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Immune checkpoint inhibitors (ICI) have revolutionized cancer treatment over the past
decade. However, although the immune landscape suggests a strong rationale for the use
of these agents in patients with head and neck squamous cell carcinoma, the available
clinical evidence indicates that most patients currently do not respond to ICI monotherapy.
Radiotherapy is a primary treatment modality for many patients with locally advanced
head and neck cancer. While ionizing radiation traditionally has been thought to act in a
purely cytotoxic fashion, a growing body of preclinical studies have demonstrated
additional profound immunomodulatory effects. Consequently, there has been a surge
of interest in the potential synergy between radiotherapy and immunotherapy, both the
potential for radiotherapy to augment the systemic anti-tumor immune response and the
potential for immunotherapy to improve in-field tumor response to radiation. In this review,
we summarize the current preclinical and clinical evidence for radioimmunotherapy, with a
particular focus on studies directly relevant to head and neck squamous cell carcinoma,
as well as existing challenges and future directions for this emerging field.
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INTRODUCTION

Head and neck cancers comprise a significant portion of the global cancer burden; when aggregating
subsites, they are the 8th most common cancer worldwide by both incidence and mortality (1).
Although the vast majority of head and neck cancers are squamous cell carcinomas (HNSCC) and
have traditionally been associated with tobacco and alcohol use, HPV-associated oropharyngeal
squamous cell carcinoma (SCC) has emerged as a new disease entity with markedly different
biological behavior (2).

Ever since the foundational work of Henri Coutard, who was the first to use X-rays to treat
laryngeal cancer almost 100 years ago (3), radiation therapy has played a key role in the treatment of
HNSCC. Radiation continues to be used extensively both in the curative as well as palliative setting,
although the distinction between the two is now sometimes blurred with growing recognition of the
oligometastatic state, where patients with limited numbers of metastases can achieve prolonged
survival, or even cure (4, 5). Technological advancements, both in imaging as well as treatment
delivery, have enabled more precise radiation treatment that has reduced treatment-related
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morbidity and improved patient outcomes. However, even with
the use of modern radiation techniques, there are still
opportunities for further improvement (4).

The immune system has a critical role in tumor development,
and the development of immune evasion by tumors is a key step in
carcinogenesis (6, 7). Attempts to reinvigorate an anti-tumor
immune response have been widely integrated into practice
following the development of the immune checkpoint inhibitors
(ICIs) targeted against the immune checkpoint receptors cytotoxic
T-lymphocyte-associated protein 4 (CTLA-4), programmed cell
death protein 1 (PD-1), and programmed death-ligand 1 (PD-L1).
Since the initial FDA approval of ipilimumab (a CTLA-4
inhibitor) in 2011 for the treatment of metastatic melanoma
based on a proven overall survival advantage (8), antibodies
blocking CTLA-4 and PD-1/PD-L1 have been tested and
approved across a wide spectrum of malignancies. In HNSCC,
both pembrolizumab and nivolumab (PD-1 inhibitors) have
gained FDA approval for use in recurrent/metastatic HNSCC
after progression through platinum-based chemotherapy (9–11).
Pembrolizumab additionally has been approved in the US for use
in the first line setting in patients with recurrent/metastatic
HNSCC, either in combination with chemotherapy or alone as
monotherapy depending on tumor/tumor microenvironment PD-
L1 expression (12).

Unfortunately, overall response rates to PD-1 inhibitors in
unselected patients with HNSCC remain low at approximately
10–20% (9–12), although patients who do respond can have
long-lasting, durable remissions, as has been the case with other
solid tumor patients who respond to PD-1 blockade (13). The
possibility of durable long-term response has been a driver of the
rapid uptake in clinical practice and has invigorated efforts to
develop predictive biomarkers. Tumor mutational burden, a
potential surrogate for tumor neoantigens that can be
recognized by the immune system, is one such biomarker,
leading to the first ever histology-agnostic FDA approval of the
PD-1 inhibitor pembrolizumab for mismatch repair deficient
tumors of any histology (14, 15), though there is increasing
recognition that the types and functional nature of mutations
may be as important as the number of mutations present (16).
PD-L1 expression on both tumor cells and infiltrated immune
cells has also been explored as a biomarker across several
histologies with varying results; in HNSCC, subgroup analyses
of Checkmate 141, KEYNOTE-040, and KEYNOTE-048 all
suggest that higher PD-L1 expression does correlate with the
likelihood of survival benefit (10–12). It is less clear whether
patients with low or no PD-L1 expression still benefit from PD-1
directed therapy; analyses of Checkmate 141 and KEYNOTE-048
show questionable benefit for the PD-L1 negative subgroup
when comparing the treatment and control arms (11, 17).
Finally, for HNSCC patients, HPV-associated malignancies
with relatively fewer tumor mutations as compared to tobacco-
associated malignancies may also respond to immune
checkpoint blockade as novel viral-associated neoantigens
might be recognized by the immune system. Indeed, subgroup
analyses of the Checkmate 141 and KEYNOTE-040 trials did not
show any clear differences in response or clinical benefit based on
Frontiers in Oncology | www.frontiersin.org 2
p16 expression status (a surrogate for HPV-associated tumors)
(10, 11).

In addition to better patient selection through the use of
predictive biomarkers, augmenting the anti-tumor immune
response with other therapies could also improve immunotherapy
response rates. Radiation therapy increasingly has been recognized
to have diverse immunomodulatory effects, and there has
consequently been intense interest in possible synergism between
radiation therapy and immunotherapy. In this review, we will
summarize the preclinical data that illustrate the immune effects
of radiation therapy, review the unique immune landscape of
HNSCC, and finally discuss both current preclinical and clinical
data relevant to the combination of radiation therapy and
immunotherapy specifically in HNSCC (Figure 1).
IMMUNE EFFECTS OF
RADIATION THERAPY

Traditionally, the anti-tumor effects of radiation therapy have been
attributed to direct cytotoxicity secondary to the induction of
DNA damage, and while it was known over 40 years ago that
radiation therapy also depends on an intact immune system to
exert its full anti-tumor effect (18), the interaction between the
immune system and radiation therapy has garnered more interest
in the past two decades. It is now recognized that the immune
effects of radiation may contribute significantly to an anti-tumor
response; however, these immune effects are also quite complex
and can be both immunostimulatory and immunosuppressive.

Radiation can induce immunogenic cell death, which gives rise
to adaptive immune responses (19, 20). Many mechanisms can be
involved in this process, and a full detailed review is beyond the
scope of this discussion. However, recent studies have shown
radiation can promote release of danger-associated molecular
patterns such as calreticulin, ATP, and HMGB (20, 21).
Radiation also induces release of cytosolic DNA, which triggers
the cGAS/STING pathway to upregulate production of type-I
interferon (22, 23). Type-I interferon is crucial for the activation of
dendritic cells, which ultimately recruit and prime T-cells. These
signals together are critical for the initial development of an
immune response specific to tumor neoantigens.

