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Abstract: Parkinson’s disease patients face numerous motor symptoms that eventually make their
life different from those of normal healthy controls. Out of these motor symptoms, tremor and
bradykinesia, are relatively prevalent in all stages of this disease. The assessment of these symptoms
is usually performed by traditional methods where the accuracy of results is still an open question.
This research proposed a solution for an objective assessment of tremor and bradykinesia in subjects
with PD (10 older adults aged greater than 60 years with tremor and 10 older adults aged greater
than 60 years with bradykinesia) and 20 healthy older adults aged greater than 60 years. Physical
movements were recorded by means of an AWEAR bracelet developed using inertial sensors, i.e., 3D
accelerometer and gyroscope. Participants performed upper extremities motor activities as adopted
by neurologists during the clinical assessment based on Unified Parkinson’s Disease Rating Scale
(UPDRS). For discriminating the patients from healthy controls, temporal and spectral features were
extracted, out of which non-linear temporal and spectral features show greater difference. Both su-
pervised and unsupervised machine learning classifiers provide good results. Out of 40 individuals,
neural net clustering discriminated 34 individuals in correct classes, while the KNN approach dis-
criminated 91.7% accurately. In a clinical environment, the doctor can use the device to comprehend
the tremor and bradykinesia of patients quickly and with higher accuracy.

Keywords: Parkinson’s disease; tremor; bradykinesia; wearable technology; bracelet; machine learning

1. Introduction

Despite the large available literature regarding the diagnosis and evaluation of tremor
and bradykinesia and recognition of their severity level, there is still a need for a throrough
investigation. In order to fill this gap, this research study expounds upon introducing a
wearable wrist worn device in parallel with a machine learning (ML) algorithm that can
objectively detect tremor and bradykinesia and also automatically measures the exact fea-
tures related to the Unified Parkinson’s Disease Rating Scale (UPDRS). The main objective
of this paper is to change the scenario of clinical diagnosis of tremor and bradykinesia
by developing a wearable bracelet that collects data from the subjects on which an ML
approach will be used in order to attain a more accurate and sophisticated diagnosis, which
will eventually be of clinical convenience to patients and doctors.

1.1. Background

Parkinson’s disease (PD) is a neurodegenerative disease which is increasing globally
and has significant impact on quality of life (QoL) [1]. The cardinal motor symptoms in
PD patients are tremors, bradykinesia, freezing of gait (FOG), rigidity and postural insta-
bility [2]. A tremor is defined as an involuntary and rhythmic shaking. Bradykinesia is a
slowness of movement and is mostly related to muscle weakness, rigid muscles, or tremors.
According to [3], the tremor is one of the most visible and bothersome symptoms of PD
patients. Tremor in PD patients creates negative affects and destroys patients’ self-image,
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sense of security, and well-being, as the patient is not able to write correctly with help
of typewriter, fix small things, eat or hold the book for reading. According to the survey
article [4], tremor is among the top three PD-related challenges that patients have reported
to date. Around 70% of the PD patients notice tremors as the early symptom [5].

Although the recurrence of tremor is highly linked to PD, the extent of bradykinesia is
much higher in advanced phases of the disease [6] compared to early stages. With respect
to the performance of daily life activities and particularly, with upper limb function, the
patient faces enormous difficulty because of tremor and bradykinesia, which certainly
decrease the QoL of the PD patient. It is one of the challenges for researchers and clinicians
to implement a system that helps them to evaluate and provide an unbiased tracking of
these cardinal motor symptoms of the PD population in a free living environment where
they can easily perform the meaningful tasks. The tremor is an involuntary quivering
movement or shake and is characterized as the most common movement disorder. The one
observed in PD patients is known as the rest tremor (RT) or the Parkinsonian tremor.
It unpretentiously occurs at rest, classically slow and usually begins in one hand or leg, but
sooner or later affects both sides of the body. The different types of tremor, i.e., essential
tremor, Parkinsonian tremor and dystonia tremor are very common among PD patients [7].
Table 1 explains the key features of these tremors that help clinicians to diagnose.

Table 1. The key features of Parkinsonian tremor, dystonia tremor and essential tremor.

