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Abstract 

T he de v elopment of multi-omics technologies has generated an abundance of biological datasets, providing valuable resources for investigating 
potential relationships within complex biological systems. However, most correlation analysis tools face computational challenges when dealing 
with these high-dimensional datasets containing millions of features. Here, we introduce pyNetCor, a fast and scalable tool for constructing 
correlation networks on large-scale and high-dimensional data. PyNetCor features optimized algorithms for both full correlation coefficient matrix 
computation and top-k correlation search, outperforming other tools in the field in terms of runtime and memory consumption. It utilizes a linear 
interpolation strategy to rapidly estimate P- values and achieve false discovery rate control, demonstrating a speedup of over 110 times compared 
to e xisting methods. Ov erall, p yNetCor supports large-scale correlation analysis, a crucial foundational step f or v arious bioinf ormatics w orkflo ws, 
and can be easily integrated into downstream applications to accelerate the process of extracting biological insights from data. 

Gr aphical abstr act 

A

B

C

I

C  

f  

I  

w  

g  

r  

t  

t  

 

 

 

 

 

 

 

 

 

R
©
T
(
o
p
j

ntroduction 

orrelation analysis is widely employed in omics data to in-
er potential interaction networks within biological systems.
n transcriptomics, researchers construct gene regulatory net-
orks by analyzing the coordinated expression of different

enes, enabling the identification of critical transcriptional
egulatory mechanisms and functional modules ( 1–3 ). In pro-
eomics, correlation quantifies the strength of interactions be-
ween proteins, facilitating the discovery of novel protein com-
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plexes and their functions through the analysis of protein ac-
tivity or expression levels ( 4–6 ). In microbiomics, microbial
co-occurrence relationships can be detected based on relative
abundance, revealing complex interactions between microbial
communities ( 7–9 ). Beyond applications in single omics data,
correlation analysis can integrate multi-omics data to provide
a comprehensive view of complex biological systems ( 10–12 ).

Over the past decade, the rapid development of
multi-omics technologies has generated vast amounts of
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biological data ( 13 ), enabling comprehensive analyses of
biological processes and diseases. Many large-scale projects
have collected multi-omics datasets containing over millions
of measurements ( 14 ,15 ). The high dimensionality and com-
plexity of such data pose significant computational challenges
for correlation analysis. 

Numerous powerful software packages have been devel-
oped for correlation analysis, including Numpy ( 16 ), Pandas
( 17 ), WGCNA ( 18 ), Cupy ( 19 ), RAPIDS ( https://rapids.ai )
and CorALS ( 20 ). Numpy and Pandas are standard compu-
tational libraries in data analysis. NumPy uses the C language
for efficient multidimensional array operations and provides
the numpy.corrcoef function to calculate the Pearson correla-
tion matrix. Pandas implements a series of user-friendly sta-
tistical functions for tabular data structures. WGCNA focuses
on the biomedical field and has been specifically optimized
for Pearson correlation coefficient calculation. Additionally,
Cupy, RAPIDS and CorALS have been developed to address
large-scale data analysis. Cupy and RAPIDS utilize GPUs
(Graphics Processing Units) to accelerate correlation compu-
tations but require dedicated hardware support and are sub-
ject to memory limitations. CorALS adopts a Numpy-based
framework, combining dedicated vector projection with spa-
tial partitioning techniques to achieve faster correlation ma-
trix computation and top-k correlation approximation. While
these software packages perform well in specific scenarios,
they still have limitations, such as high memory consumption
and dependence on hardware support. 

To address these limitations, we developed pyNetCor, a
high-performance and scalable correlation analysis tool for
large-scale multi-omics data. PyNetCor provides two core
modules: the correlation analysis module, which utilizes vec-
tor transformations and parallel matrix multiplication rou-
tines to enhance computational efficiency and incorporates
a heap sort algorithm to achieve accurate top-k search,
and the significance testing module, which employs a linear
interpolation-based approximation algorithm to rapidly gen-
erate approximate P -values and enable false discovery rate
(FDR) control without calculating all P- values. Furthermore,
to enhance scalability for handling large-scale data, pyNet-
Cor implements an out-of-core algorithm for chunked ma-
trix, enabling partial processing of datasets and preventing
memory exhaustion from constructing the entire correlation
matrix simultaneously . Subsequently , we evaluate pyNetCor’s
performance on real-world metagenomic datasets with vary-
ing dimensions, and demonstrate its application potential by
analyzing microbe-metabolite correlations in an inflammatory
bowel disease (IBD) multi-omics database. 