Radiation can promote anti-tumor immunity through
additional mechanisms. Radiation can diversify antigen
presentation by tumor cells through promotion of intracellular
peptide degradation as well as upregulation of MHC expression
(24, 25). This ultimately can enhance recognition and tumor cell
killing by cytotoxic T-cells (26). Radiation has also been
associated with increased production of other immune
stimulating cytokines and chemokines, which together can
promote the infiltration of T-cells into tumors and modulate
the function of these T-cells, as well as dendritic cells and
macrophages (21).

Radiation also has immunosuppressive effects that could be
detrimental to an anti-tumor immune response. Lymphocytes
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are radiosensitive, with in vitro studies demonstrating that 3 Gy
of radiation is enough to deplete 90% of human lymphocytes
(27). This may be overly simplistic, however, as more recent
work suggests differential radiosensitivity of T-cell subtypes. Pre-
existing intra-tumoral T-cells in particular appear to be
potentially more radioresistant than either circulating T-cells
or lymphoid tissue T-cells. These intra-tumoral T cells survive
even high doses (20 Gy) of radiation in preclinical studies and
can develop a similar transcriptomic profile to tissue-resident
memory T-cells, which are also thought to be radioresistant (28,
29). These intra-tumoral T-cells can mediate some of the anti-
tumor immune effects of high dose radiation. Regardless, clinical
data suggest that radiation-induced lymphopenia may be a
negative prognostic factor in patients treated with PD-1 and
CTLA-4 inhibitors (30).

Within the local tumor microenvironment, a variety of
inhibitory immune cells, such as T-regulatory cells (Tregs),
myeloid-derived suppressor cells (MDSCs), and tumor-
associated macrophages (TAMs, and specifically M2
macrophages), are often already present. In several studies,
radiation increases recruitment of these inhibitory immune
cells and can also modulate their function towards an even
more immunosuppressive phenotype (21). There may also be
dose-dependent effects of radiation; for instance, Vanpouille-
Box et al. demonstrated that as radiation doses were escalated to
12–18 Gy, there was induction of Trex1, a DNA exonuclease
which degrades cytosolic DNA and thus prevents activation
of the cGAS/STING pathway (23). The balance between
competing activating and inhibitory immune responses,
then, likely plays a key role in the probability of a successful
anti-tumor immune response and provides opportunity for
therapeutic intervention.
Frontiers in Oncology | www.frontiersin.org 3
IMMUNE LANDSCAPE OF HNSCC

Work over the past decade has helped characterize the immune
landscape of HNSCC. As noted above, HPV-associated
oropharyngeal SCC is a distinct disease entity from other non-
HPV-driven, tobacco-associated HNSCC, with a distinct immune
profile. Using data from The Cancer Genome Atlas, Mandal et al.
showed that HPV-positive tumors were significantly more
immune infiltrated than HPV-negative tumors (31). However,
both HPV-positive and HPV-negative HNSCC had the highest
rate of immunosuppressive Treg infiltration among 10 different
cancer types. There was a correlation between the molecular
smoking signature of HNSCC tumors and increased tumor
mutational burden, but also conversely an inverse association
between the molecular smoking signature and immune
infiltration, despite this higher tumor mutation burden (and
therefore presumably increased neoantigen load). This suggests
that tobacco-associated tumors can still be immunologically cold
despite their higher mutational load. Further work has
demonstrated that HPV-positive tumors are associated with
increased T-cell receptor diversity, higher levels of immune
cytolytic activity, and an overall enriched inflammatory response
(32, 33). The anatomic subsite where head and neck cancer
develops likely plays a key role in tumor immunity as well; the
oropharynx contains particularly lymphoid-rich tissue, and this
unique immune environment may explain why the improved
prognosis for HPV-driven HNSCC is largely limited to
oropharyngeal tumors (34). Additional work on oropharyngeal
SCC has confirmed a higher degree of infiltration of CD8+ T-cells
in HPV-positive vs HPV-negative tumors (35). Overall, these
studies suggest that the increased sensitivity of HPV-associated
oropharyngeal SCC to chemotherapy and radiation therapy may
FIGURE 1 | Opportunities for radioimmunotherapy in HNSCC.
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at least in part be mediated through immune mechanisms (36, 37),
and that differing immunotherapeutic approaches may be optimal
for HPV-positive and HPV-negative HNSCC.

HNSCC also appears to be uniquely associated with high
levels of natural killer (NK) cell infiltration, even when compared
to other highly-immune infiltrated cancer types (31, 35). Patients
with high levels of NK cell infiltration were also found to have
improved survival compared to those with low levels of
infiltration (31). The potential anti-tumor effects of NK cells is
an emerging area of research and has been reviewed elsewhere
(38); currently, there is limited clinical data on their role in
HNSCC, or whether opportunities for synergy between NK-
directed therapies and radiation exist.
PRECLINICAL EVIDENCE FOR
RADIOIMMUNOTHERAPY IN
HNSCC MODELS

Augmenting Anti-tumor Cellular Immunity
Preclinical work in HNSCC models has demonstrated synergy
between radiation and immunotherapy. In a poorly immunogenic
orthotopic HNSCC mouse model, Oweida et al. demonstrated
effective tumor cell killing when both 10 Gy of radiation and an
anti PD-L1 antibody were administered together, but not for
either treatment individually (39). Tumor control was correlated
with increased tumor T-cell infiltration and was abrogated when
CD4+ and CD8+ T-cells were depleted. In addition, although
much of research on anti-tumor immunity has focused on the role
of T-cells, work from Kim et al. in a mouse model of HPV-
associated HNSCC suggests that the combination of radiation and
PD-1 inhibition also promotes maturation and activation of B-
cells, leading to the development of memory B-cells, plasma cells,
and antigen-specific B-cells, as well as increasing formation of B-
cell germinal centers in tumor draining lymph nodes (40). Finally,
there is growing interest in harnessing additional molecular
pathways to promote anti-tumor immunity. For instance, in a
mouse model of HPV-driven carcinoma, Dillon et al.
demonstrated that inhibitors of ATR, a key protein in the DNA
damage response pathway, significantly sensitized tumors to
radiation, and this effect was correlated with upregulation of
interferon-stimulated genes and a significant increase in innate
immune cell infiltration into the tumor microenvironment (41).
Xiao et al. showed that ASTX600, an inhibitor of IAP1/2 and
XIAP, proteins that modulate apoptosis and the tumor necrosis
factor signaling pathway, significantly enhanced T-cell mediated
tumor cell killing when combined with radiation and PD-1
inhibition in a mouse model of oral cavity carcinoma (42).