Key Features Parkinsonian Tremor Dystonia Tremor Essential Tremor

Frequency 4–6 Hz 7 Hz 4–8 Hz

Amplitude Regular Irregular Regular

Symmetry Asymmetrical Asymmetrical Symmetrical

Topography Hands > other Head > hands >
others

Hands > head > voice >
others

Potential accompanying sign Bradykinesia, rigidity Dystonic posture Impaired tandem gait

Suppression of tremor during
movement onset In most cases Rare Not found

Activation condition Rest >
postural/kinetic

Postural > kinetic >
rest Postural > kinetic > rest

Sensory tricks No Yes No

Handwriting Micrographia Macrographia Large angulated loops

Decreased arm swing Yes May be in dystonic
limb No

The clinical diagnosis of parkinsonian tremor and bradykinesia is carried out using
rating scales. There are a number of rating scales, such as UPDRS, Hoehn and Yahr
Scale, Schwab and England Activities of Daily Living (ADL) Scale, PDQ-39, PD NMS
Questionnaire and other scales. A rating scale is a way of providing information on
a specific feature by assigning a value to it. Parkinson’s rating scale depends on the
‘rater’—the person who decides the points patients tally. Among all these clinical rating
scales, UPDRS is the most adopted one, preferred by neurologists [8]. In context to [9,10],
bradykinesia diagnosis requires experienced doctors, but sometimes they also miss subtle
changes, especially in the early stages of the disease. Although the UPDRS method is
used all over the world and is considered as the gold standard of PD diagnosis, its results
are based on observations, which can be sometimes inaccurate. There is a dire need of a
system that provides more validated results. These types of rating scales stand in need of a
wearable device that is easy to wear and to remove, does not discommode in performing
of tasks, requires less or no maintenance at all and calibration is done once in the field and
is sensitive to a variety of relevant signs and symptoms.
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1.2. Related Work

As already pointed out, the tremor is one of the relevant motor symptoms of PD
that must be counted for the correct evaluation and diagnosis of disease and it has been
widely addressed by [11–31]. Therefore, numerous studies have employed wearable
sensors as a robust method for accurate findings. In [11–13,16,27,29,31], EMG signals
are analyzed for tremor assessment and quantification. However, in [14,18,20,25], the
smartphone is considered as a useful tool for the assessment of tremor. Table 2 offers
a clear overview of the studies that used accelerometer and gyroscopes on body parts,
particularly on the wrist and forerams, for diagnosis and interpretation of tremor. For
instance, [32] used a smartwatch equipped with gyroscopes and quantified PD patients’
tremors using 64 smartwatch recordings. The monitoring for tremor intensity was 0.81
(p < 0.001); by using intraclass reliability coefficient reliability to quantify tremors with a
resting tremor = 0.89. In [33], researchers used inertial devices and extracted 78 and 96
upper and lower limbs kinematic parameters to analyze motor performance in PD patients.

The presence of cardinal motor symptoms in PD patients is very common and research
shows that the prevalence of this disease and motor disability increases with time in older
PD adults, which gradually draws them to gait disturbances. Many researchers conducted
the assessment of bradykinesia from the lower extremities of PD patients, as in [34–37].
However, in [15,38–40], various techniques were used in the detection and quantification
of bradykinesia from upper-extremity body movements, as shown in Table 3. PD patients’
tremor and bradykinesia lie at extreme lower frequencies; hence, it is important to evaluate
the minute changes in motor activities. Therefore, it is reported that inertial sensors works
well for this.

In spite of all these studies, the adoption of different methodologies makes it even
more difficult to determine which inertial sensor will be the best to use, at which position
of body it should be attached and what features give optimal results in identification and
evaluation. The main objective of this research study is to introduce an AWEAR bracelet
developed using two inertial sensors, which are a 3D gyroscope and a 3D accelerometer
to be used by neurologists in clinical assessment and for correct diagnosis of tremor and
bradykinesia. The bracelet is attached at the wrist joint in order to obtain the perfect kinetic
feature since, according to [41], PD initially affects the upper limbs of patients and the
wrist helps coordinate most of the hand and arm movements. The study also addressed
the temporal and spectral features which served as key features in distinguishing tremor
and bradykinesia in PD patients from same-age healthy elderly adults.
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Table 2. Studies on tremor.

Study
[Ref] Technology Description Location Subjects Algorithms Metrics Activity Main Results

[17]

IMU unit. Six-axis
inertial sensor on index
finger of tremor
dominant hand

Hospital
35 PD
patients
and 22 ET

Autoregression
process using
Yule-walker method
and t-tests.

Power spectrum of
subsequences, peak
frequency

3 tasks each of 10 s, i.e.,
kinetic, postural and
resting tasks

Temporal fluctuation of
resting task can
differentiate between
PD and ET

[22]
4 inertial sensors taped
on hands, feet and
around the waist

Clinical 7 PD
patients

Wilcoxon’s two-tailed
rank sum test,
bonferroni correction
and spearman’s rank
correlation coefficient
testing

Angular velocity and
power spectral density

Two tests. Rest tremor,
while sitting at rest patient
was reading a text aloud
for 45 s. For action tremor a
tapping movement
performed for 30 s

Application of DBS
come forth in a
redistribution of power
in the tremor and LF
band

[23]

Sensors at 6 different
positions of subject’s
body i.e., right and left
wrists (RW and LW),
right and left legs (RL
and LL), waist and chest

Clinical
18 PD
patients
and 5 HS

Hidden Markov’s
model

Angle between two sensors
and LF energy. For tremor
severity classification:
spectrum entropy, LF and
HF energy, ratio of high to
total energy and energy
from other body segments

DLA’s

(1) Quantifies tremor
severity with 87%
accuracy (2)
Discriminates tremor
from other PD
symptoms.

