNA replication and two rounds of meiotic
divisions to produce an ascus containing four haploid spores. If the
yeast is already diploid it proceeds directly to premeiotic DNA
replication. Right box is a schematic overview of the control of
sporulation induction at the molecular level that focuses mostly on
the RNA-based chromatin silencing mechanisms implicated.
RME1 encodes a transcription factor that binds to, and induces
transcription of, IME] promoter. Production of Rmel-dependent
IncRNA, /RT1, promotes the recruitment of histone methyltrans-
ferases Set2 and Set3, to the /ME promoter and blocks expression
of IME1 presumably by establishing a repressive chromatin envi-
ronment. Nutrient sensing and mating-type signaling pathways

recruitment by a variety of IncRNAs of Set3-chromatin-
modifying complexes allows a global fine-tuning of
gene expression by modulating negatively, but also
positively, transcription (Kim et al. 2012). Thus, the
IncRNA-based gene silencing mechanism acting at
IME] promoter not only regulates the critical cell-fate
decision to induce sporulation but also acts in a more
widespread manner on gene expression control in S.
cerevisiae (Berretta and Morillon 2009).

IME4 gene silencing by antisense transcription

In addition to /MEI, IME4 gene is important for the
proper induction of sporulation (Shah and Clancy
1992). Depending on the strain background, /ME4 is
either required for, or a facilitator of, sporulation (Shah
and Clancy 1992). As for IMEI, IME4 expression is
regulated by a IncRNA, named regulator of meiosis 2
(RME?2), which, like IRT1, acts in cis (Fig. 1) (Gelfand
et al. 2011; Hongay et al. 2006). However, the
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control expression of the master inducer of sporulation, the
IME] gene. To allow induction of sporulation the nutrient signal-
ing pathways must stop repressing /ME! expression. In parallel, in
haploid cells, the mating-type signaling pathway, by the interme-
diary of the al/a2 heterodimeric transcription factor, represses
expression of RME]. This leads to a block of /RTI production
and the activation of /MEI gene expression. Imel transcription
factor contributes to the activation of a set of genes required for the
premeiotic DNA replication. In addition, in haploid cells, another
gene important for sporulation, /ME4, is repressed by the produc-
tion of antisense RNA, RME?. In this case, silencing is imposed by
transcriptional interference and this silencing is relieved by the
direct binding of the al/a2 heterodimeric transcription factor to
RME?2 promoter, which blocks production of RME?2. Green is used
for pathways promoting sporulation; Red for pathways repressing
sporulation. Clear gray circle nucleosome; dark gray circle RNA
Polymerase 1I; red lollipop histone post-translational modi-
fications H3K4me and H3K36me. See text for further
explanations

mechanism by which RME? silences IMFE4 is different.
RME? is an antisense RNA of IME4 gene (Hongay et al.
2006). During sporulation, expression of RME2 and
IME4 mRNA are anticorrelated. The production of
RME?2 RNA is under the control of a relatively strong
promoter compared to /ME4 promoter. Thus, in a hap-
loid cell, heavy transcription of the antisense strand
blocks the production of /MFE4 sense transcript. The
detailed mechanisms involved in silencing /ME4 by
RME?2 are not yet understood, but RME2 has been
proposed to block transcription elongation rather than
transcription initiation or the binding of transcription
factors (Gelfand et al. 2011). At least one other meiotic
gene ZIP2 has its expression regulated in a similar way
(Gelfand etal. 2011), indicating that such antisense gene
silencing mechanism may apply to several other genes
during sporulation. In a heterozygous a/a diploid cell,
the al/a2 heterodimer binds to RME2 promoter and
represses /ME4 antisense transcription to enable tran-
scription of /ME4 and production of Ime4 (Fig. 1). In
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terms of sporulation control, blocking expression of
RME?2, or of IRT1I, results in induction of ectopic spor-
ulation in haploid cells or in a/a homozygous diploid
cells, but with a lower efficiency than in a/a diploid cells
(van Werven et al. 2012). Remarkably, when
expression of both /RT'1 and RME?2 IncRNAs is blocked
in haploid cells, or in diploid cells with a homozygous
mating type, then sporulation takes place with the same
kinetics and efficiency than with a/a diploid cells.
Conversely, constitutive expression of /RT/ and RME?2
enable a/a heterozygote diploid cells submitted to
sporulation-inducing conditions to enter sporulation.
Thus, under nutrient privation, regulation of the produc-
tion of two IncRNAs is sufficient to dictate whether or
not the cell will enter into germ cell differentiation in S.
cerevisiae.