Decreasing an Immunosuppressive
Microenvironment
The immunosuppressive microenvironment remains a challenge
even with combined radiation and immunotherapy. In a follow-
up study, Oweida et al. demonstrated that the anti-tumor immune
responses to combined radiation and PD-1 inhibition in their
HNSCC mouse model were ultimately transient, as compensatory
Frontiers in Oncology | www.frontiersin.org 4
mechanisms of immune evasion were activated, including
upregulation of another immune checkpoint, TIM-3, as well as
increased tumor infiltration of Tregs (39, 43). Adding an anti-
TIM-3 antibody further delayed tumor growth, but the response
was still not durable; only targeted depletion of Tregs was able to
induce durable immunologic memory. Another group has
explored the use of cyclophosphamide and an inhibitor of
inducible nitric oxide synthase (iNOS) as immunomodulatory
agents in a mouse model of HPV-associated HNSCC. When
combined with traditional chemoradiation, addition of these
two agents increased the CD8+ T-cell/Treg ratio and decreased
immunosuppression (44). In this particular model system the
combination of radiation with PD-1 and CTLA-4 inhibition only
minimally altered the immunological ly cold tumor
microenvironment, but the addition of cyclophosphamide and
the iNOS inhibitor shifted the balance of infiltrated immune cells
away from immunosuppressive types (such as MDSCs) to those
more associated with anti-tumor immunity (such as dendritic cells
and anti-tumor M1 macrophages). This led to an increased CD8+
T-cell-dependent response and complete tumor rejection in more
than 70% of the treated mice (45). This is now being investigated
in a clinical trial, NCT03844763, which explores the use of
cyclophosphamide, avelumab (a PD-L1 inhibitor), and radiation
therapy in the treatment of recurrent/metastatic HNSCC.

Radiation Dose and Fractionation Effects
Additional studies have demonstrated the importance of
radiation dose and fractionation in generating an effective anti-
tumor immune response. Consistent with work in other diseases
(46), Morisada et al. showed in a syngeneic mouse oral cavity
carcinoma model that hypofractionated radiation (16 Gy in two
fractions) was associated with preservation of both peripheral and
tumor-infiltrating lymphocytes, reduction of both peripheral and
tumor-associated MDSCs, and increased expression of interferon
genes, when compared to conventionally fractionated radiation
(20 Gy in 10 fractions) (47). Moreover, analysis of the draining
lymph nodes (which notably were included within the radiation
fields) suggested that 20 Gy in 10 fractions suppressed local
tumor-specific T-cell responses. Consequently, only 16 Gy in two
fractions demonstrated synergy with an anti-PD-1 antibody in
these mice. Additional work by this group suggests a dose-
dependent effect of radiation on both antigen release and T-cell
priming, with 8 Gy in a single fraction enhancing these pathways
compared to 2 Gy in a single fraction, resulting in increased
tumor cell susceptibility to T-cell mediated killing (48). However,
the doses used in these preclinical models differ from those used
in clinical practice, as do the size of the treated tumors, and so it is
uncertain how these findings might translate to the treatment
of patients.
CLINICAL EVIDENCE FOR
RADIOIMMUNOTHERAPY IN HNSCC

Recurrent/Metastatic Setting
Despite the widespread use of ICIs in advanced malignancies,
prospective clinical data on their combination with radiation
February 2021 | Volume 10 | Article 608772
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therapy remain scarce, particularly in HNSCC. The unique
immune-related adverse effects (irAEs) that have been
observed with ICIs are now well established (49) and there
have been concerns that the pro-inflammatory effects of
radiation could enhance toxicities when combined with ICIs.
Reassuringly, however, most of the available clinical data to date
suggests that the combination of radiation and ICIs is generally
well tolerated (50). For instance, in a cohort of 133 patients with
metastatic melanoma, non-small cell lung cancer (NSCLC), or
renal cell cancer who received palliative radiation to a wide range
of anatomic sites, Bang et al. demonstrated numerically higher
rates of irAEs when radiation was given within 14 days of
immunotherapy, but the toxicities were generally mild with
rates of grade 3+ toxicity less than 10% (51). Similarly, a
prospective phase I trial of pembrolizumab and stereotactic
body radiotherapy (SBRT) in patients with a variety of
metastatic solid tumors also demonstrated a grade 3+ toxicity
rate of less than 10% (52). Notably, this study did include four
patients with HNSCC, and radiation was delivered to two
distinct anatomic sites in more than 60% of the cohort. Finally,
a phase 2 trial which randomized 62 patients with metastatic
HNSCC to nivolumab with or without SBRT to a single
metastatic site did not find a significant difference in either
grade 3–5 adverse events (13% for nivolumab alone vs 10% for
nivolumab with SBRT, p = 0.70) or any grade adverse events
(70% for nivolumab alone vs 87% for nivolumab with SBRT, p =
0.12) with the addition of SBRT (53).

Nevertheless, a few key issues must be considered when
interpreting these and other safety data. Just as dose and
fractionation likely affect potential anti-tumor immunity
induced by radiation (as demonstrated in preclinical work), it
is probable that these parameters influence potential toxicities
when combined with ICIs. The relative timing of radiation
and immunotherapy is likely to be important as well;
notably, radiation recall, a relatively rare, unpredictable, and
poorly understood phenomenon wherein an inflammatory
reaction can develop in previously irradiated tissue following
administration of a new systemic agent (54), has now been
reported following ICI administration (55, 56). Additionally,
the anatomic site treated with radiation could influence the
side effect profile of combination treatment; for instance, the
landmark PACIFIC trial, which demonstrated a significant
overall survival benefit to adjuvant durvalumab (an anti-PD-L1
antibody) after definitive chemoradiation for stage III NSCLC,
also showed an increase in any-grade pneumonitis with the
addition of durvalumab (although rates of clinically relevant
pneumonitis, i.e. grade 3+, were similar between treatment
groups and low overall) (57). Within the brain, there is a
potential increased risk of developing radiation necrosis after
treatment of brain metastases with combined ICIs and radiation
(58, 59). Finally, as discussed earlier, in certain settings radiation
can induce lymphopenia, which could ultimately interfere with
the efficacy of ICIs (30). These data highlight the importance of
collecting robust radiation treatment and toxicity data to
facilitate future analyses as we study combination radiation
and immunotherapy treatments.
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There are very few efficacy data relevant to the addition of
radiation to ICIs in patients with recurrent or metastatic HNSCC.
In general, the primary rationale for radiation in this setting is to
help stimulate a systemic anti-tumor immune response, or
abscopal effect. This is particularly difficult to study
retrospectively, as disentangling a true abscopal effect from a
delayed response to immunotherapy is challenging (60). The
only available prospective data for HNSCC comes from the
randomized phase 2 trial noted above, in which 62 patients with
metastatic HNSCC were randomized to nivolumab with or
without SBRT to a single metastatic site (9 Gy ×3 fractions,
between the first and second doses of nivolumab). Ultimately,
there was no improvement in overall response rate (34.5% for
nivolumab alone vs 29.0% for nivolumab with SBRT, p = 0.86)
(53). In NSCLC, a similarly designed phase 2 trial of
pembrolizumab with or without SBRT to a single metastatic site
in patients with advanced NSCLC also failed to meet its primary
endpoint, although it did demonstrate a doubling of overall
response rate with the addition of SBRT that was not
statistically significant (18% for pembrolizumab alone vs 36% for
pembrolizumab with SBRT, p = 0.07) (61). Differences between
the designs of these two studies include the anti-PD-1 agent used
(nivolumab vs pembrolizumab), the type of cancer (HNSCC vs
NSCLC), timing of SBRT (between first and second dose of
nivolumab vs prior to starting pembrolizumab), and dose of
SBRT (9 Gy ×3 fractions vs 8 Gy ×3 fractions). Given the results
of these trials, further research is clearly needed; Table 1
summarizes ongoing trials that will help address these questions
specifically in patients with recurrent/metastatic HNSCC. Notably,
however, only a few of these studies are randomized, and so any
efficacy data will require confirmation in larger, phase 3 trials.