Materials and methods 

Cor relation coef ficient matrix 

PyNetCor supports the computation of Pearson, Spearman
and Kendall correlation coefficients. Employing appropriate
vector transformations, we can transform the computation
of Pearson correlation coefficients between all feature pairs
in a matrix to matrix multiplication ( 20 ). This transforma-
tion method not only streamlines the computation process
but also enables the utilization of efficient linear algebra rou-
tines, such as OpenBLAS, effectively taking advantage of mod-
ern CPUs’ multi-core processors and SIMD (Single Instruc-
tion Multiple Data) instructions, further enhancing computa-
tional efficiency. On this basis, pyNetCor arranges the data 
points within the feature in ascending order and assigns them 

rankings accordingly . Subsequently , it employs the optimized 

Pearson correlation technique to compute the Spearman cor- 
relation coefficient, thereby enhancing the efficiency of diverse 
correlation assessments across a broader spectrum. 

The implementation for Kendall’s tau correlation coeffi- 
cient in pyNetCor is based on the cor.fk function from pcaPP- 
2.0.3 ( 21 ). This function simplifies the computation process 
by employing the maximum likelihood estimator, optimizing 
the algorithm’s time complexity from O( n 

2 ) to O( n log n ) ,
leading to significant improvements in performance for high- 
dimensional data correlation analysis. 

Approximate calculation of P -values and adjusted 

P -values for multiple hypothesis testing 

The calculation of P-values for Pearson, Spearman and 

Kendall correlation coefficients relies on the relationship be- 
tween the correlation statistic and the cumulative distribution 

function (CDF). Let’s focus on the Pearson correlation coef- 
ficient r for a pair of features with n samples. The P -value 
associated with r can be determined using the t-distribution 

CDF ( pt ) as shown in Equation ( 1 ) ( 22 ): 

P = pt ( | t | , n − 2 ) (1) 

where the t-statistic is derived using t = 

r ·√ 

n −2 √ 

1 −r 2 
. 

To accelerate the computation of complex CDFs, we con- 
struct a pre-computed mapping table between P -values and 

t-statistics. This involved L ( > 10 000) P -values ( 1 L , …, 1 ) 
and obtaining their associated square of correlations ( r 2 1 , …,
r 2 L ). Given a new square of correlations, an approximate P - 
value can be estimated through linear interpolation within this 
table. 

P ′ = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

r 2 i +1 −r 2 

r 2 i +1 − r 2 i 
P i + 

r 2 − r 2 i 
r 2 i +1 − r 2 i 

P i +1 , r 2 i +1 ≤ r 2 < r 2 i , 1 ≤ i < L 

b + 

1 −r 2 

1 −r 2 1 

(
P 1 − b 

)
, r 2 ≥ r 2 1 

(2) 

Where 0 < b � 1 
L . 

Building on these findings, pyNetCor further employs a 
similar approach for optimizing multiple hypothesis testing 
correction of P -values. It provides five correction methods: 
Bonferroni, Holm ( 23 ), Hochberg ( 24 ), Benjamini-Hochberg 
(BH) ( 25 ) and Benjamini-Yekutieli (BY) ( 26 ). Specifically, it 
randomly selects M ( > 500 000) tests, calculates the P -values 
and sorts them as ( P (1) ≤ … ≤ P (M ) ). Subsequently, the corre- 
sponding approximate corrected P -values ( P ′ c (1) ≤ … ≤ P ′ c (M ) ) 
are obtained for each original P (i ) using a chosen P -value cor- 
rection method. It is worth noting that this approach approx- 
imates the population size N using the smaller sample size M .
Most methods require an adjustment to the P -value correc- 
tion method. The Bonferroni, Holm’s and Hochberg’s meth- 
ods necessitate multiplying the P -value by N 

M +1 before correc- 
tion, whereas the BH method requires multiplying the P -value 
by M +1 

M 

. Furthermore, the BY method entails multiplying the 
P -value by M +1 

N 

and considers N as the number of tests for 
the calculation. Similar to the previous method, linear inter- 
polation can be used to compute an approximate corrected 

P -value for any new given true P -value. 