RNA-based chromatin regulation of entry
into meiosis in S. pombe

Induction of sporulation: similarities and distinctions
in comparison to S. cerevisiae

Induction of sporulation in the fission yeast S. pombe,
like S. cerevisiae, is under the control of signaling
pathways monitoring the status of the yeast mating type
and sensing nutrients availability (mainly nitrogen)
(Harigaya and Yamamoto 2007; Otsubo and
Yamamoto 2012). The two yeasts are relatively distant
in evolutionary terms (Sipiczki 2000). This translates
into molecular mechanisms that are found only in one of
them or that have diverged quite significantly. This is the
case for the identity of the master regulator as well as for
the RNA- and chromatin-based mechanisms regulating
sporulation. S. pombe master regulator of sporulation is
the stell gene, and it does not share homology with
IME1 gene, its S. cerevisiae functional counterpart.
Nonetheless, a completely different type of RNA-
based chromatin regulation plays a critical role at the
entry into meiosis in S. pombe.

Under nitrogen privation (and poor availability of
carbon) S. pombe haploid cells of opposite mating type
P (or h+) and M (or h—) conjugate to form a diploid cell
competent for sporulation (Otsubo and Yamamoto 2012).
Conversely to S. cerevisiae, S. pombe proliferates mostly
as a haploid cell and forms diploid cells only on rare
occasions. Once two S. pombe haploid cells have conju-
gated, the newly formed diploid cell proceeds directly to

premeiotic DNA replication followed by two rounds of
meiotic divisions to produce four ordered haploid spores
(Fig. 2). At the heart of S. pombe RNA-based chromatin
regulation of sporulation is a IncRNA species produced
from the sme2 genomic locus and named meiRNAs, as
well as two RNA-binding proteins called Mei2 and
Mmil. We detail below the mechanisms by which these
actors ensure the proper control of both vegetative
growth and germ cell development in S. pombe.

Mei2 binding to the long noncoding meiRNAs induces
entry into meiosis

Mei2 RNA-binding protein plays a central role in the
induction of meiosis (Fig. 2) (Watanabe et al. 1988;
Watanabe and Yamamoto 1994). Under sporulation-
inducing conditions and after conjugation and karyogamy,
Mei2 enters in the nucleus and binds to meiRNAs
(Sato et al. 2001; Yamashita et al. 1998). This event is
necessary for the diploid cell to proceed through the two
meiotic cell divisions and complete sporulation. A
serine/threonine protein kinase, Patl, plays a critical role
in regulating sporulation progression notably by phos-
phorylating Mei2 (Watanabe et al. 1997). Mei2 phos-
phorylation inhibits its function by at least two means.
First, it triggers the degradation of Mei2 by the ubiquitin—
proteasome system (Kitamura et al. 2001). Second, it
induces Mei2 association with the Rad24 protein, a mem-
ber of the 14-3-3 phospho-binding protein family (Sato
et al. 2002). The association of Rad24 to Mei2 interferes
with Mei2 binding with meiRNAs. To allow meiosis
induction and progression Patl must be inhibited. This
is achieved by Matl-Pm and Matl-Mm mating type
factors that together activate the expression of mei3
(Van Heeckeren et al. 1998; Willer et al. 1995). Mei3
protein is a pseudosubstrate protein of Patl that inhibits
Patl kinase activity by binding to it (Li and McLeod
1996; McLeod and Beach 1988). Inhibition of Patl then
leads to a large increase in Mei2 (as well as Stel1) protein
level (Kitamura et al. 2001), and to the relocation of Mei2
from the cytoplasm to one specific place in the nucleus
called the Mei2 dot (Watanabe et al. 1997).