Finally, as noted above, there is growing recognition of an
oligometastatic disease state.Contrary toprevious conceptualization
of metastatic disease as inevitably widespread and thus incurable,
the oligometastatic hypothesis suggests that there is a wide range
of metastatic potential that varies among different cancers and
from patient to patient, and that an intermediate state likely exists
between purely localized disease and widely metastatic disease,
wherein a limited number of metastases might develop with
limited further metastatic potential (62). Aggressive local
treatment of patients with limited metastases would thus
potentially offer a significant survival benefit. Results from
several randomized phase 2 trials have supported this
hypothesis (though notably HNSCC was not represented in any
of these studies) (63–67). Consequently, there is interest in the
addition of ICIs to radiation in this population of patients to
improve outcomes (68). In this setting, radiation would be
administered at ablative doses to all metastatic sites, and so the
additionof ICIswould also be intended to augment the local effects
of radiation at each treatment site. To our knowledge, no
prospective clinical data has yet been published on the
combination of radiation and ICIs in patients with
oligometastatic HNSCC, though there is at least one ongoing
clinical trial (NCT03283605, which examines the use of
durvalumab, tremelimumab [a CTLA-4 inhibitor], and SBRT in
patients with HNSCC with fewer than 10 metastases).
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TABLE 1 | Ongoing trials evaluating combinations of ICIs and radiation in the management of recurrent/metastatic HNSCC.

NCT# Title Inclusion criteria Treatment arms Timing Phase

NCT03539198 Study of Proton SBRT and Immunotherapy for
Recurrent/Progressive Locoregional or Metastatic
Head and Neck Cancer

Recurrent/metastatic
HNSCC, ≥2 metastatic
sites

1: nivolumab given every 2 weeks, with
proton SBRT to one metastatic site
administered with cycle 3

concurrent n/a

NCT03283605 Immunotherapy and SBRT for Metastatic Head and
Neck Carcinomas

Metastatic HNSCC, ≥2
metastatic sites

1: durvalumab + tremelimumab for four
cycles (4 weeks each), SBRT between cycles
2 and 3

concurrent 1/2

NCT03844763 CONFRONT: Targeting the Tumor
Microenvironment in R/M SCCHN

Recurrent/metastatic
HNSCC

1: avelumab, cyclophosphamide, and
radiation (8 Gy/1 fx) to a single site 1 week
after first dose of avelumab

concurrent 1/2

NCT03522584 Durvalumab, Tremelimumab and Hypofractionated
Radiation Therapy in Treating Patients With
Recurrent or Metastatic Head and Neck Squamous
Cell Carcinoma

Recurrent/metastatic
HNSCC; progression
through prior PD-1/PD-
L1 inhibitor

1: durvalumab + tremelimumab for four
cycles (4 weeks each) followed by
durvalumab alone for nine cycles; SBRT
during week 3 in three fractions, every other
day

concurrent 1/2

NCT03474497 UCDCC#272: IL-2, Radiotherapy, and
Pembrolizumab in Patients Refractory to
Checkpoint Blockade

Recurrent/metastatic
HNSCC; progression
through prior PD-1/PD-
L1 inhibitor

1: one cycle of pembrolizumab, then SBRT
(24 Gy/3 fx) and intratumoral injection of
interleukin-2 during cycle 2, then additional
pembrolizumab

concurrent 1/2

NCT03317327 REPORT: REirradiation and Programmed Cell Death
Protein 1 (PD-1) Blockade on Recurrent Squamous
Cell Head and Neck Tumors

Recurrent HNSCC after
prior radiation or second
primary HNSCC

1: nivolumab with re-irradiation to 60 Gy (in
1.5 Gy bid fx), followed by nivolumab for up
to 12 months

concurrent 1/2

NCT04340258 Trial Combining Pembrolizumab and Cesium 131
Brachytherapy With Salvage Surgery in HNSCC

Resectable recurrent
HNSCC after prior
surgery or radiation

1: one dose of pembrolizumab, then salvage
surgery with implantation of Cesium-131
brachytherapy seeds (60–70 Gy), followed by
adjuvant pembrolizumab for 6 months

concurrent 1/2

NCT04454489 Quad Shot Radiotherapy in Combination With
Immune Checkpoint Inhibition

Recurrent/metastatic
HNSCC

1: pembrolizumab given every 3 weeks;
quad-shot radiation (14.8 Gy in 4 bid fx)
between cycles 2 and 3

concurrent 2

NCT03313804 Priming Immunotherapy in Advanced Disease With
Radiation

Recurrent/metastatic
HNSCC

1: nivolumab, pembrolizumab, or
atezolimuab, with either SBRT (BED > 100
Gy) or 30 Gy fractionated RT

concurrent 2

NCT03386357 Radiotherapy With Pembrolizumab in Metastatic
HNSCC

Recurrent/metastatic
HNSCC, ≥2 metastatic
sites, progression
through platinum-based
therapy

1: radiation to 1–3 metastases (36 Gy/12 fx),
with pembrolizumab starting between fraction
3 and 4

concurrent 2

2: pembrolizumab alone

NCT03511391 CHEERS: CHEckpoint Inhibition in Combination
With an Immunoboost of External Body
Radiotherapy in Solid Tumors

Recurrent/metastatic
HNSCC, progression
through platinum-based
therapy

1: 2 cycles of nivolumab, then SBRT to 1–3
metastases (24 Gy/3 fx) prior to cycle 3

concurrent 2

2: nivolumab alone

NCT03085719 Targeting PD-1 Therapy Resistance With Focused
High or High and Low Dose Radiation in SCCHN

Metastatic HNSCC,
progression through prior
PD-1 inhibition, ≥3
metastatic sites

1: pembrolizumab and high dose SBRT (3 fx)
to one metastatic site

concurrent 2

2: pembrolizumab and high dose SBRT (3 fx)
to one metastatic site, and low dose radiation
(2 fx) to another site

NCT03546582 KEYSTROKE: SBRT +/− Pembrolizumab in Patients
With Local-Regionally Recurrent or Second Primary
Head and Neck Carcinoma