[26] IMU Hospital 7 PD
patients

Least square
estimation models

Amplitude of parkinsonian
tremor and dominant
frequency of parkinsonian
tremor

3 tasks. Rest tremor (RT),
postural tremor (PT) and
action kinetic tremor
assessment (KT). Each last
for 10 s.

Measured amplitude
correlated well with
judgement of
neurologists (r = 0.98)
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Table 2. Cont.

Study
[Ref] Technology Description Location Subjects Algorithms Metrics Activity Main Results

[24]
Kinesia affixed finger
worn sensors and wrist
worn command module

Clinical 60 PD
patients

Multiple linear
regression model

Peak power frequency of
peak power, RMS of
angular velocity and
RMS of angle

RT assessed for 30 s when
participant remain settle
with his hands still in lap,
PT for 20 s with arms
stretched out infront and
KT while participant
frequently enlarged his
arm and touched his nose
for 15 s

Quantitative kinematic
features are processed
and highly correlated to
clinicians scores

[28]

Part 1: 3 uni-axial
accelerometers on one
wrist. In part 2: same as
of part 1 also 2 pairs of
uni-axial accelerometers
(at stemum and upper
dominant leg)

Part 1 in
lab and
part 2 in
home

Part 1: 7
patients,
part 2: 59
patients
and 43 HS

Part 1: FTFT, detect
tremor if longer than
minimal duration (1.5 s)
of dominant frequency
with limited BW. Part 2:
same as P1 also
determine standing vs.
sitting based on
gravitational vector

Part 1 measured
amplitude, dominant
frequency duration and
BW. Part 2: same as P1
also measured duration
of posture of tremor and
mean amplitude

In part 1 seated postures
recorded at rest and while
performing motor activities.
In part 2 measured for 24 h
while keeping diary

Part 1: Tremor vs. no
tremor compared to
specialists: SENS > 82%;
SPEC > 93%. Part 2:
Duration of tremor
moderately correlated
with UPDRS score for
resting tremor ($ = 0.66
standing, 0.77 sitting)
Intensity of tremor
correlated with resting
tremor ($ = 0.70
standing, 0.75 sitting)

[30]

Part 1: 3 uni-axial
gyroscopes near wrist
and part 2: two uni-axial
gyroscopes near wrist

Hospital 7 PD
patients

IIR filter with 3 s
windows and
autoregression model.
Tremor detected if
frequency lies between
3.5 and 7.5 Hz and
amplitude >0.92. Tremor
amplitude estimated from
RMS angular velocity

Dominant pole
frequency and amplitude

45 min of 17 ADL while
videotaped (DBS on and
DBS off). In second part
3–5 h moving freely

Tremor vs. no tremor
compared: SENS =
99.5%, SPEC = 94.2%.
Estimated tremor
amplitude from roll axis
showed high correlation
(r = 0.87) to the UPDRS
tremor subscore.
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Table 2. Cont.

Study
[Ref] Technology Description Location Subjects Algorithms Metrics Activity Main Results

[19]

For EMG, electrodes at
belly and
ME6000-biosignal
monitoring system is
used. Tri-axial
accelerometers attached
to palmar sides of
subjects wrists

Hospital 42 patients
and 59 HS K-means algorithm

Kurtosis variable of EMG
(K), crossing rate variable
of EMG (CR), correlation
dimension and recurrence
rate of EMG, sample
entropy of acceleration
(SampEn), coherence
variable of EMG and
acceleration (Coh)

Subjects asked to hold their
elbows at 90◦ angle for
10–30 s

According to clustering
results one cluster
contained 90% HC and
two other clusters 76%
of patients

[21] Data from gyroscope and
accelerometer Clinical 23 PD

patients

To analyze correlation
pearson correlation
is used

Acceleration vector and
rotation rate vector

Wearing iphone on top of
hand while sitting on chair
and resting both hands on
lap atleast for 30 s.
Repeated for both hands

Strong correlation
(x > 0.7 and p < 0.01)
between patients
UPDRS score and signal
metrics applied to
measure signal
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Table 3. Studies on Bradykinesia.

