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Kinga Jóźwiak 1 , Aneta Jezierska 1 , Jarosław J. Panek 1 , Eugene A. Goremychkin 2,
Peter M. Tolstoy 3 , Ilya G. Shenderovich 4,* and Aleksander Filarowski 1,*

1 Faculty of Chemistry, University of Wrocław 14 F. Joliot-Curie str., 50-383 Wrocław, Poland;
kin.joz@o2.pl (K.J.); aneta.jezierska@chem.uni.wroc.pl (A.J.); jaroslaw.panek@chem.uni.wroc.pl (J.J.P.)

2 Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research 6 F. Joliot-Curie str.,
141980 Dubna, Russia; goremychkin@jinr.ru

3 Institute of Chemistry, St. Petersburg State University, Universitetskij pr. 26, 198504 St. Petersburg, Russia;
peter.tolstoy@spbu.ru

4 Institute of Organic Chemistry, University of Regensburg, Universitaetstrasse 31,
93053 Regensburg, Germany

* Correspondence: Ilya.Shenderovich@chemie.uni-regensburg.de (I.G.S.);
aleksander.filarowski@chem.uni.wroc.pl (A.F.); Tel.: +48-71-375-7229 (A.F.)

Academic Editor: Goar Sánchez
Received: 10 September 2020; Accepted: 12 October 2020; Published: 14 October 2020

����������
�������

Abstract: Noncovalent interactions are among the main tools of molecular engineering. Rational
molecular design requires knowledge about a result of interplay between given structural moieties
within a given phase state. We herein report a study of intra- and intermolecular interactions of
3-nitrophthalic and 4-nitrophthalic acids in the gas, liquid, and solid phases. A combination of
the Infrared, Raman, Nuclear Magnetic Resonance, and Incoherent Inelastic Neutron Scattering
spectroscopies and the Car–Parrinello Molecular Dynamics and Density Functional Theory calculations
was used. This integrated approach made it possible to assess the balance of repulsive and attractive
intramolecular interactions between adjacent carboxyl groups as well as to study the dependence of
this balance on steric confinement and the effect of this balance on intermolecular interactions of the
carboxyl groups.
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1. Introduction

Hydrogen bonding (H-bonding) and steric effects are important tools of molecular engineering.
Under certain conditions, their interplay can stabilize species that otherwise exhibit high chemical
reactivity [1–4]. The structural complexity increases when there are either other noncovalent interactions
or competing H-bonds. The former is critically important in solids [5–9], at confined geometries [10–12],
and in aqueous solutions [13–16]. The latter is characteristic for P=O moiety [17,18], specially designed
organic molecules [19,20], but most of all for biomolecules [21,22]. The adjustments of bridging
proton positions in H-bonds act as one of the mechanisms governing the chemical properties of
macromolecules [23–25] and biosystems [26,27]. Changes of weak specific interactions such as H-bonds
can evoke a reorganization on the macroscopic scale. Therefore, many-sided elaborate studies of
the conformational phenomena are essential not only for fundamental understanding of H-bond
nature but also for a number of practical applications, such as design of materials with the required
physicochemical properties [28–30].

The wide variety of effects associated with a competition between intra- and intermolecular
H-bonding can be illustrated with salicylic acid. In the simplest case of salicylic acid crystals, the carboxyl
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groups of the molecules form dimers while their hydroxyl groups form intramolecular H-bonds [31,32].
This structure remains qualitatively valid in an aprotic solution when the dimer is deprotonated [33].
In contrast, when the number of competing interactions increases, the co-crystals of salicylic acid
exhibit polymorphism and different solubility [32,34,35]. These changes are critically important for
pharmaceutical applications. Besides that, the intramolecular H-bond in salicylic acid derivatives can
be controlled through intramolecular steric effects. In the crystalline salicylic acid, the O . . . O distances
of this H-bond are about 2.62 Å [31,32]. In 2-hydroxy-3-nitrobenzoic acid, 6-(cyclohexylmethyl)salicylic
acid, and 6-(2-cyclohexylethyl)salicylic acid they are only 2.55, 2.54, and 2.52 Å, respectively [32,36].
Is this a general trend that can be expected for other molecules’ structures?