Recurrent HNSCC after
prior radiation or second
primary HNSCC

1: reirradiation with SBRT over 2 weeks, then
pembrolizumab every 3 weeks for up to 2
years

sequential 2

2: reirradiation with SBRT over 2 weeks
NCT03521570 Intensity-Modulated Radiation Therapy & Nivolumab

for Recurrent or Second Primary Head & Neck
Squamous Cell Cancer

Recurrent HNSCC after
prior radiation or second
primary HNSCC

1: one dose of nivolumab, then radiation with
concurrent nivolumab, then adjuvant
nivolumab for 5 months

concurrent +
sequential

2

NCT02289209 Reirradiation With Pembrolizumab in Locoregional
Inoperable Recurrence or Second Primary
Squamous Cell CA of the Head and Neck

Unresectable recurrent
HNSCC after prior
radiation or second
primary HNSCC

1: pembrolizumab with re-irradiation to 60 Gy
(in 1.2 Gy bid fx), followed by pembrolizumab
for 3 months

concurrent +
sequential

2

NCT02684253 Screening Trial of Nivolumab With Image Guided,
Stereotactic Body Radiotherapy (SBRT) Versus
Nivolumab Alone in Patients With Metastatic Head
and Neck Squamous Cell Carcinoma (HNSCC)

Metastatic HNSCC, ≥2
metastatic sites

1: one cycle of nivolumab, then SBRT (27
Gy/3 fx) with the 2nd cycle, followed by
additional nivolumab

concurrent 2

2: nivolumab alone
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Related to the overall concept of oligometastases is
oligoprogression, or the development of a limited number of
progressive metastatic lesions after a period of stability on
systemic therapy (69). In the context of ICIs, oligoprogression
may herald general immune escape in patients who had
previously been responding to treatment. However, in certain
cases oligoprogression may develop as the result of resistant
tumor clones that lack particular tumor antigens or antigen
presentation, or because of differences in the underlying immune
microenvironment of the anatomic site that permit localized
immune escape (e.g. brain) (70, 71). If this is the case, local
treatment such as radiation to these oligoprogressive sites
may enable the patient to continue to derive benefit from
ICIs (72–74). This paradigm is being tested prospectively in
SCCHN (NCT03085719).

Locally Advanced/Definitive Setting
ICIs are being investigated in the setting of curative treatment of
earlier stages of disease across all cancer types, including
HNSCC. Addition of ICIs to radiation in this setting would be
intended to potentially augment the local effects of radiation (i.e.
as a radiosensitizer) and address micrometastatic disease. Several
possible combinations are under investigation—immunotherapy
added to a chemoradiation regimen to intensify therapy (for
patients with currently poor outcomes), immunotherapy given
concurrently with radiation instead of chemotherapy or with a
lower dose of radiation (potentially as a way to reduce treatment
morbidity while maintaining overall efficacy), or immunotherapy
administered adjuvantly and/or as induction (i.e. sequential
therapy). To date adjuvant immunotherapy has proven
successful in NSCLC; as noted earlier, the PACIFIC trial
demonstrated a significant and meaningful overall survival
benefit for adjuvant durvalumab starting within 6 weeks of
completing standard chemoradiation for unresectable stage III
NSCLC, with an increase in 2-year overall survival from 55.6 to
66.3% (75). Of note, the magnitude of benefit was greater
patients who were randomized within 2 weeks of completing
chemoradiation. Adjuvant immunotherapy also has newly
demonstrated success in esophagogastric cancer; Checkmate-
577 demonstrated improved disease-free survival with the
administration of adjuvant nivolumab following neoadjuvant
chemoradiation and surgical resection in patients with
esophageal and gastroesophageal cancer, though full trial
results have yet to be presented (76).

As shown in Table 2, ongoing trials are evaluating various
combinations of radiation and ICIs for HNSCC in the definitive
setting, and several have now reported safety data. In general,
combinations of PD-1/PD-L1 inhibitors with definitive radiation
appear well tolerated with no unexpected toxicities. KEYCHAIN
is a randomized phase 2 study of radiation combined with
concurrent and adjuvant pembrolizumab compared with
radiation and concurrent cisplatin in intermediate-risk p16-
positive HNSCC; the safety lead-in phase of the study found
only one dose-limiting toxicity (grade 4 adrenal insufficiency)
among eight patients in the pembrolizumab arm, and so the trial
has proceeded to its phase 2 component (77). A single arm phase
Frontiers in Oncology | www.frontiersin.org 7
2 trial of radiation administered with concurrent and adjuvant
pembrolizumab in cisplatin-ineligible patients with locally
advanced HNSCC similarly demonstrated relatively low toxicity
in the first 12 enrolled patients, and 11 of 12 patients received all
planned cycles of pembrolizumab (78). Finally, PembroRad is a
randomized phase 2 trial of radiation combined with concurrent
pembrolizumab versus radiation combined with concurrent
cetuximab, again in cisplatin-ineligible patients with locally
advanced HNSCC. There have been 133 patients randomized
in a 1:1 fashion, and the pembrolizumab arm was found to have
significantly less mucositis or dermatitis within the radiation field
than the cetuximab arm (79).

Early results also suggest that intensification of existing
chemoradiation regimens with the addition of ICIs is
reasonably safe. In a small phase 1 trial of concurrent and
adjuvant avelumab added to standard cetuximab/radiation in
10 cisplatin-ineligible patients with locally advanced HNSCC, no
grade 4–5 toxicities were observed, and only one of eight
evaluable patients discontinued avelumab for toxicity (80).
REACH is a phase 3 trial that is also comparing concurrent
avelumab, cetuximab, and radiation, followed by 12 months of
adjuvant avelumab, against either standard bolus cisplatin with
radiation or cetuximab with radiation (depending on if the
patient is judged to be fit for cisplatin or not) in patients with
locally advanced HNSCC; results for the 82 patients randomized
during the safety phase of the trial suggested that addition of
avelumab was tolerable, with 88% of patients completing
concurrent avelumab as per protocol, and rates of grade 4+
events similar between control and experimental arms (81).
Similarly, a single arm phase 1b study of the addition of
concurrent and adjuvant pembrolizumab to standard radiation
and weekly cisplatin in patients with locally advanced HNSCC
demonstrated in 59 patients that concurrent pembrolizumab did
not prevent patients from completing chemoradiation, and only
5 of 59 patients ultimately discontinued treatment because of
irAEs (82). Finally, RTOG 3504 is a four-arm phase 1 trial in
patients with intermediate or high risk HNSCC that is examining
the addition of concurrent and adjuvant nivolumab to either
radiation alone or radiation with weekly cisplatin, bolus cisplatin,
or cetuximab; safety results from the latter three arms again
demonstrated that nivolumab did not prevent timely completion
of chemoradiation, and rates of dose-limiting toxicities were
low (83).