P c = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

P 
P ( 1 ) 

P ′ c ( 1 ) , i f P ≤ P ( 1 ) 
P ( i +1 ) −P 

P ( i +1 ) −P ( i ) 
P ′ c ( i ) + 

P−P ( i ) 
P ( i +1 ) −P ( i ) 

P ′ c ( i +1 ) , i f P ( i ) < P ≤ P ( i +1 ) , 1 ≤ i ≤ M 

′ 

(3) 
c ( M ) ( M ) 

https://rapids.ai
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op-k correlation and differential correlation 

election 

n high-dimensional datasets, numerous weak correlations
an arise between features due to random noise. Conse-
uently, we prioritize focusing on the core top-k strongest
orrelations. The workflow of top-k correlation selection is
hown in Figure 1 . We employ a high-performance, memory-
fficient chunking algorithm to iterate through all correlations
 Supplementary Method S1 ) and utilize a min-heap of size k to
aintain the top-k largest correlations encountered thus far.

ubsequently, we sort these top-k correlations using the heap-
ort algorithm ( 27 ). The average time complexity of the top-k
earch process is O( n log k ) , and the space complexity is O(k ) .

Differential correlation analysis examines changes in corre-
ation between feature pairs across two states or time periods,
here the most significant correlation patterns may be impli-

ated in key biological processes. Here, we calculate the cor-
elation matrices for both conditions in chunks before com-
uting their difference. The remaining top-k search and sort-
ng methods are identical to the top-k correlation calculation
ethod. 

anopy-based clustering 

lustering algorithms can automatically uncover distribution
atterns in data, reducing the scope of correlation computa-
ion. This facilitates the understanding of functional modules
nd interactions within biological networks. PyNetCor seam-
essly integrates an optimized C++ implementation of the mgs-
anopy-algorithm ( 28 ). Building upon this foundation, pyNet-
or employs efficient correlation algorithms (see ‘Materials
nd methods’ section) to accelerate the calculation of similar-
ty between clustered entities. 

issing value processing 

raditional correlation methods are inapplicable to datasets
ith missing values. To address this, pyNetCor provides two
issing value handling strategies for analyzing datasets with
nly a small number of missing values. These strategies are
s follows: (i) replacing missing values with the mean or me-
ian of the non-missing samples for the respective feature. (ii)
ample pairs containing missing values are excluded from the
orrelation calculation. Only sample pairs with complete data
re used to compute the correlation coefficient. By default,
yNetCor automatically selects the appropriate missing value
andling strategy based on the selected correlation method,
hereby preventing anomalies caused by missing values. 

atasets 

o assess pyNetCor’s performance, we employed two real-
orld datasets: an in-house metagenomic dataset and 16S

RNA gene sequencing data from the Earth Microbiome
roject (EMP). Due to the limitations of certain analytical
ools in handling missing values, we excluded features with
issing data. Comprehensive dataset statistics can be found

n Supplementary Table S1 . 
The metagenomic HUMAnN3 gene families (MHGF)

ataset was generated using HUMAnN3 ( 29 ) to quantify the
unctional profiles of microbial communities present in over
00 metagenomic samples. This process involves the map-
ing of DNA reads to the UniProt Reference Clusters database
UniRef90). Due to the plenty of zeros in metagenomic data,
we excluded features with zero variance or zero values ex-
ceeding 95% to alleviate the influence of zero inflation on the
data. 

The EMP dataset comprises 96 studies from diverse global
environments, encompassing 23 828 samples ( 30 ). Through
16S rRNA gene sequencing and amplicon data analysis, re-
searchers generated an operational taxonomic unit (OTU) ta-
ble containing 307 572 features. The table is accessible at
ftp:// ftp.microbio.me/ emp/ release1/ otu _ tables . We utilized all
samples to conduct experiments and evaluate pyNetCor’s per-
formance with large sample sizes. 

To demonstrate the application of pyNetCor, we obtained
an IBD dataset from the Integrative Human Microbiome
Project (HMP2 or iHMP) through the Inflammatory Bowel
Disease Multi’omics Database (IBDMDB) website ( https:
//ibdmdb.org ) ( 31 ). The dataset contains microbiome and
metabolome profiles of 181 Crohn’s disease (CD) samples,
102 ulcerative colitis (UC) samples and 105 non-IBD control
samples. 