Study
[Ref] Technology Description Location Subjects Algorithms Metrics Activity Main Results

[38] Pairs of uni-axial accelerometers on
sternum, upper leg, and wrist Hospital NA

Discriminant analysis to
determine thresholds, Multiple
regression analysis for objective
measures and UPDRS scores

Bradykinesia: magnitude
of acceleration for arm and
leg; Hypokinesia: MIP
(period with acceleration
below a threshold) for
hand and trunk

24-h continuous recording

Bradykinesia: mean arm and leg
accelerations showed inverse
relation with UPDRS (R2 = 0.1,
R2 = 0.45)

[39] Tri-axial accelerometers near the
wrists, ankles and hip

Main room
for a day
program of
PD

2 PD patients Classification trees and neural
networks

Absolute value of
derivative of magnitude of
acceleration, position and
magnitude correlation
between sensors

2 subjects recorded for
about 320 min each while
videotaped

Bradykinesia/ hypokinesia vs. no
bradykinesia/ hypokinesia
compared to neurologist: Neural
network with c-index of
88.0–92.1% Classification tree with
accuracies of 74.8–85.3%

[40]
Tri-axial accelerometers on upper
arms, forearms, supper thighs, and
shins

Lab 12 PD
patients

Clustering evaluation index to
select features and linear
discriminant classifier to predict
performance of features

Intensity (RMS),
auto-covariance, dominant
frequency, correlation
features, and entropy

Standardized clinical motor
tasks (alternating hand
movements, finger to nose,
and heel tapping) while
videotaped

Best features: approximate
entropy and intensity (RMS of
acceleration) Optimal window
length 6 s

[15]

9 DoF sensor (3 accelerometers,
3 gyroscopes and 3 magnetic
sensors). On the dorsal side of the
index finger, dorsal side of the
forearm close to the wrist and on the
in step of the foot over the shoe of
the participant.

Clinical
25 PD
patients and
10 HS

SVM Mean, amplitude and mean
frequency

finger tapping,
diadochokinesis and toe
tapping

The classification errors for finger
tapping, diadochokinesis and toe
tapping were 15–16.5%, 9.3–9.8%
and 18.2–20.2% smaller than the
average inter-rater scoring error
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2. Experimental Set-Up
2.1. Measurement System/Hardware Description

In this study, we used a hand bracelet as a measurement unit. The bracelet acquires
data about the hand movements of the patients and healthy participants. The bracelet
is developed using a small form-factor microcontroller, that reads real-time data from a
special sensor module that contains an accelerometer and a gyroscope and writes its output
values to a micro SD card. Figure 1. shows the block design of the AWEAR bracelet.

Figure 1. Block design for the bracelet.

The components used for this bracelet are:

1. The Cmod MX1 microcontroller containing a microchip PIC32MX150F128D
microprocessor.

2. Pmod NAV module: 3-axis accelerometer and 3-axis gyroscope sensor.
3. Pmod micro SD module, which is used for storing data on the micro SD card.

Figure 2 shows the components used for development of the bracelet. Here, Pmod
NAV provides a variety of orientation related data, allowing users to easily determine the
exact position the module is in and where it is headed. It gives raw data, and with the
speed provided by the 40 MHz PIC microprocessor we can calculate the accelaration (G)
and the degrees per second (dps) values of the accelerometer and gyroscope before storing
them on the SD card, so that the neural and machine learning (ML) classifiers can work
directly with the readable data, and do not waste time on converting the raw data. Both
the Pmod NAV and the micro SD use the SPI (serial peripheral interface) protocol to talk
with the microcontroller. The microcontroller acquires real time data for a fixed period of
time, long enough so that we can have an accurate interpretation of the data. For the first
version, we considered 2 status LEDs, one being for notifying the user that the bracelet was
calibrated and all modules were correctly initiated. After the first LED turns ON, it means
that the data acquisition has started. When the second LED turns on, it means that the data
acquisition finished, and the micro SD card can be safely removed for data reading and
analyzing. The bracelet is designed in a form so that it is easy for the patients to wear on
wrist. We used two 3 V batteries mostly used in digital watches which lasts for 3 h. This
bracelet is used only for collecting data. Figure 3a shows the preliminary developmental
stage of bracelet and Figure 3b shows final prototype.
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Figure 2. Components used for development of the AWEAR bracelet.

(a) Preliminary stage (b) Final prototype

Figure 3. AWEAR bracelet developmental stages.