This paper presents the conformational studies of 3- and 4-nitrophthalic acids (3 and 4, Figure 1).
These compounds are characterized by the presence of strong intermolecular and intramolecular
H-bonds in co-crystals with various organic compounds [37–41]. These bonds might mutually convert
one into another in compounds with adjacent carboxyl groups under impact of external factors. The first
papers about dimeric formation by carboxyl group were published by Pfeiffer et al. in 1910 [42–44].
The carboxylic acid dimer units (2 × (COOH)) have still attracted attention for researchers involved
in H-bonding studies [45–55]. In References [56–58], authors show a strong effect of H-bonds on
the conformational state of compounds. The domination of cis conformation of carboxyl group,
so-called Z-effect, has been elucidated by Lyssenko et al. [59]. Recently, two polymorphic forms of
cinchromeronic acid (the derivative of phthalic acid) have been discovered and studied [60]. It has
been shown that the polymorphic forms are caused by the proton transfer and reorientation of the
carboxyl groups. Computational studies of H-bonds and stable conformers are important for the
development of the conformational polymorphism of the molecular complexes such as benzoic acid
with pyridine [61]. Moreover, H-bonded networks of phthalic acids can be used as ligands for
metal-organic aggregates [62,63].
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Figure 1. Chemical structures of 3-nitrophthalic (3) and 4-nitrophthalic (4) acids. 

The main aim of this study was to characterize intramolecular interactions between adjacent 
carboxyl groups in the presence and absence of intramolecular steric effects and the effect of all these 
interactions on intermolecular interactions of these carboxyl groups. The nitro substitution was 
chosen because this moiety is rigid, relatively small, and causes considerable steric strain. Besides 
static density-functional theory (DFT) computations, this study covers simulations performed using 
the Car–Parrinello molecular dynamics (CPMD) approach, which supports NMR (Nuclear Magnetic 
Resonance), IR (infrared), Raman, and IINS (Incoherent Inelastic Neutron Scattering) experimental 
measurements with the employment of a neutron radiation source. 

The outline of the manuscript is as follows. Firstly, the conformational analysis on the basis of 
static DFT calculations is presented. Next, the proton and functional groups’ dynamics were studied 
by DFT and CPMD calculations. The following part delves into the investigations of conformational 
equilibrium in the solutions accomplished by NMR spectroscopy as well as IR, Raman, and IINS 
studies of the compounds in the solid state. Additionally, the spectral analysis on the basis of the 
experimental and computational results by means of H/D isotopic substitution was performed. The 
concluding remarks are given in the last section. 

Figure 1. Chemical structures of 3-nitrophthalic (3) and 4-nitrophthalic (4) acids.

The main aim of this study was to characterize intramolecular interactions between adjacent
carboxyl groups in the presence and absence of intramolecular steric effects and the effect of all these
interactions on intermolecular interactions of these carboxyl groups. The nitro substitution was chosen
because this moiety is rigid, relatively small, and causes considerable steric strain. Besides static
density-functional theory (DFT) computations, this study covers simulations performed using the
Car–Parrinello molecular dynamics (CPMD) approach, which supports NMR (Nuclear Magnetic
Resonance), IR (infrared), Raman, and IINS (Incoherent Inelastic Neutron Scattering) experimental
measurements with the employment of a neutron radiation source.

The outline of the manuscript is as follows. Firstly, the conformational analysis on the basis of
static DFT calculations is presented. Next, the proton and functional groups’ dynamics were studied
by DFT and CPMD calculations. The following part delves into the investigations of conformational
equilibrium in the solutions accomplished by NMR spectroscopy as well as IR, Raman, and IINS studies
of the compounds in the solid state. Additionally, the spectral analysis on the basis of the experimental
and computational results by means of H/D isotopic substitution was performed. The concluding
remarks are given in the last section.
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2. Results and Discussion

2.1. DFT Study of H-Bond, Nitro, and Carboxyl Groups’ Dynamics of Nitrophthalic Acids

The quantum-mechanical calculations were accomplished at the B3LYP/6-311+G(d,p) level of
theory for the detection of the most stable conformer of monomeric 3 and 4. These calculations show
that the most stable conformer does not contain the intramolecular H-bond (Figure 2). Generally,
intramolecular H-bonds can significantly decrease the energy of isolated molecules [64]. However,
conformers 3(III), 3(IV), 3(VI), 4(IV), and 4(V) with the intramolecular H-bond feature significant steric
tensions between the carboxyl groups that increases further if the nitro group is nearby. In consequence,
the energies of conformers 3(III) and 4(IV) are higher as compared to 3(I) and 4(I).
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for the gas phase and in acetonitrile (CH3CN). Emin(conformer) stands for the energy of 3(I) or 4(I).
Ei(conformer) stands for the energy of the conformer under consideration.