Performance evaluation 

We compared the runtime and memory consumption of
pyNetCor-0.1.0, CorALS-0.1.6, NumPy-1.24.0, pandas-1.5.2
and WGCNA-1.71. All experiments were conducted on a
CentOS server with an AMD EPYC 9754 CPU @ 2.3GHz, 32
cores and 128GB RAM. Additionally, we evaluated pyNet-
Cor’s performance in resource-constrained environments,
with tests performed on a personal computer with an Intel
(R) Core (TM) i7-10700 CPU @ 2.9GHz under Windows 11
operating system, 8 cores and 32GB RAM. Each test was ex-
ecuted either 3 or 10 times, and the median running time and
peak memory usage were recorded as the definitive outcomes.

Results 

Memory -ef ficient construction of large-scale 

correlation networks 

Constructing correlation networks for million-scale datasets
requires over 1 TB of storage space, and memory consump-
tion increases quadratically with the number of features, far
exceeding the storage capacity of high-performance comput-
ing clusters. To address this challenge, pyNetCor optimizes
memory efficiency using chunked matrix multiplication and
lazy computation techniques, enabling large-scale computa-
tions on small-memory machines and even personal com-
puters. We used six high-dimensional datasets downsampled
from the MHGF dataset, with feature numbers ranging from
0.05 to 1.6 million. The Pearson correlation matrix was cal-
culated using the chunked method on a personal computer
equipped with 8 cores and 32 GB RAM (Table 1 ). The results
demonstrated that pyNetCor enables users to construct large-
scale correlation networks without relying on expensive high-
performance computing resources. Specifically, when process-
ing a dataset with 1.6 million features, computing the full
correlation matrix theoretically requires over 20TB of mem-
ory. However, using pyNetCor with a single core, only 22 GB
of memory is required, and the calculation can be completed
within 9 h. Furthermore, in multi-threaded mode, pyNetCor
can further enhance computational efficiency, reducing the
runtime to 3.5 h. 

Since the chunked technique to divide a large matrix into
smaller matrices of a specified size, the correlation of each

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae177#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae177#supplementary-data
ftp://ftp.microbio.me/emp/release1/otu_tables
https://ibdmdb.org
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A. B. C.

Figure 1. PyNetCor w orkflo w f or top-k correlation selection. Matrix A and B represent the input data, with ro ws corresponding to features (e.g. genes 
and species) and columns to samples. Matrix B may be identical to matrix A. ( A ) Preprocess and transform the input matrices, dividing matrix A into 
multiple smaller chunks along the feature dimension while maintaining matrix B intact. ( B ) Compute correlations using one sub-matrix of A and the 
complete matrix B at a time, sequentially processing the remaining sub-matrices to optimize memory usage. ( C ) Finally, a min-heap str uct ure is used to 
store the highest-scoring correlation results, and heap sort is emplo y ed to obtain the top-k correlations. 

Table 1. Runtime and memory usage for Pearson correlation on personal 
computer 

Features Chunked Chunked_parallel Chunked Chunked_parallel 
Time 
(min) 

Time 
(min) 

Memory 
(GB) 

Memory 
(GB) 

50 000 0 .54 0 .26 0 .9 0 .9 
100 000 2 .15 1 .02 1 .61 1 .6 
200 000 8 .45 3 .75 2 .99 2 .99 
400 000 33 .11 13 .68 5 .79 5 .78 
800 000 134 .37 52 .61 11 .37 11 .37 
1 600 000 542 .7 207 .97 22 .51 22 .53 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Runtime experiments for correlation computation using the 
chunked method. Compare the runtime of the pyNetCor conventional 
method and the chunked method for calculating the Pearson correlation 
matrix of a metagenomic dataset with 50 000 features and 500 samples. 
Runtime measurements were performed using 1–16 cores. 

 

 

small matrix is calculated and the result returned only when
requested, thus achieving controllable memory usage. There-
fore, the runtime may increase in chunked computation mode.
To evaluate the performance of chunked computation, we
measured its runtime and that of the conventional method us-
ing varying numbers of threads. As illustrated in Figure 2 , the
runtime of chunked computation is ∼0.6–24.2% higher than
that of the conventional method, primarily due to the addi-
tional overhead of multiple memory allocations and deallo-
cations. However, these minor runtime increases are accept-
able given the significant reduction in memory consumption
achieved by this method. 