2.2. The Subjects and the Acquisition Procedure

A total of 40 subjects participated in this study, from which 20 subjects have PD with
varying degrees of tremor and bradykinesia severity and the rest involved age matched
healthy controls. Regarding the PD patients, 5 men and 15 women have been asked to
participate in this study. Other details of them are: mean age ± standard deviation (SD):
71.65 ± 6.872 years old; average MDS/UPDRS scores ± SD: 18.91 ± 7.831; average Hoehn
and Yahr (H &Y) stage ± SD: 1.65 ± 0.526 with disease duration in years ± SD: 7.7 ± 4.495.
The set of healthy participants consists of 16 men and 4 women, having the mean ± SD:
70.25 ± 6.307 years old. Among 20 patients, 10 patients just have tremor symptom with no
bradykinesia sign and 10 patients have bradykinesia symptom with no sign of tremor while
performing the activities as in [42]. The most relevant demographic and clinical information
of subjects is explained in Table 4. The acquisition procedure includes two sessions. In the
first session, only those activities that helped in tremor detection were performed and in the
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second one, bradykinesia detection activities were realised. The data acquisition has been
done in home environment due to COVID-19 measures, in the presence of a neurologist.
All subjects recruited in this study signed an informed consent form and they were asked
to perform the tasks accurately. Bracelet is affixed to the predominantly affected hand
of patients.

Table 4. Demographic and clinical details of healthy control and patient with Parkinson disease.

Healthy Control Patient with PD

Age (Gender) Age (Gender) UPDRS (0–56) H & Y (1–5) Disease Duration (Years)

75(F) 62(F) 23 1.5 7

64(M) 66(F) 5 1.5 6

75(M) 72(F) 9 2 6

80(F) 73(F) 26 2 20

83(M) 78(M) 5 1 13

65(M) 65(M) 27 1 14

65(M) 79(F) 23 1 5

61(M) 69(F) 15 2 3

63(M) 80(M) 25 2 8

70(M) 81(M) 18 1.5 4

70(F) 60(F) 20 2 11

76(M) 80(F) 26 2 10

67(M) 65(F) 7 1 1

66(F) 75(M) 30 1 2

62(M) 72(F) 18 1 7

66(M) 63(F) 22 1.5 3

74(M) 66(F) 15 1.5 9

71(M) 83(F) 15 2.5 10

72(M) 75(F) 32 2.5 5

80(M) 69(F) 30 2.5 10

70.25(±6.307) 71.65(±6.872) 18.91(±7.831) 1.65(±0.526) 7.7(±4.495)

2.2.1. Part 1: Validation of Tremor Detection

The resting tremor is one of the most prominent tremors that occurs in PD patients,
but 25% PD patients also face action and postural tremor. The severity increases when all
of these types are present in PD patient.

1. Testing for Resting tremor (RT): To evaluate RT within the upper limits, the patients are
inquired to rest the forearms comfortably on the thighs for one minute. Resting tremor
most commonly shows up as a flexion-extension development of the wrist/hand,
a pronation-supination exercise of the forearm, or a pill-rolling exercise of the thumb
and index finger.

2. Testing for Postural tremor (PT): Postural tremor is a kind of tremor that develops
when the patient maintains a position against gravity and its frequency is typically
in between 4–12 Hz [43]. To test for postural tremor, the patient is first asked to
completely elongate the elbow and to flex the arm forward at 90◦. At that point, the
subject is requested to spread their fingers out as much as conceivable and continue
this position for a minute. This is essential since a PT in PD is often evidenced in a
minute after the position is accepted.

3. Action or kinetic tremor (KT): This sort of tremor shows up only when the partici-
pant is carrying out an activity. The recurrence of kinematic tremor is often between
2–7 Hz [44]. To test for action tremor, the finger to nose test is considered. In per-
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forming this movement, the patients are taught to alternatively touch their nose and
observer finger. In doing so, the patients ought to extend their arm fully and ought
not to move quickly. In this way, we have more chance of activating the tremor. This
test is performed for 60 s on each partcipant.

2.2.2. Part 2: Validation of Bradykinesia Detection

Bradykinesia is also one of the cardinal motor symptoms of PD patients. In order to
track it, some exercises should be followed by the patients.

1. Finger Tapping: The primary test is finger tapping in which the control subject is
seated and requested to tap his thumb and index finger as much as he can and as
quickly as feasible for 60 s.

2. Fist Open and Close: Bradykinesia is likewise rated with the arms in the same position
as for hand movement, but this time inquiring the patient to open and close the hand
as fast as feasible, along with the biggest possible excursion. This activity is attempted
for one minute.

3. Pronation/Supination: Bradykinesia is also rated for each upper extremity by asking
the seated patient to raise the elbow to the level of the mid-chest, flex it to 90◦ with
the hand pointing up, and after that move the hand and forearm as fast as feasible
with the greatest possible excursion. This motion is continued for 60 s. This is often
related in the same way as finger tapping for each side.

3. Methodology

As a result of the acquisition procedure, 40 recordings were collected—20 from healthy
subjects, 10 recordings from patients who experienced tremor and 10 from patients having
bradykinesia symptom. Initially, the data collected are processed by a filtering process
to remove the drift, outliers and unwanted frequency, based on the study of previous
research regarding what band the tremor frequency lies. Afterwards, the visualization is
performed on data to enlighten the difference between healthy participants and the subjects
who experience tremor and bradykinesia in their daily life. Afterwards, the features are
extracted and machine learning (ML) classifiers performed classification for detection of
tremor and bradykinesia. A generic flow diagram of the whole process is depicted in
Figure 4.