Mei2 together with the meiRNA species sequester
Mmil, a key meiotic silencing factor, at sme2 genomic

site

How entry of Mei2 into the nucleus and its localization
to the Mei2 dot contribute to meiosis progression
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Fig. 2 Schematic illustration of the different RNA-based chroma-
tin regulations in connection to sporulation in S. pombe, part of
which control entry into meiosis. Leff box is a sketch of S. pombe
haploid cells undergoing vegetative growth or sporulation. S.
pombe diploid cells grow in a mitotic manner only on rare occa-
sion, conversely to S. cerevisiae. See legend of Fig. 1 for further
details. Right box depicts the pathways controlling entry into
meiosis. At the heart of this control system are the Mei2 RNA-
binding protein and the sme2 long noncoding meiRNAs. Under
sporulation-inducing conditions, the nutrient sensing signaling
pathways stop repressing stell expression. However, this does
not induce sporulation if the yeast is in a / + or #— haploid state.
Stel1 expression will induce expression of P or M factors depend-
ing on the haploid state of the yeast, which will promote the
conjugation with a partner of opposite mating type to produce a
diploid cell. In a diploid state, production of the P and M factors
induces expression of Mei3, a nonphosphorylable substrate of
Patl kinase that inhibits Patl activity. Inhibition of Pat1 stabilizes
Stell and Mei2 proteins, which accumulate in larger quantity. In
parallel, production of Stel1 activates transcription of Mei2. A key

remained unclear until the identification of another
mechanism critical for the proper control of sporulation.
Pioneer work from the group of Masayuki Yamamoto
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event for the induction of meiosis is the entry of Mei2 into the
nucleus and its accumulation at the noncoding sme2 gene by
binding to the long noncoding meiRNAs. Sequestration of
Mmil at sme2 loci is believed to block its repression of specific
meiotic genes, including mei4, the master regulator activating the
middle phase transcription program. During vegetative growth,
Mmil silences its target genes by degrading their mRNAs thanks
to the recruitment of a RNA degradation machinery including the
nuclear exosome. In addition, Mmil directs the deposition of the
heterochromatin mark, H3K9me, by recruiting the histone meth-
yltransferase Clr4 at some of its target meiotic genes. Mmil also
recruits the RNAI effector complex RITS to these genes. These
later aspects may contribute to Mmil-directed gene silencing and
control of sporulation progression. In addition to blocking Mmil-
directed gene silencing by sequestering Mmil, the long noncoding
meiRNAs promote pairing of the two sme2 loci during meiosis I
by an unknown mechanism. Green is used for pathways promot-
ing sporulation; Red for pathways repressing sporulation. Red
lollipop histone post-translational modification H3K9me; see text
for further explanations

discovered nearly 20 years ago that a gene, named sme?2,
produced the long noncoding meiRNA species, which is
absolutely necessary for progression into meiosis I and
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completion of sporulation in S. pombe (Watanabe and
Yamamoto 1994). meiRNA species are IncRNAs that
can be of two sizes (0.5 or 1.7 kb) and are
polyadenylated. Importantly, meiRNA species accumu-
late at sme2 locus (Shimada et al. 2003; Yamashita et al.
1998). The mechanism responsible for such retention is
not yet known. Sporulation can be induced in sme2A
haploid cells, but after these cells cease vegetative
growth, conjugate, and complete premeiotic DNA rep-
lication, they arrest upon meiosis I (Watanabe and
Yamamoto 1994). Interestingly, some mei2 mutants
show a similar meiotic arrest (Watanabe and
Yamamoto 1994). This is probably because meiRNAs
and Mei2 act together to sequester a key silencing factor
of meiosis, the RNA-binding protein Mmil (see below).

Mmil belongs to the YTH (YT521 homology) RNA-
binding protein family, which has members present in
the vast majority of eukaryotes (Stoilov et al. 2002).
Quite unexpectedly, Mmil was shown to silence the
expression of a set of meiotic genes in cells undergoing
vegetative growth (Harigaya et al. 2006). Interestingly,
Mmil silences their gene expression by a post-
transcriptional mechanism selectively degrading their
mRNAs. Mmil itself has no ribonuclease activity.
Rather, it directs an RNA degradation machinery to
these meiotic mRNAs to efficiently degrade them.
Mmil insures a selective recognition of these meiotic
mRNAs by binding to a consensus hexameric sequence
present in several copies in its targets (Hiriart et al. 2012;
Yamashita et al. 2012). Once bound to a target mRNA,
the RNA degradation machinery recruited by Mmil
promotes its degradation. The composition of the
Mmil RNA degradation machinery is only partially
known. It includes the nuclear exosome (Harigaya
et al. 2006; Hiriart et al. 2012; St-Andre et al. 2010;
Sugiyama and Sugioka-Sugiyama 2011; Yamanaka
et al. 2010; Zofall et al. 2012). The nuclear exosome is
a large multisubunit complex possessing both endo- and
exo-ribonucleolytic activities (Chlebowski et al. 2013;
Lebreton and Seraphin 2008). Mmil-mediated recruit-
ment of the nuclear exosome remains to be clarified as it
is likely not occurring through a direct binding between
Mmil and the exosome. Furthermore, it may not
involve the exosome co-factor TRAMP, which is known
to recruit the exosome at several of its main targets
(Lebreton and Seraphin 2008). Instead, Mmi 1 associates
to proteins related to the control of RNA
polyadenylation, the classical polyA polymerase Plal
and the polyA-binding protein Pab2, and together these