Efficient and robust correlation matrix computation 

To validate pyNetCor’s performance in correlation analysis,
we compared it against existing tools, including CorALS,
Numpy, Pandas and WGCNA. As the single-core implemen-
tations of pyNetCor and CorALS exhibited superior perfor-
mance compared to the other tools, we further extended
the comparison to multi-threaded environments utilizing 32
cores. Figure 3 illustrates the runtime for calculating Spear-
man correlation matrices using various tools when process-
ing datasets with different numbers of features and samples
( Supplementary Tables S3 and S5 ). For the MHGF dataset
(70 000 features), only pyNetCor and CorALS can complete
the computation within 10 min, with pyNetCor consistently 
demonstrating superior performance. In multi-threaded mode,
pyNetCor requires only 21.1 s, > 3 times faster than CorALS 
and 260 times faster than Pandas. It is worth noting that these 
performance gaps are expected to widen further as the sam- 
ple size increases. For instance, on the EMP dataset (70 000 

features, > 20 000 samples), pyNetCor was 4.3 times faster 
than CorALS and 1816 times faster than Pandas. Addition- 
ally, pyNetCor supports the computation of Pearson corre- 
lation matrices, with the running time analysis presented in 

Supplementary Figure S1 ( Supplementary Tables S2 and S4 ).
While pyNetCor and NumPy show comparable runtimes on 

large-sample datasets ( > 1000 samples), pyNetCor performs 
slightly better on small samples ( < 500 samples). 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae177#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae177#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae177#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae177#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae177#supplementary-data
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Figure 3. Benchmarking of Spearman correlation matrix computation. Runtime comparisons of pyNetCor and other tools for calculating Spearman 
correlation matrices on ( A and B ) MHGF and ( C and D ) EMP datasets. Subfigures show performance with (A and C) varying feature numbers and (B and 
D) varying sample numbers. Dashed lines represent parallel computations using 32 threads, while solid lines indicate computations using a single thread. 
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fficient and accurate top-k correlation search 

omplete correlation matrices are often too large for com-
rehensive examination. PyNetCor employs top-k analysis
o search for the k pairs of associations most likely to pos-
ess statistical significance. Next, we further evaluate pyNet-
or’s performance in top-k correlation search. We directly

mplemented the top-k selection method using Numpy and
GCNA, that is, first calculate the full correlation matrix,

nd then obtain the top-k correlations through an efficient
orting algorithm. Due to the substantial memory consump-
ion of this approach, we were unable to run the direct imple-
entation based on NumPy and WGCNA on datasets with
 70 000 features (Figure 4 B and Supplementary Table S7 ).
herefore, pyNetCor provides a top-k correlation selection

mplementation that uses chunked computation and a partial
orting algorithm based on heaps, while CorALS extracts ap-
roximate top-k correlations through feature vector projec-
ion and ball trees. On the MHGF dataset, pyNetCor required
nly 150 s of runtime and 2.3 GB of memory to search the
op 1% of correlations among 70 000 features using a sin-
le thread (Figure 4 A and B; Supplementary Tables S6 and
7 ), which is 34 times faster than CorALS, and the maxi-
um memory usage was only 39% of CorALS. A similar
trend was observed on the EMP dataset (Figure 4 C and D;
Supplementary Tables S8 and S9 ). It is worth noting that
even in the case of multi-core parallelization to accelerate
the calculation, pyNetCor maintains a very small memory
consumption. 

Efficient approximation for P -value and multiple 

test correction 

Constructing large correlation networks often requires hy-
pothesis testing of correlation coefficients to determine the re-
liability of correlation relationships. Existing tools primarily
focus on the computational performance of correlation ma-
trix calculation, resulting in low efficiency for P -value calcu-
lation and multiple testing correction. Therefore, pyNetCor
utilizes linear interpolation to estimate P -values and adjusted
P -values, thereby achieving FDR control without full P -values
computation and demonstrably enhancing performance. To
compare the runtime of the approximate P -value method im-
plemented by pyNetCor and the classical P -value method,
we processed the Pearson correlation matrix for the MHGF
dataset and created six new datasets (with sizes of 10, 30,
50, 70, 90 and 110 million correlation coefficients) by down-