3.1. Data Analysis
3.1.1. Signal Processing

The sampling rate of the recorded signal is 100 Hz. The tremor frequency of upper
extremities is lower than 13 Hz. Hence, as mentioned in [25], a 100 Hz sampling frequency
is sufficient for PD-related motor features. Prior to visualization and feature extraction,
all the recorded signals are filtered by a butterworth band pass IIR 10th order filter with
cut-off frequencies of 2 Hz and 20 Hz.

3.1.2. Signal Visualization

In order to analyze the signal, visualization is necessary to identify the main differences
between signals of healthy participants and PD patients. It helps in removing the unwanted
noise and frequencies, designing the accurate filter and also helps in understanding of
signal performance in both the time and frequency domain.
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Butterworth bandpass IIR filter

Three specified tasks for bradykinesia
assessmentThree specific tasks for tremor assessment

Visualization of patient and healthy participant signals in
time domain and frequency domain using FFT

Recordings in form of accelerometer X, Y, Z signals and
gyroscope X, Y, Z signals

Data collection from 40 participants using AWEAR bracelet

Ensembled data for feature extraction from the 40
recordings collected for tremor  and bradykinesia

assessment 

Time domain features:
mean, standard deviation,
RMS, kurtosis, skewness

and peak value.
Non-linear features:

approximate entropy and
correlation dimension.

Frequency domain features:
peak amplitude, peak

frequency and band power.

Spectral estimation using
Welch's method, window

type: Hamming.
Overlapping 50%

Unsupervised learning: Neural net clustering

Supervised learning: KNN algorithm

Classifiers

Feature Selection

Tremor	and	bradykinesia	successfully	detected.
KNN	approach	gives	91.7%	accuracy	and	Neural

net	clustering	successfully	classified	34
individuals	out	of	40	in	correct	classes

Figure 4. Illustration of the whole process for detection of tremor and bradykinesia.

3.2. Feature Extraction and Importance

To obtain accurate results, it is important to have proper features that define the
characteristics of tremor and bradykinesia. As defined in Figure 4, we processed the
collected data and ensembled it properly, from which we extracted both temporal and
spectral features.



Sensors 2021, 21, 981 13 of 23

3.2.1. Time Domain Features

Time domain features are divided into two parts, i.e., linear and non-linear features.
The linear features which we extracted are as follows: mean, standard deviation, root
mean square (RMS), kurtosis, skewness and peak value, while the non-linear features
are the approximate entropy and the correlation dimension. We first computed the very
basic statistics of signal, i.e., mean and standard deviation to check the regularity of
signals. Afterwards, in order to get more insight, we extracted an impulsive metric,
i.e., peak value. An impulsive metric helps in the analysis of the signal, while kurtosis
and skewness are higher order statistics that aid the analysis of the behaviour of signals.
Finally non-linear features were calculated in which the approximate entropy predicts
the amount of unpredictability and the correlation dimension estimates the dimensions
of samples. The combination of all theses features helps in determining the tremor and
bradykinesia rhythm.

3.2.2. Frequency Domain Features

In the frequency domain, first of all, the spectral estimation on time series signals is
performed using Welch’s method by applying a hamming window in order to obtain a sig-
nal spectrum reflecting three dimensional (3D) tremor and bradykinesia movements before
extracting spectral domain features. Welch’s method is also known as the periodogram
approach, which is used for estimating power spectra by dividing the time series data into
blocks by processing the periodogram in each block. In the frequency domain, another
three features are calculated, which are the following: peak amplitude, peak frequency
and band power. To extract these features, we defined the variable frequency bands with
respect to the frequency at which tremor and bradykinesia movements occur.

3.3. Classification and Performance

An automatic classification for the detection of tremor and bradykinesia with respect to
same-age elderly healthy adults based on the kinematic features (as explained in Section 3.2)
is developed using unsupervised and supervised machine learning (ML) algorithms. All
offline analyses were carried out using MATLAB R2016b (MATLAB, Mathworks, Natick,
MA, USA).

3.3.1. Using Unsupervised Method: The Neural Net Clustering Approach

Neural net clustering groups the data with similar characteristics and creates distinct
clusters of it. This method uses self-organizing maps (SOM). A SOM is built with com-
petitive layers which classify the dataset arranged in the form of feature vectors extracted
from the samples collected from the participants. The architecture of the trained model is
shown in Figure 5. The network is trained with the SOM batch algorithm. The map has
been trained so that every neuron is used for one particular class. So, we classified three
classes for which three neurons were chosen and the performance was computed based on
the mean squared error (MSE).
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Figure 5. Neural network architecture.