Efficacy data, however, have not yet been reported from most
of these or other ongoing trials. One of the single arm phase 2
trials noted above (78) of radiation with concurrent and adjuvant
pembrolizumab in cisplatin-ineligible patients with locally
advanced HNSCC ultimately enrolled 29 patients, and reported
1-yr progression-free survival and overall survival of 76 and 86%,
respectively (84). Notably, the phase 3 Javelin 100 study is a
double-blind, placebo-controlled trial that randomized 697
patients with locally advanced HNSCC to standard of care
cisplatin-based chemoradiation with or without concurrent
and adjuvant (for 12 months) avelumab, with progression-free
survival as the primary endpoint. Unfortunately, this trial was
recently terminated for likely futility after a preplanned interim
February 2021 | Volume 10 | Article 608772
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TABLE 2 | Ongoing trials evaluating combinations of ICIs and radiation in the definitive management of locally advanced HNSCC.

NCT# Title Inclusion criteria Treatment arms Timing Phase

NCT02819752 PEmbrolizumab Combined With
Chemoradiotherapy in Squamous Cell Carcinoma
of the Head and Neck (PEACH)

LA HNSCC 1: pembrolizumab added to standard
chemoradiation, three doses concurrently, four
doses adjuvantly

concurrent +
sequential

1

NCT04477759 Dose-Escalated Hypofractionated Adaptive
Radiotherapy for Head and Neck Cancer
(DEHART)

LA HNSCC, cisplatin-
ineligible, or primary
metastatic HNSCC

1: MR-guided hypofractionated radiation (50–60
Gy/15 fx); atezolizumab given with fraction 1 and
11 of radiation, then every 4 weeks for up to 1 year

concurrent +
sequential

1

NCT03509012 CLOVER: Immunotherapy in Combination With
Chemoradiation in Patients With Advanced Solid
Tumors

LA HNSCC 1: durvalumab concurrent with standard radiation
and cisplatin

concurrent 1

NCT02764593 RTOG 3504: Safety Testing of Adding Nivolumab
to Chemotherapy in Patients With Intermediate
and High-Risk Local-Regionally Advanced Head
and Neck Cancer

LA HNSCC,
intermediate or high
risk

1: one dose of nivolumab as induction, then
radiation (70 Gy/35 fx) and nivolumab with weekly
cisplatin, then adjuvant nivolumab for seven doses

concurrent +
sequential

1

2: one dose of nivolumab as induction, then
radiation (70 Gy/35 fx) and nivolumab with bolus
cisplatin, then adjuvant nivolumab for seven doses
3: one dose of nivolumab as induction, then
radiation (70 Gy/35 fx) and nivolumab with weekly
cetuximab, then adjuvant nivolumab for seven
doses
4: one dose of nivolumab as induction, then
radiation (70 Gy/35 fx) with nivolumab, then
adjuvant nivolumab for seven doses

NCT03051906 DUCRO-HN: Durvalumab, Cetuximab and
Radiotherapy in Head Neck Cancer

LA HNSCC 1: durvalumab every 4 weeks, cetuximab weekly,
and radiation to 69.96 Gy/33 fx, followed by
adjuvant durvalumab for 6 months

concurrent +
sequential

1/2

NCT03247712 Neoadjuvant Immunoradiotherapy in Head & Neck
Cancer

Resectable LA
HNSCC

1: neoadjuvant SBRT (24–40 Gy/3–5 fx) and
nivolumab, followed by surgery, followed by
adjuvant nivolumab

concurrent +
sequential

1/2

NCT02296684 Immunotherapy With MK-3475 in Surgically
Resectable Head and Neck Squamous Cell
Carcinoma

Resectable LA
HNSCC, except p16-
positive
oropharyngeal SCC

1: two doses of pembrolizumab neoadjuvantly
followed by surgery and standard risk-adapted
adjuvant (chemo)radiation

sequential 2

2: one dose of pembrolizumab neoadjuvantly,
followed by surgery and standard risk-adapted
adjuvant (chemo)radiation, followed by adjuvant
pembrolizumab for up to six doses for patients
with ENE or positive margins

NCT03894891 Induction TPN Followed by Nivolumab With
Radiation in Locoregionally Advanced Laryngeal
and Hypopharyngeal Cancer

LA p16-negative
SCC of larynx or
hypopharynx

1: induction cisplatin, docetaxel, and nivolumab,
followed by concurrent radiation and nivolumab

concurrent +
sequential

2

NCT03708224 Phase II Study of Perioperative Immunotherapy in
Patients With Advanced Non-Virally Associated
Squamous Cell Carcinoma

Resectable LA
HNSCC, except p16-
positive
oropharyngeal SCC

1: one dose of atezolizumab neoadjuvantly,
followed by surgery and standard risk-adapted
adjuvant (chemo)radiation, followed by
atezolizumab every 3 weeks for up to 12 cycles

sequential 2

2: one dose of atezolizumab and tocilizumab
neoadjuvantly, followed by surgery and standard
risk-adapted adjuvant (chemo)radiation, followed
by atezolizumab every 3 weeks for up to 12 cycles

NCT03426657 Radiotherapy With Double Checkpoint Blockade
of Locally Advanced HNSCC

LA HNSCC 1: one cycle of induction cisplatin, docetaxel,
durvalumab, and tremelimumab; patients with
increased CD8+ T-cell infiltration on interval biopsy
then receive durvalumab, tremelimumab, and
radiation, followed by adjuvant durvalumab for 8
months

concurrent +
sequential

2

NCT03532737 Concomitant Immune Check Point Inhibitor With
Radiochemotherapy in Head And Neck Cancer

LA HNSCC, non-
nasopharynx

1: pembrolizumab for six cycles (3 weeks each),
and chemoradiation starting with cycle 2, with
either bolus cisplatin or cetuximab, and radiation to
66–70 Gy/30–35 fx

concurrent +
sequential

2

NCT02892201 Pembrolizumab in HNSCC With Residual Disease
After Radiation

LA HNSCC with
residual disease after
definitive radiation

1: pembrolizumab for four cycles, followed by
evaluation for salvage surgery; unresectable
patients continue pembrolizumab for up to 1 year

sequential 2

NCT03721757 CA209-891: Neoadjuvant and Adjuvant
Nivolumab as Immune Checkpoint Inhibition in
Oral Cavity Cancer (NICO)

LA oral cavity SCC 1: one dose of neoadjuvant nivolumab followed by
surgery, then one dose of nivolumab, then
standard post-operative radiation or

sequential 2

(Continued)
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TABLE 2 | Continued

NCT# Title Inclusion criteria Treatment arms Timing Phase

chemoradiation (60 Gy/30 fx), then 6 months of
adjuvant nivolumab

NCT03944915 De-Escalation Therapy for Human Papillomavirus
Negative Disease (DEPEND)