Using the knowledge of the monomer’s conformations, the calculations and analysis of the possible
structures of hydrogen-bonded dimers were performed (labelled D3 and D4 in Figure S1). The most
stable conformation of the dimers was obtained when the molecules were arranged orthogonally (D3(I),
D3(II), D4(I), and D4(II), Figure S1). However, the planar orientations of the molecules caused only a
small increase in energy (D3(III), D3(IV), and D4(V). Indeed, in the crystal of 3, one carboxyl group
of each molecule formed a dimer with the planar orientations of the rings while the other carboxyl
group formed a hydrogen-bonded molecular chain between such dimers [37]. Structures in which
the second carboxyl group was oriented orthogonally to the intermolecular H-bonded group were
energetically beneficial. This result was conditioned by a smaller steric repulsion between carboxyl
groups (and the nitro group in case of 3). Thus, the formation of intramolecular H-bonds in the dimers
was unfavorable. Oligomers D3(IX) and D4(VIII), in which molecules did not form carboxyl group
dimers, exhibited higher energies (Figure S1). However, the energy increase was quite moderate,
especially for compound 4. Moreover, D3(X) and D4(VII) possessed one intramolecular H-bond each.

For the assessment of dynamic effects associated with the rotations of carboxyl and nitro groups,
the corresponding potential energy profiles were calculated at the B3LYP/6-311+G(d,p) level of theory
for the monomers of both acids. The DFT calculations of the rotation of the nitro groups (gradual increase
of the torsional angles C2C3NO5 in 3 and C3C4NO5 in 4 (Figure S2)) revealed the similarity of the
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rotational energy barriers for both compounds: 4.8 and 5.8 kcal/mol for 3 and 4, respectively (Figure S3).
These barriers resulted from the disruption of the π-electronic coupling between the nitro group and the
benzene ring, which caused energetically disadvantageous configurations at CCNO � 90◦ (Figure S3).
For 3, one can also observe a small barrier at C2C3NO5 � 180◦, caused by the repulsion between the
nitro and carboxyl groups (Figure S3). It is noteworthy that the rotation of either nitro or carboxyl
group evoked the simultaneous rotation of the neighboring functional groups and, therefore, it led to
moderately high energy barriers.

In contrast to the nitro group rotation, the calculations showed a significant difference between the
energy barrier heights for the rotation of the carboxyl groups in 3 and 4 (Figure 3). For 3, these barriers
were 5.5–6.5 kcal/mol, which was 4–5 kcal/mol higher than for 4. This difference resulted from a strong
steric effect between three functional groups in 3. The steric squeezing between carboxyl groups in 4
was weaker than in 3 because the nitro group was in the meta position. The energy barriers for the nitro
and carboxyl groups’ rotation were not very high. Thus, for these compounds a significant dynamics
of all functional groups can be expected.
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Figure 3. Calculated potential energy curves for the carboxyl group rotation in 3 (solid line) and
4 (dashed line).