3.3.2. Using Supervised Method: The K-Nearest Neighbors (KNN) Approach

We used the KNN classifier for automatic assessment of tremor and bradykinesia in
PD patients. It is a non-parametric approach which uses data and classifies the newest data
points on the basis of proximity and similarity in the feature space.

4. Results

As the study is based on sensors time series data, first we visualized healthy par-
ticipant’s accelerometer and gyroscope raw signals in the time domain and then in the
frequency domain by using fast fourier transform (FFT), as shown in Figure 6. This helped
us to design a proper bandpass filter. Then, the filtered signals are visualized in time and
frequency domain, as shown in Figure 7.

Figure 6. Visualization of healthy control signals before and after filtering in time and frequency domain.
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Figure 7. Visualization of PD patient signals before and after filtering in time and frequency domain.

The effectiveness of the extracted features is evaluated using histograms, as shown in
Figure 8. These histograms of each feature type show the correct distribution of features
with respect to class type. On these plots, a different color indicates a different class type.
Because of overlapping distribution of different class types and the high dimensionality of
features, it is difficult to decide which features are more relevant and separable.

Figure 8. Cont.
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Figure 8. The histograms of the extracted features.

The key finding of this research study is to figure out which parameters work well
in distinguishing tremor and bradykinesia incidence from normal movements. For that,
we performed a one-way ANOVA test to identify useful and distinctive features. Figure 9
shows the result of the one-way ANOVA approach. According to the results, the approx-
imate entropy, correlation dimension, peak amplitude and band energies resulted from
each axis of the accelerometer and the gyroscope had the highest values. Therefore, we
selected the features which seemed more helpful in correctly diagnosising the tremor and
bradykinesia incidents. The selected features with higher rank and importance are good
candidates for training the NN clustering and the KNN models.

The results of the neural net clustering trained model are shown in Figure 10a,b.
Figure 10a emphasizes the sample hits, which means how many samples fall in each cluster.
The cluster with the maximum samples is more covered with darker shade and less with
whiter. Figure 10b shows SOM neighbour distances. The blue hexagons are the neurons and
the red lines inside these neurons indicate the connection between neighbouring neurons.
The colors in the areas containing the red lines shows the distances between neurons. The
darker shades indicate larger distances and the lighter ones indicate smaller distances.
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Figure 9. Features sorted by importance for the classifiers. The right side displays the ANOVA results, whereas the bars
from the left side depict the normalized scores of different features.

(a) SOM sample hits (b) SOM neighbour weight distances

Figure 10. Results of the trained model.

Figure 11 shows the results of the KNN trained model with 91.7% accuracy. The
number of neighbors is chosen as 10 with a hold-out validation of 30%. Figure 11a presents
the accuracy and the number of neighbors used. Figure 11b,c show the confusion matrices
which depict the performance of the trained model. In this context, Figure 11b shows the
positive predictive values (PPV) and false discovery rate (FDR). The green-colored row
correctly shows observations per the predicted class and the pink color indicates when
the model has incorrectly predicted points in bradykinesia patients. Figure 11c offers the
results for the true positive rates (TPR) and false negative rates (FNR). In the extreme last
two columns, the green color shows how well the model performed and the pink color
depicts the poor performance.
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(a) Result of KNN trained model (b) Tremor

(c) KNN results

Figure 11. KNN classifier results

Figure 12 elaborates the receiver operating curves (ROC) for each class, i.e., healthy,
tremor and bradykinesia subjects. ROC curves are helpful in finding out sensitivity and
specificity by using TRP and FPR. Figure 12a shows the ROC of the healthy participants,
where TPR is 0.83 and FNR is 0.0. Figure 12b shows the ROC of the bradykinesia class,
where TPR is 1.0 and FPR is 0.11 and Figure 12c presents ROC of the tremor class, where
TPR is 1.0 and FPR 0.0. Table 5 describes the sensitivity and specificity of each class.

Table 5. Sensitivity and specificity of each class.

Class Sensitivity Specificity

1 (Healthy) 0.83 1.00
2 (Bradykinesia) 1.00 0.89

3 (Tremor) 1.00 1.00
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(a) ROC curve of class 1 (Healthy) (b) ROC curve of class 2 (Brdaykinesia) (c) ROC curve of class 3 (Tremor)

Figure 12. ROC curves.