LA p16-negative
HNSCC

1: induction carboplatin, paclitaxel, and nivolumab,
followed by response-adapted chemoradiation
(66–75 Gy)

sequential 2

NCT04405154 A Study of Concomitant Camrelizumab With
Chemoradiation for Locally Advanced Head and
Neck Cancer

LA HNSCC 1: camrelizumab for eight cycles (2 weeks each),
with standard chemoradiation (bolus cisplatin and
radiation [66 Gy/33 fx]) starting with cycle 2

concurrent +
sequential

2

NCT02777385 Pembrolizumab in Combination With Cisplatin and
Intensity Modulated Radiotherapy (IMRT) in Head
and Neck Cancer

LA HNSCC,
intermediate or high
risk

1: pembrolizumab for one initial dose, then
concurrent with radiation and weekly cisplatin, then
adjuvant pembrolizumab for a total of eight doses

concurrent +
sequential

2

2: radiation and weekly cisplatin, followed by
adjuvant pembrolizumab for eight doses

sequential

NCT03383094 KEYCHAIN: Chemoradiation vs Immunotherapy
and Radiation for Head and Neck Cancer

LA HNSCC, p16-
positive, intermediate
risk

1: pembrolizumab and standard radiation to 70
Gy/33–35 fx, followed by adjuvant pembrolizumab
for up to 20 cycles (3 weeks each)

concurrent 2

2: standard chemoradiation to 70 Gy/33–35 fx with
bolus cisplatin

NCT02707588 PembroRad: Tolerance and Efficacy of
Pembrolizumab or Cetuximab Combined With RT
in Patients With Locally Advanced HNSCC

LA HNSCC 1: radiation (69.96 Gy/33 fx) with concurrent
pembrolizumab

concurrent 2

2: radiation (69.96 Gy/33 fx) with concurrent
cetuximab

NCT02609503 Pembrolizumab + Radiation for Locally Adv SCC
of the Head and Neck (SCCHN) Not Eligible
Cisplatin

LA HNSCC, cisplatin-
ineligible

1: radiation (70 Gy/35 fx) with three concurrent
cycles of pembrolizumab, then three adjuvant
cycles

concurrent +
sequential

2

NCT03258554 NRG-HN004: Radiation Therapy With Durvalumab
or Cetuximab in Treating Patients With
Locoregionally Advanced Head and Neck Cancer
Who Cannot Take Cisplatin

LA HNSCC, cisplatin-
ineligible

1: durvalumab for seven cycles (4 weeks each);
radiation to 70 Gy/35 fx starting week 2

concurrent +
sequential

2/3

2: cetuximab for eight cycles (weekly); radiation to
70 Gy/35 fx starting week 2

NCT01810913 RTOG 1216: Testing Docetaxel-Cetuximab or the
Addition of an Immunotherapy Drug,
Atezolizumab, to the Usual Chemotherapy and
Radiation Therapy in High-Risk Head and Neck
Cancer

Resected LA
HNSCC, except p16-
positive
oropharyngeal SCC,
with pathologic ENE
or positive margins

1: atezolizumab for eight cycles (3 weeks each)
following surgery, with standard chemoradiation (to
60 Gy/30 fx with weekly cisplatin) starting week 2

concurrent +
sequential

2/3

NCT03811015 EA3161: Testing Immunotherapy Versus
Observation in Patients With HPV Throat Cancer

p16-positive
oropharyngeal SCC,
intermediate risk

1: radiation (70 Gy/35 fx) and concurrent weekly
cisplatin, then adjuvant nivolumab for 12 months

sequential 2/3

2: radiation (70 Gy/35 fx) and concurrent weekly
cisplatin, then observation

NCT03452137 IMvoke010: A Study of Atezolizumab (Anti−Pd-L1
Antibody) as Adjuvant Therapy After Definitive
Local Therapy in Patients With High-Risk Locally
Advanced Squamous Cell Carcinoma of the Head
and Neck

LA HNSCC after
definitive local
therapy
(chemoradiation or
surgery + [chemo]
radiation)

1: adjuvant atezolizumab for 1 year sequential 3
2: placebo for 1 year

NCT03576417 NIVOPOSTOP: A Trial Evaluating the Addition of
Nivolumab to Cisplatin-RT for Treatment of
Cancers of the Head and Neck

Resected LA
HNSCC, with ENE,
positive margins, or
multiple positive
nodes

1: one dose of nivolumab, then nivolumab
concurrent with radiation (66 Gy/33 fx) and bolus
cisplatin

concurrent +
sequential

3

2: radiation (66 Gy/33 fx) with bolus cisplatin

NCT03673735 Maintenance Immune Check-point Inhibitor
Following Post-operative Chemo-radiation in
Subjects With HPV-negative HNSCC (ADHERE)

Surgically resected
p16-negative HNSCC
with pathologic ENE
or positive margins

1: one dose of induction durvalumab followed by
standard chemoradiation (bolus cisplatin and
radiation [66 Gy/33 fx]), followed by 6 months of
adjuvant durvalumab

sequential 3

2: standard chemoradiation (bolus cisplatin and
radiation [66 Gy/33 fx])

NCT03700905 IMSTAR-HN: Study of Nivolumab Alone or in
Combination With Ipilimumab as Immunotherapy
vs Standard Follow-up in Surgical Resectable
HNSCC After Adjuvant Therapy

Resectable LA
HNSCC, except p16-
positive
oropharyngeal SCC

1: one dose of neoadjuvant nivolumab followed by
surgery, followed by standard risk adapted
adjuvant (chemo)radiation, followed by either
adjuvant nivolumab or adjuvant nivolumab+
ipilimumab for 6 months

sequential 3

2: surgical resection followed by standard risk
adapted adjuvant (chemo)radiation

(Continued)
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analysis performed by their independent data monitoring
committee (85).