In order to study the H-bond dynamics, we calculated potential energy profiles for proton
transfer in intramolecular H-bonds in 3(III), 4(IV), D3(III), and D4(I) in the gas phase and taking
into account the effect of a polar solvent (CH3CN) using the polarizable continuum model (PCM)
approach (Figure 4 and Figure S4a,b). The O-H distance in one of the carboxyl groups was gradually
elongated while other structural parameters were optimized for each step. The profile of the curves
and its numerical values were similar for monomers and dimers. The calculations of the potential
energy curves for the intramolecular proton transfer in the monomeric species showed no second
minimum in the range of O· · ·H distances 1.4–1.7 Å (Figure 4, curve a). According to the earlier
presented analysis [65], which rests upon the experimental and computational data, this result proves
the absence of the proton transfer within the intramolecular hydrogen bond, i.e., the absence of a
tautomeric equilibrium (Figure 5F). In turn, the intermolecular transfer of one proton within the
intermolecular hydrogen bond in dimers of compound 3 induced a transfer of the second proton
in the adjacent intermolecular hydrogen bond (Figure 4, curve c). The calculated potential energy
curves for dimers D3(III) and D4(I) turned to be double-well. The energy required for this concerted
double proton transfer was about 6.3 kcal/mol for the gas phase (Figure S4b). The use of the PCM
approximation for acetonitrile reduced the barrier down to 5.7 kcal/mol (Figure 4). This fact supports
the possibility to observe the tautomeric equilibrium with double proton transfer (Figure 5B,C) in an
experiment. Taking into account that the PCM approximation strongly underestimates the effect of
polar media on hydrogen-bonded systems [66–69], one can expect a fast, concerted proton transfer
in phthalic acid dimers in polar solvents. Previously, a double proton transfer in carboxylic acid
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dimers was experimentally detected in low-temperature NMR spectra (110 K, CDF3/CDF2Cl mixture
as solvent) as a triplet splitting of the bridging proton signal for 13C-labelled acetic acid due to 2J(C,H)
spin-spin coupling [70]. Though dimers D3(I)–D3(VII) are the most stable forms, the formation of
oligomers (structure G, Figure 5) and complexes of other types (D and E dimers, Figure 5) is also
possible. This fact is also supported by the crystallographic and spectroscopic studies [71–74].
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To explore the possibility of a single proton transfer in the dimers (equilibrium BA, Figure 5),
the calculation was performed at a constant O-H distance of the adjacent hydrogen bond. There was
no local minimum on the potential energy curve (Figure 4, curve b). Therefore, the formation of a
zwitterionic complex (Figure 5, structure A) was disadvantageous and there was a poor chance to
observe the equilibrium BA experimentally (Figure 5). Nevertheless, the profile for the single proton
transfer in the dimer was more shallow than that in the monomer.

The calculated H-bond energies (∆E(HB) ≈ Emin(non-HB) − Ei(HB) [75]) in the studied dimeric
complexes were smaller than 7 kcal/mol per H-bond. The estimated values of the energies calculated
for the dimers of 3 and 4 correlated well with the energies reported for similar systems. For example,
according to the experimental temperature-dependent attenuated total reflection (ATR) IR studies of
ibuprofen by Ludwig et al. [76], the enthalpy of the transition between doubly H-bonded cyclic dimers
to singly H-bonded linear dimers is equal to −5.07 kcal/mol. The binding energy of a p-biphthalate
dimer obtained at the B3LYP/6-31+G* approximation is about 12.4 kcal/mol (6.2 kcal/mol per one
hydrogen bond) [77]. Such H-bonds are characterized as weak ones. However, the studied dimers
exhibited an easy double proton transfer. Such phenomenon is typical for Strong Short H-Bonds
(SSHB) [78]. This observation can be rationalized as follows. An elongation of the OH distance
results in an increase of the electron density on the adjacent oxygen of the same carboxyl group,
thereby it strengthens the basicity of this oxygen. When the OH bond length is ca. 1.25 Å, the basicity
of the adjacent oxygen becomes sufficient to evoke a spontaneous transfer of the adjacent proton
from the opposite carboxyl group. A further elongation of the OH bond brings about a moderate
decrease of the dimer energy, thus creating a double-well potential. Following Gilli’s terminology [79],
this phenomenon can be called charge flow-assisted hydrogen bond.

2.2. Dynamics of Hydrogen Bonding within the Framework of Molecular Dynamics

Molecular dynamics (MD) schemes, which reproduce time evolution of the studied systems,
are useful in the investigations of multi-dimensional and complex phenomena [80–82]. In the studied
case of phthalic acid derivatives, it was necessary to use the Car–Parrinello MD scheme (CPMD),
which is based on the DFT framework and is able to reproduce H-bond properties [83–88]. This section
describes how these CPMD simulations illustrate the impact of H-bond strength on the molecular
metric parameters.