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae177#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae177#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae177#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae177#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae177#supplementary-data
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Figure 4. Benchmarking of top-k correlation search. Comparisons of pyNetCor and other tools for searching the top 1% correlations on ( A and B ) MHGF 
and ( C and D ) EMP metagenomic datasets with varying feature numbers. Subfigures show (A and C) runtime and (B and D) peak memory usage. 
Missing lines indicate program crashes due to e x ceeding sy stem memory limits. Dashed lines represent parallel computations using 32 threads, while 
solid lines indicate computations using a single thread. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sampling. We used derive_pvalues implemented in CorALS as
the classic P -value approach for comparison. With an effi-
cient parallelized linear interpolation engine, pyNetCor can
perform 110 million approximate P -value computations in
3.36 s, which is 118 times faster than the CorALS implemen-
tation that does not support multithreading (Figure 5 A). Be-
yond its exceptional performance, the approximate algorithm
also demonstrates high accuracy. On the same dataset, the ab-
solute error between the approximate P -values calculated by
pyNetCor for Pearson, Spearman and Kendall correlation co-
efficients and the true P- values consistently remains below 1e-
8 (Figure 5 B). Furthermore, the absolute error of the approx-
imate corrected P -values is < 5e-4 (Figure 5 C). 

PyNetCor facilitates multi-omics integrated 

analysis in IBD 

IBD is a chronic, relapsing inflammatory condition of the in-
testine, primarily comprising UC and CD ( 32 ). The genetic
basis of IBD remains poorly understood. In recent years, mul- 
tiple studies have utilized multi-omics integration analysis 
to explore the pathogenesis of IBD. To validate the applica- 
tion of pyNetCor in multi-omics data correlation analysis,
we analyzed the microbiome and metabolome data from the 
IBDMDB database. Using non-IBD samples as controls, we 
calculated the differential Spearman correlation between all 
microbial–metabolite pairs compared to disease samples us- 
ing pyNetCor and extracted the top 1% differentially abun- 
dant microbes and metabolites for visualization (Figure 6 A).
The results revealed that the correlation structure of 10 mi- 
crobes was significantly altered in IBD patients. Among them,
Roseburia inulinivorans and Faecalibacterium prausnitzii are 
known butyrate-producing bacteria ( 33 ,34 ). Butyrate, a short- 
chain fatty acid with anti-inflammatory properties, has been 

implicated in maintaining intestinal barrier function and sup- 
pressing IBD development ( 35 ). 

To identify the metabolites most relevant to the 10 dif- 
ferential microbes, we explored the relationships between 
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A CB

Figure 5. Evaluation of P -value Approximation and Multiple Testing Correction in pyNetCor. ( A ) Runtime comparison between the pyNetCor’s P -value 
approximation method and the CorALS’s classic method across correlation coefficient datasets of varying sizes. Parallel computations using 32 threads 
are shown, with pyNetCor being the only method capable of parallel computation for P -values. ( B ) Distribution of absolute errors for the approximate 
P -values computed by pyNetCor for Pearson, Spearman and Kendall correlations, with all absolute errors < 1e-8. ( C ) Distribution of absolute errors for 
multiple testing correction using the approximate methods provided by pyNetCor: Bonferroni, BH, BY, Holm and Hochberg. No significant error is 
observ ed f or the appro ximate B onfer roni cor rection, and all other methods ha v e absolute errors < 5e-4. 
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Figure 6. Network analysis of microbe-metabolite interactions in IBD. ( A ) Heatmap of differences in pairwise Spearman correlations between disease 
and control samples for omics data (microbiome and metabolome) from the IBDMDB database. Top 1% microbe-metabolite pairs with the largest 
correlation differences are shown, identifying 10 differential microbes. Red indicates increased differential correlation in disease conditions compared to 
controls, while blue indicates decreased differential correlation. ( B ) Significant association network (FDR < 0.05) for the 10 differential microbes and 
met abolites. Rect angular nodes represent microbes, and circular nodes represent met abolites. R ed edges denote positiv e correlations, and blue edges 
indicate negative correlations, with deeper colors representing stronger associations. 
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hese microbes and metabolites using Spearman correlation
nalysis. The analysis results revealed that a total of 103
icrobial–metabolite pairs exhibited significant correlation