5. Discussion

This research study scrutinized the appropriateness of adopting an A-WEAR bracelet,
which is developed using an accelerometer and gyroscope as an assessment tool for moni-
toring and diagnosis of PD tremor and bradykinesia. Particularly, three primary exercises
followed by UPDRS criteria and clinically approved by practitioners were chosen for
tremor detection, which involves the upper limb movements of the most effected hand and
thus helps validate the bracelet for clinical use. In addition to the aforementioned exercises
for tremor, three other main exercises for bradykinesia assessment, i.e., finger tapping,
fist open and close and pronation/supination showed significant clinical association with
neurologists’ assessments between two groups (healthy and patients subject).

To the best of our knowledge, no previous study has been done, as illustrated in
Tables 2 and 3, which uses the performance of multiple exercises for assessment of patients
with PD. To test the potential of bracelet, we tried to extract the primary features and
characteristics that distinguish two groups of participants. These features are further fused
and entered into ML classifiers. Most of the classification problems typically involve very
high dimensional features [45], resulting in complex classifiers and difficulties in training.
Hence, our approach is to reduce dimensionality that eventually removes irrelevant, noisy
and redundant features. We employed a one-way ANOVA approach that helped in feature
reduction and maximized the relevance of the selected features to correctly distinguish
tremor and bradykinesia as two different symtoms, unlike in [46], which used a one-way
ANOVA approach to detect dyskinesia, tremor and bradykinesia as a single symptom. As
per Figure 10, the most relevant features seem to be the approximate entropy, correlation
dimension, peak amplitude and band energies, which act as input to the NN clustering
and KNN classifiers.

From the last decade, it has been widely observed that in most of the published
works, researchers showed great interest in involving ML classifier training over wearable
inertial sensors data collected from PwPD [47] and tried to enhance the effectiveness and
accuracy leaving behind the focus on the ability of the system to diagnose PD symptoms
at an early stage. From the systematic review of [48], a high number of research works
investigated solutions for lower limbs of PwPD and the it was concluded that there is a
need to investigate motor assessment from upper limbs. For this reason, a solution in the
form of an A-WEAR bracelet is proposed that provides the relevant and most significant
features, which are classified using KNN and NN clustering methods, resulting in 91.7%
accuracy and correct diagnosis of 34 out of 40 subjects. However, an A-WEAR bracelet does
not show the correlation of features with UPDRS criteria to find out the exact correlation
of mild to severe symptoms. In order to maximize the generalized quantification ability
of this device, there is a need to make this device more portable, effective and flexible,
keeping in mind that each gram of additional sensors added causes the peak frequency
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of tremor to decrease by up to 0.85 Hz, as discussed in [49], which ultimately decreases
the acceleration amplitude. In addition to this, new data must be cross-examined and for
that, more effective computational ML algorithms need to be analyzed. Conversely, no
differences emerged regarding the gender of participants. Moreover as expected, the two
groups differ in terms of globally approved motor disabilities, i.e, cognitive functioning.

6. Conclusions and Future Directions

The results of this research study prove that the AWEAR bracelet can be used for
acquiring the right data that can determine a robust tremor and bradykinesia diagnosis.
The bracelet does not weight much and is comfortable to wear for participants. The subjects
performed some physical tasks with the hand, which is most affected by the disease. The
data collected by the AWEAR device were visualized and analyzed and different temporal
and spectral parameters were derived from them. To reduce the complexity of the classifiers,
the key task was to find the importance of the parameters using the one-way ANOVA
method. The results of one-way ANOVA represent the non-linear time domain features and
the spectral features are more dominant than the rest of the linear features. Furthermore,
utilizing the extracted parameters in ML classifiers, both in the KNN algorithm and neural
network clustering, we were able to diagnose the PD patients’ cardinal symptoms from the
healthy older adults with an impressive accuracy.

The main benefit of the extracted features and approaches employed in this research
study is the interpretation of the results connected to a low-cost and easy to use wearable
bracelet, which can be used without any assistance and in places where medical and
financial resources are scarce. Likewise, the simplest tests can be conducted by participants
and evaluated by a person without any experience.

In the near-future, the AWEAR bracelet will involve a cloud-based approach. It will
also be improved with more advantageous features for remote diagnosis and determination
of the disease progress. Considering clinical aspects, there is a continuous need for support
from neurologists and PD patients, gathering more data and improving the ML models.
Since this bracelet helps in PD identification, another goal is to refine the classes and to use
it for identifying different tremor types, tremor severity levels and bradykinesia.
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Abbreviations
The following abbreviations are used in this manuscript:

UPDRS Unified Parkinson’s Disease Rating Scale
PD Parkinson Disease
QoL Quality of Life
ADL Activities of Daily Life
LF Low frequency
HF High frequency
SVM Support vector machine
HMM Hidden markov model
DBS Deep brain simulation
ET Essential tremor
KNN K nearest neighbours
PT Postural tremor
KT Kinetic tremor
SOM Sample of map
PwPD Patients with Parkinson Disease
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