Table 1 presents statistical data (averages and standard deviations) for the CPMD production
runs. After the thermostatted equilibration phase, the data collection without thermostats lasted 24 ps,
and only the last 20 ps were taken as the production runs in order to allow the molecules to relax after
thermostatting. It was interesting to see that the intramolecular H-bond in 4 was much stronger than in
3, but the intermolecular bridges of the dimers were of almost the same strength. While the mean and
standard deviations of the donor-acceptor distance were lower for a stronger bonding, the opposite was
true for the donor-proton bond length. This was a result of increased delocalization of the proton in
the stronger bridge, whereas the dynamics of the H-bridge were weaker. The donor-acceptor distances
listed in Table 1 indicate that the intermolecular H-bonds in the dimer of 3 were stronger and more
delocalized than the intramolecular one in the monomeric 3. An opposite phenomenon was observed
for 4. This discrepancy can be explained by the difference in the geometry of the structures. For the
dimers of 3 and 4, the geometry of the H-bridges was planar (COH . . . O torsional angle ~0◦) and linear
(OHO angle ~179◦), while, for the monomers, the geometry was neither planar nor linear (COH . . . O
and OHO angles were ~64/50◦ and ~150/160◦ for 3/4, respectively, Table 1). These deviations from the
planarity were caused by a strong electrostatic repulsion between oxygen atoms of the intramolecular
H-bonds in the monomers. Moreover, for the monomer of 3, the phenomenon of non-coplanarity was
enhanced by a strong steric repulsion from the nitro group, which led to an additional weakening of
the intramolecular H-bond.
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Table 1. Metric parameters (in Å) for the donor-acceptor (OO) and donor-proton (OH) contacts in the
monomers and dimers of 3 and 4. The CPMD results are given as: Average ± standard deviation.

Compound Method Bridge 1 Bridge 2

d(OH) d(OO) d(OH) d(OO) OHO[◦] COH . . . O[◦]

3, monomer CPMD 0.993 ± 0.022 2.728 ± 0.151 - - - -
3, dimer - 1.027 ± 0.032 2.634 ± 0.095 1.028 ± 0.034 2.633 ± 0.091 - -

4, monomer - 1.005 ± 0.022 2.587 ± 0.088 - - - -
4, dimer - 1.028 ± 0.036 2.650 ± 0.122 1.028 ± 0.037 2.653 ± 0.115 - -

3, monomer DFT 0.978 2.670 - - 150.2 64.4
3, dimer - 0.999 2.679 1.001 2.660 178.9 0.2

4, monomer - 0.985 2.583 - - 160.0 50.1
4, dimer - 1.000 2.669 0.999 2.679 178.6 0.7
3, dimer X-ray [38] 0.84 2.698 0.84 2.698 155.5 -

3, oligomer - 0.84 2.681 - - - -

Additional insight was provided by the time evolution of the bridge distances, depicted in Figure 6
for the monomers and Figure S5 for the dimers. It was striking that even if the monomer of 4 had
the shortest donor-acceptor distance among the studied systems, there were no indications of the
proton entering the acceptor side. On the other hand, the intermolecular cyclic dimers of 3 and 4 were
typical for carboxylic acids. For 4, there were numerous instances of the bridge proton being located
almost in the middle of the bridge, while for 3 there were just two such cases and one of them was a
concerted transfer (occurring at the same time in both bridges). Such synchronicity was less obvious
for 4. This delocalization of the protons in the cyclic dimer of 4 showed that the H-bonding in 4 was
stronger than in 3 for both the monomer and the dimer.

It is worth to note that the H-bond in the monomer of 3 was characterized by the greatest dynamics,
due to its non-planar structure and, as a consequence, a significant deformation component.
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2.3. NMR Studies of Nitrophthalic Acids

NMR study of H-bonding in solution is challenging due to the short lifetime of H-bonded
complexes of low molecular weight. Generally, only a single NMR line is observed for all mobile
protons, which represent an average over different, fast interconverting hydrogen-bonded complexes.
This problem can be solved using a low-freezing solvent [89]. In this solvent complex, hydrogen-bonded
systems can be characterized in great detail [90–92]. However, such experiments are not without their
problems. A simplified qualitative analysis is possible when the mole fractions and the individual
chemical shifts of different H-bonded complexes are known.