FDR < 0.05). As illustrated in Figure 5 B, more than fif-
een acylcarnitines were significantly correlated with Rose-
uria hominis . In particular, the negative correlation between
18:1-OH carnitine, C16-OH carnitine, C14:1 carnitine and
oseburia hominis was the most significant. It is worth noting

hat previous studies have observed a decreased abundance of
oseburia hominis in patients with IBD ( 31 ,36 ). This suggests

hat acylcarnitines may be key metabolites in IBD and have the
otential to become novel therapeutic targets for this disease,
roviding important clues for further research. 
 

Discussion 

In this study, we describe pyNetCor, a framework for corre-
lation and network analysis of multi-omics data. PyNetCor
implements efficient correlation calculations and a top-k cor-
relation network construction algorithm, significantly outper-
forming existing tools in terms of analysis time and computa-
tional cost. By employing a specialized chunked strategy for
memory optimization, pyNetCor can process datasets with
1.6 million features using only 22GB of memory in 3.5 h. 

Correlation analysis often involves hypothesis testing of
correlation coefficients to assess the strength of the correla-
tion relationship. However, most methods lack explicit control
over the FDR, leading to reduced statistical power with an in-
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creasing number of tests and possibly yielding no significant
findings. Therefore, pyNetCor adopts an innovative linear in-
terpolation strategy to quickly estimate P -values, achieving a
speed improvement of one order of magnitude over traditional
algorithms. Similarly, pyNetCor utilizes approximation meth-
ods to achieve effective FDR control before computing all P -
values, which is crucial for maintaining statistical power and
avoiding false discoveries in large-scale data analysis. 

Integrative analysis of multi-omics data can provide a more
comprehensive biological perspective, revealing cross-scale
molecular regulatory mechanisms. Currently, pyNetCor only
supports correlation analysis between two omics datasets.
For complex studies involving multiple high-dimensional data
types, manual combination can extend it to multiple corre-
lated datasets, as in ( 31 ). Future iterations of pyNetCor may
integrate this method and apply it to top-k and differential
correlation network analysis, providing users with a fully au-
tomated multi-omics data integration solution. 

At present, pyNetCor supports analysis based on Pearson,
Spearman and Kendall correlation coefficients. However, for
certain special data types, introducing other types of correla-
tion coefficients may be necessary to quantify the strength of
relationships between features. For example, MIC can broadly
capture both linear and nonlinear associations between vari-
ables and provides a score similar to the coefficient of deter-
mination ( R 

2 ) in regression ( 37–39 ). It is commonly used to
identify potential relationships in large datasets. SparCC is de-
signed for the compositional nature of microbiome data ( 40–
42 ). It utilizes log-ratio transformations and iterative calcula-
tions to infer correlations, effectively correcting spurious cor-
relations. Extending to more advanced correlation methods
can further enhance pyNetCor’s analytical performance and
application range. 

Furthermore, Table 1 illustrates pyNetCor’s superior per-
formance in handling high-dimensional datasets. By imple-
menting a chunked strategy, pyNetCor maintains linear mem-
ory usage as the feature count increases, significantly im-
proving the algorithm’s scalability. However, practical ap-
plications are constrained by computational resources. For
datasets comprising tens of millions of features, users may
need to manually adjust the chunk size based on available
RAM. In cases where a single machine’s memory is insuf-
ficient, distributed computing methods can be employed to
ensure optimal computational performance on ultra-large
datasets. 

Finally, due to the simplicity and computational efficiency
of pyNetCor, it can be easily integrated into complex net-
work models and downstream applications, providing under-
lying computational support. One potential application in-
volves combining pyNetCor’s correlation matrix calculations
with random matrix theory to construct molecular ecologi-
cal networks, thereby augmenting the performance of MENA
( 43 ,44 ). We expect that pyNetCor will evolve into a modu-
larly integratable fundamental correlation analysis tool in the
future, ultimately facilitating in-depth exploration of complex
biological systems. 

Data availability 

The pyNetCor package and analyzed data can be found
at https:// github.com/ 01life/ pyNetCor and https:// doi.org/ 10.

5281/zenodo.14177447 . 
Supplementary data 

Supplementary Data are available at NARGAB Online. 
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