Possible reasons for the failure of Javelin 100 to achieve its
primary endpoint may be revealed when more complete data are
available. However, in the interim, it is interesting to highlight
distinctions from the successful incorporation of PD-L1
blockade into the treatment of locally advanced NSCLC as
evidenced by the PACIFIC study. A predominant mode of
failure in locally advanced HNSCC is locoregional recurrence
(4), whereas distant metastases are more common in locally
advanced NSCLC (86). Thus, examining patterns of failure in the
Javelin 100 study and comparing these to patterns of failure in
the PACIFIC study may inform whether ICIs in this setting are
mainly eradicating systemic micrometastatic disease versus also
improving local disease control. Unfortunately, PACIFIC did not
collect data distinguishing intrathoracic failures within versus
outside of the radiation field, highlighting the importance of
thorough radiation data collection to tease out these types of
questions (87). Given the high risk of lymph node metastases in
patients with locally advanced HNSCC, standard radiation
generally entails elective treatment of the draining cervical
lymph node chains (in contrast to NSCLC, where elective lymph
nodes are not intentionally irradiated). These draining lymph
nodes are precisely where antigen-presenting cells migrate to for
Frontiers in Oncology | www.frontiersin.org 10
T-cell priming, following radiation to the primary tumor (21, 25).
Correlative positron emission tomography–computed
tomography (PET-CT) studies from a recently published clinical
trial of neoadjuvant ICIs (nivolumab or nivolumab and
ipilimumab) prior to surgery in patients with oral cavity SCC
provides further support for the importance of the draining lymph
nodes; following initiation of neoadjuvant ICIs, there was a high
rate of increased fluorodeoxyglucose (FDG) uptake in the draining
cervical lymph nodes on an interval PET-CT, which ultimately on
surgical pathology demonstrated only reactive findings without
any evidence of cancer. This observed increase in FDGuptakemay
therefore represent radiographic evidence of a mounting immune
response (88). Given the radiosensitivity of lymphocytes, then, it
seems possible that radiation (particularly longer conventionally
fractionated regimens) that electively treats the draining lymph
nodes following the receipt of ICI could actually hinder T-cell
priming. Indeed, as noted above, there is some preclinical data to
support this, as Morisada et al. demonstrated in an syngeneic
mouse model of oral cavity cancer that 20 Gy in 10 fractions
compared to16Gy in2 fractions toboth theprimary tumor and the
draining lymph nodes blunted tumor-specific CD8+ T-cell
responses within those draining lymph nodes (although notably
tumorswere implanted in themice legs and thus this is not a perfect
model for head and neck lymphatics) (47). The phase 2 trial
TABLE 2 | Continued

NCT# Title Inclusion criteria Treatment arms Timing Phase

NCT03765918 Study of Pembrolizumab Given Prior to Surgery
and in Combination With Radiotherapy Given
Post-surgery for Advanced Head and Neck
Squamous Cell Carcinoma (MK-3475-689)

Resectable LA
HNSCC

1: two doses of neoadjuvant pembrolizumab, then
surgery, then pembrolizumab with adjuvant
radiation or chemoradiation, then adjuvant
pembrolizumab for 12 additional doses

concurrent +
sequential

3

2: surgery followed by adjuvant radiation or
chemoradiation

NCT03673735 ADHERE: Maintenance Immune Check-point
Inhibitor Following Post-operative Chemo-
radiation in Subjects With HPV-negative HNSCC

Resected LA
HNSCC, except p16-
positive
oropharyngeal SCC,
with pathologic ENE
or positive margins

1: following surgery, one dose of durvalumab, then
standard radiation (66 Gy/33 fx) with bolus
cisplatin, then adjuvant durvalumab for six doses

sequential 3

2: following surgery, standard radiation (66 Gy/33
fx) with bolus cisplatin

NCT03040999 KEYNOTE-412: Study of Pembrolizumab (MK-
3475) or Placebo With Chemoradiation in
Participants With Locally Advanced Head and
Neck Squamous Cell Carcinoma

LA HNSCC 1: one dose of induction pembrolizumab, then
pembrolizumab with radiation (70 Gy/35 fx) and
bolus cisplatin, then adjuvant pembrolizumab for a
total of 17 doses

concurrent +
sequential

3

2: standard radiation (70 Gy/35 fx) with bolus
cisplatin

NCT02999087 REACH: Randomized Trial of Avelumab-
cetuximab-radiotherapy Versus SOCs in LA
SCCHN

LA HNSCC, both
cisplatin eligible and
ineligible

1: cetuximab and avelumab, one dose prior to
radiation, then concurrent during radiation (69.96
Gy/33 fx), then adjuvant avelumab for 12 months

concurrent +
sequential

3

2: standard radiation (69.96 Gy/33 fx) with
concurrent bolus cisplatin for cisplatin-eligible
patients
3: standard radiation (69.96 Gy/33 fx) with
concurrent cetuximab for cisplatin-ineligible
patients

NCT02952586 Javelin 100: Study To Compare Avelumab In
Combination With Standard of Care
Chemoradiotherapy (SoC CRT) Versus SoC CRT
for Definitive Treatment In Patients With Locally
Advanced Squamous Cell Carcinoma Of The
Head And Neck

LA HNSCC 1: one dose of induction avelumab, then avelumab
with radiation (70 Gy/35 fx) and bolus cisplatin,
then adjuvant avelumab for 12 months

concurrent +
sequential

3

2: radiation (70 Gy/35 fx) and bolus cisplatin
February 2021 | Volum
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reported byWeiss et al. also noted a rate of grade 3+ lymphopenia
of 58.6% (84). Another notable issue is that the design of Javelin
100, as well as many of the other trials described above,
incorporated both concurrent and adjuvant ICIs in the
experimental arm, whereas PACIFIC (and Checkmate-577) only
tested the value of adjuvant immunotherapy. Timing and
sequencing of ICIs and radiation remains a critical issue that
requires further study, although the concerns regarding
radiation-induced T-cell death may be particularly problematic
when ICI is administered concurrently as compared with
sequentially (89). Finally, as demonstrated in the preclinical
work above, radiation dose and fractionation are also likely
critical to successful synergy between radiation and ICIs;
however, the hypofractionated regimens that appear to have the
greatest immunologic potential in preclinical models differ
tremendously from the long conventionally fractionated
regimens (1.8–2 Gy/fraction) used in the current standard
management of HNSCC. PACIFIC did also employ conventional
fractionation, though standard total doses for NSCLC are
somewhat lower than for HNSCC (54–66 Gy versus 70 Gy).
Overall, given the years of experience supporting the current
standard radiation regimen and fields used in the definitive
management of HNSCC, careful studies will be required to
determine what kinds of modifications to elective nodal
irradiation, timing/sequencing, dose, and/or fractionation are
required to maximize synergy with ICIs and ultimately improve
patient outcomes. There is already significant heterogeneity
amongst the ongoing trials in Tables 1 and 2 with regard to
these parameters, and so examining the results collectively will
hopefully be informative.
Frontiers in Oncology | www.frontiersin.org 11
CONCLUSIONS/FUTURE DIRECTIONS

There remains excitement for the possibility of combining
radiation therapy and immunotherapy to improve outcomes for
patients with HNSCC. Ongoing trials will help advance this
emerging field, and the developing paradigm of oligometastatic
disease provides further opportunity to integrate improving
systemic and local therapies. Biomarker studies conducted in
parallel will also inform optimal patient selection for combined
treatment approaches. Moreover, while this review has largely
focused on ICIs (and PD-1/PD-L1 targeted therapies in
particular) given their widespread use, immunotherapeutic
agents targeting other checkpoints and pathways are in
development as well (90), as are trials testing their combination
with radiation (e.g. NCT04220775). Nevertheless, significant
work remains to be done in both the preclinical and clinical
space to determine the dose, fractionation, timing, target, and
field size of radiation that will be the most synergistic with
immunotherapies. Finding the optimal balance between the
immunostimulatory and immunosuppressive effects of radiation
is key and hopefully will herald continued improvement in
outcomes for patients with HNSCC.
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