Neither 3 nor 4 was soluble in weakly polar, aprotic solvents. However, their solubility can
be increased in the presence of a dissolved base. Possible scenarios of phthalic acid interaction
with bases in solution are shown in Figure 7. If the composition of such acid:base complex is 1:1,
one carboxyl group of the acid interacts with the base while the other carboxyl group can either
form an intramolecular H-bond with the former one (scenario a) or remain free (scenario b). If the
base is in excess, 1:2 acid:base complex can be formed with two near-equal intermolecular H-bonds
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(scenario c). We did not consider complexes of acid dimers because such complexes are not likely in
the presence of the base because the solubility of the acid alone is very low. What are the individual
1H chemical shifts of carboxyl protons in these complexes when the base is very strong? In a polar
solvent the 1H chemical shifts of the carboxyl proton in a 1:1 complex of 2-nitrobenzoic acid with
2,4,6-trimethylpyridine is equal to 16.8 ppm [93]. The length of this H-bond can be elongated due to
the steric effects [94,95]. The use of a stronger base can cause both a contraction and a lengthening of
the H-bond. The result depends on the position of the bonding proton with respect to the H-bond
center. However, the reduction of solvent polarity causes the opposite effect [66–68]. We concluded
that the 1H chemical shift of the proton in the intermolecular H-bonds in scenarios a, b, and c should
have been between 19 and 17 ppm. The 1H chemical shift of the proton in the intramolecular H-bond
in scenario a was the hardest to estimate. The geometry of this H-bond was forced to adapt to the rigid
molecular structure. Most likely, the 1H chemical shift of this proton should have been smaller than
15 ppm [33]. The 1H chemical shift of the proton of the free carboxyl group in scenario b depended on
interaction with CDCl3. At high concentration of 2,6-bis(trifluoromethyl)benzoic acid in dry CDCl3,
its mobile proton resonates at 10 ppm. At high concentration of 2,6-bis(trifluoromethyl)benzoic acid
in toluene its mobile proton resonates at 8.8 ppm at 300 K and at 7.4 ppm at 354 K. In both solvents
the chemical shift depends on the monomer–dimer equilibrium of the acid. We believed that 6 ppm
was a safe upper limit for the 1H chemical shift of the proton of the free carboxyl group in scenario b.
Summarizing the above, the mean 1H chemical shifts of the carboxyl protons in scenario a, c, and b
were expected to be about 16 ppm, 18 ppm, and below 12 ppm, respectively.
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Figure 7. Possible scenarios of phthalic acid interaction with bases in nonpolar solution: (a) One intra-
and one intermolecular H-bond, (b) single intermolecular H-bond, and (c) two intermolecular H-bonds.
Molecular structures of the considered bases.

Figure 8 shows characteristic 1H NMR spectra of 3 and 4 in CDCl3 in the presence of a large
excess of triethylamine (Et3N). The limiting mean values of the 1H chemical shift of carboxyl protons
measured using a set of spectra collected with a gradual increase in the mole fraction of 3 or 4 were
equal to 14.1 ppm for both acids (Tables S1 and S2). Therefore, the most likely structure of a complex
of Et3N with phthalic acids in nonpolar solvents corresponded to scenario a. This result is pretty
intuitive while the bulkiness of Et3N significantly increased the entropic cost of the structure shown in
scenario c.
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Figure 9a,b shows characteristic 1H NMR spectra of 4 in CDCl3 in the presence of a large excess of
N,N-dimethylpyridin-4-amine (DMAP). The limiting mean value of the 1H chemical shift of carboxyl
protons measured using a set of spectra collected with a gradual increase in the mole fraction of 4 was
about 18.5 ppm (Table S3). Therefore, the most likely structure of the complex of DMAP with 4 in
CDCl3 corresponded to scenario c. When the mole fractions of DMAP were only slightly larger than
that of 4, while the total concentration was very low, 1H NMR spectra exhibited two separate peaks
of different mobile protons (Figure 9c). We attributed the peak at 15.7 ppm to a complex of DMAP
with 4 and the peak at 2.4 ppm to water interacting with residual DMAP. The former peak obviously
corresponded to the structure in scenario a. The mean 1H chemical shift in this complex was larger
than for Et3N. However, this difference does not mean, obviously, that the intermolecular H-bond in
DMAP:4 was stronger than in Et3N:4. Recall that the 1H chemical shift of the strongest known H-bond
in [FHF]− is 16.6 ppm [95] while one of the largest 1H chemical shifts, of 21.7 ppm, has been measured
for a moderately strong H-bond in the proton-bound homodimers of pyridine [33]. More about this
issue can be found elsewhere [96]. In contrast, the value of 15.7 ppm in DMAP:4 can be compared to
the value of 18.5 ppm in DMAP:4:DMAP. The latter complex has two intermolecular H-bonds while the
former has one inter- and one intramolecular H-bond. Therefore, if the effects of mutual influences of
the adjacent hydrogen bonds on their geometries in each of these complexes were small, the individual
1H chemical shift of the intramolecular H-bond in DMAP:4 was about 13 ppm.
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and (c) water:4:DMAP = 1:0.24:0.30.