proteins have been proposed to recruit the nuclear
exosome (Yamanaka et al. 2010). In addition, Mmil
interacts with a zinc finger protein, Redl, which may
also be directly implicated in the exosome recruitment to
Mmil RNA targets (Sugiyama and Sugioka-Sugiyama
2011). Furthermore, Mmil can inhibit the splicing of its
target mRNAs, suggesting that Mmil-directed RNA
degradation may act at an early step in gene expression,
perhaps co-transcriptionaly (Chen et al. 2011;
McPheeters et al. 2009). In agreement with this, Mmil
binds to chromatin in a transcription-dependent manner
(Tashiro et al. 2013; Zofall et al. 2012).

The silencing imposed by Mmil RNA surveillance
machinery is essential for proper vegetative growth
(Harigaya et al. 2006). Among the major targets of
Mmil RNA surveillance machinery figures the mei4
gene (Harigaya et al. 2006; Hiriart et al. 2012), which
encodes a master transcription factor that activates,
directly or indirectly, more than five hundred meiotic
genes during sporulation (Mata et al. 2007).
Deletion of mei4 rescues most of the dramatic growth
defect observed in mmilA cells (Harigaya et al. 2006).
Because the deletion of mei4 mimics the meiotic block
observed in sme2A cells (Kakui et al. 2011; Shimoda
et al. 1985; Watanabe and Yamamoto 1994), it is
believed that the sme2A meiotic block is mostly caused
by a lack of Mei4 protein due to the constitutive activa-
tion of Mmil silencing machinery. Interestingly, the
meiRNA species itself is a target of Mmil-directed
degradation during vegetative growth (Fig. 2) (Hiriart
et al. 2012; Yamashita et al. 2012). This points to an
intriguing feedback control where, in mitotically grow-
ing cells, the meiRNA species is efficiently degraded by
Mmil silencing machinery. However, upon induction of
sporulation the meiRNAs become somehow immune to
Mmil-directed gene silencing although they still bind to
Mmil. The molecular switch enabling meiRNAs to
become potent inhibitors of Mmil (to allow meiotic
progression) is currently unknown, but Mei2 binding
to both the meiRNAs and Mmil itself may play an
important role in this switch (Harigaya et al. 20006).

Noncoding RNA-induced chromosome pairing

In addition to its major role in neutralizing Mmil-
directed gene silencing, sme2 locus exerts another
remarkable function linked to chromatin. At the onset of
meiosis I, the two sme2 loci strongly pair regardless of
their chromosomal locations (Fig. 2) (Ding et al. 2012a;
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Ding et al. 2012b). This sme2 pairing requires produc-
tion of its long noncoding transcripts, the meiRNAs, but
neither Mei2 nor Mmil-mediated RNA degradation.
This represents the first example of a RNA-mediated
chromosome pairing. However, its potential conserva-
tion in other eukaryotes and the biological significance
of this pairing remain to be addressed.

Mmi1-directed formation of facultative heterochromatin
at meiotic genes

In S. pombe, formation of constitutive heterochromatin,
characterized by histone H3K9 methylation and the
presence of HP1-like proteins, takes place at relatively
large, noncoding and repeated DNA found mostly at the
pericentromeric, subtelomeric, and mating type regions
(Grewal 2000). In parallel, heterochromatin marks and
other components of heterochromatin were found on
few interspersed regions in the genome, including
developmentally regulated genes (Cam et al. 2005;
Reyes-Turcu and Grewal 2012). The mechanisms
responsible for formation of this facultative heterochro-
matin remained unexplained until the finding that Mmi1
is required for the methylation of histone on its lysine 9
(H3K9me) found at some meiotic genes (Fig. 2) (Hiriart
etal. 2012; Tashiro et al. 2013; Zofall et al. 2012). These
findings, together with the observation that Mmil binds
to chromatin in a transcription-dependent manner, sug-
gest that while meiotic mRNAs are under synthesis they
may serve as platforms to recruit Mmil and the machin-
ery responsible for H3K9 methylation. This is remi-
niscent to what has been already proposed for
IncRNAs emanating from pericentromeric hetero-
chromatin (Moazed 2009; Motamedi et al. 2004).
In parallel, Mmil recruits the RNAi effector com-
plex RITS to both RNA and chromatin (Fig. 2)
(Hiriart et al. 2012). However, conversely to peri-
centromeric DNA repeats where RNAi plays a dominant
role in the deposition of the H3K9me mark and in the
overall formation of heterochromatin, RNAi is not
required for Mmil-directed H3K9 methylation at
Mmil meiotic targets (Zofall et al. 2012). Nonetheless,
genetic studies support the idea that RNAi contributes to
robust Mmil-mediated repression of sexual differentia-
tion, possibly by acting mostly at a post-transcriptional
level (Hiriart et al. 2012). The role of heterochromatin
formation in regulating meiotic gene expression awaits
further investigation.
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Conclusion and perspectives

It is estimated that S. cerevisiae and S. pombe have
diverged from a common ancestor at least 300 million
years ago (Sipiczki 2000). Thus, they are relatively
distant in evolutionary terms. Remarkably, the sporula-
tion processes of the two yeasts are both controlled by
IncRNA-based chromatin silencing even though the
mechanisms implicated are relatively divergent.
Hence, the direct implication and essential function of
a RNA-based chromatin regulation of sporulation is a
feature conserved between two distant yeasts.
Moreover, in both yeasts, more than one RNA-based
chromatin silencing mechanism is operating to properly
control sporulation. In S. cerevisiae, one mechanism
imposes gene silencing by producing a IncRNA, within
the promoter of a key gene for the induction of sporula-
tion, to serve as a recruiting platform for histone mod-
ifying proteins that are believed to establish a repressive
chromatin structure. In parallel, production of a noncod-
ing antisense RNA, which may not have any function
per se, contributes to silence another gene important for
sporulation induction. In S. pombe, the long noncoding
meiRNA species act together with Mei2 RNA-binding
protein as a molecular pump or decoy to sequester
Mmil RNA-binding protein, a key repressor of meiosis,
within a specific region of the nucleus. In addition,
Mmil imposes a potent gene silencing of meiotic genes
in vegetative cells, by triggering selective RNA degra-
dation, and inhibiting splicing. Mmil, by binding to
nascent transcripts of protein-coding genes, also induces
the formation of facultative heterochromatin that may
participate to the silencing of its target genes.
Altogether, the variety of RNA-dependent mechanisms
implicated in the regulation of yeast germ cell differen-
tiation illustrates the versatility of processes that can be
used by RNA to control a key cell-fate decision. An
important open question is whether such mechanisms
are conserved in other eukaryotes including mammals
and whether they exert similar functions.

In animals, the entry of germ cell differentiation has
been quite extensively studied, notably in mouse (Saga
2008). The mouse master transcription factor Stra8
controls this developmental switch. Interestingly, stra8
expression is controlled by the RNA-binding protein
Nanos2 (Suzuki and Saga 2008). However, whether an
RNA-based chromatin regulation also exists in this case
remains unexplored. Yet, given the central role played
by this type of process in two distant yeasts and the fact
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that RNA-based gene silencing plays a central role in
controlling Stra8-dependent germ cell differentiation, it
would be interesting to test this possibility. The recent
findings that PRC1 and PRC2, two chromatin-
modifying complexes that associate with IncRNAs
(Rinn et al. 2007; Schoeftner et al. 20006), participate
in Stra8 silencing (Yokobayashi et al. 2013), further
support such possibility.

In animal germ cell differentiation, RNA-based gene
silencing exerts an essential function towards transpo-
son. Part of this mechanism is believed to go through
long and small RNA-mediated chromatin silencing
(Bourc’his and Voinnet 2010). Whether such silencing
mechanisms also take place in yeast is still an open
question. Indeed, fission yeast transposons have
recently been shown to be targets of RNAi and sub-
jected to RNAi-mediated heterochromatin formation in
an exosome mutant background (Yamanaka et al. 2013).
Whether the existence of potential redundant silencing
mechanisms plays any role during germ cell differenti-
ation in S. pombe remains to be determined. Ongoing
studies on yeast IncRNA-based chromatin regulation in
the context of germ cell differentiation should continue
to provide important insights into our understanding of
how IncRNAs regulate germ cell differentiation and
development from yeasts to mammals.
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