In contrast to the solution with Et3N, the presence of DMAP did not increase the solubility of 3 in
CDCl3. Presumably, 3 did not interact with DMAP by scenario c due to a high entropic cost caused by
the position of the nitro group. Why did it not interact with DMAP by scenario a? We cannot answer
this question with certainty.

2.4. H-Bonding Vibrational Modes in Carboxyl Dimers

Stretching vibrations of H-bonds have a high diagnostic value for determination of the nature and
strength of these bonds [97,98]. Previously, the spectral manifestations of dimerization and isotopic
effects on spectroscopic observables were studied for different molecular systems [99–108] including
carboxylic acid dimers [109,110]. Upon carboxylic acid dimerization, the structure of the OH stretching
band in IR spectra changes most prominently: The narrow band of monomers changes to a broad,
intensive, and complex substructured band of dimers shifted to lower wavenumbers.

For a comprehensive spectroscopic investigation of 3 and 4, we accomplished a study based
on IR, Raman, and IINS measurements, as well as DFT, CPMD, and Potential Energy Distribution
(PED) calculations. The IR, Raman, and IINS spectra of non-deuterated and deuterated (OH→ OD



Molecules 2020, 25, 4720 10 of 22

replacement) 3 and 4 are shown in Figures 10 and 11. The experimental spectra were interpreted
using the calculated vibrational (DFT) and power spectra (CPMD), and the results of the PED analysis
(Tables S4 and S5). More about this issue can be found elsewhere [111–113].Molecules 2020, 25, 4720 11 of 22 
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According to the crystallographic data [37], the molecules of 3 form H-bonded oligomeric chains
of dimers. These H-bonds were almost of the same length (Table 1) and, consequently, were equally
strong. Therefore, the stretching vibrations of the OH group (ν(OH)) were within the same spectral
range and overlapped in the experimental IR spectra (Figure 10). The shapes of the ν(OH) and ν(OD)
bands were very alike to those of carboxylic acid dimer studied experimentally and theoretically by
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Flakus et al. [110]. For 3, the deuteration caused a shift of the ν(OD) band to lower wavenumbers
according to the well-established rulewith the isotopic spectroscopic ratio ISR = δOH/δOD = 1.28 [114].
In contrast, for 4 the band ν(OD) expanded strongly; this revealed a complex character of the underlying
changes. Deformational (δ(OH)/δ(OD) and γ(OH)/γ(OD)) bands are informative because in 3 and 4 they
differed from those observed for intramolecular H-bonds in ortho-hydroxy aryl Schiff bases [115–118]
and ortho-acetophenones [119]. The δ(OH) was a doublet at 1409/1395 cm−1 in 3 and a band at
1383 cm−1 in 4. Upon deuteration, these bands disappeared to emerge at 1033/1029 cm−1 in 3 and at
1014/995 cm−1 in 4. Thus, the ISR is in the range of 1.36–1.35 for both compounds (Tables S4 and S5).
This characteristic behavior of the ISR deviated from that of ortho-hydroxy aryl Schiff bases [115] and
ortho-hydroxy acetophenones [119]. When it comes to the bands assigned to the deformational γ(OH)
vibrations, a few bands shifted to the low wavenumbers’ region after the deuteration: 876, 835, 819,
796, 752, and 691 cm−1 for 3 and 862, 839, and 763 cm−1 for 4 in IR/Raman spectra (Tables S4 and S5).
The assignments of these bands to the deformational vibrations of the bridging protons was unequivocal
because the intensity of the two series of the bands at 895, 875, 845, 826 cm−1 and 778, 715, 668 cm−1 for
3 and 874 and 704 cm−1 for 4 was greatly decreased in the IINS spectra after the deuteration (Figure 11
and Table S4). This phenomenon has been studied in the past [120–125]. As for the emergence of the
two series of bands assigned to the deformational vibrations, it can be explained by the presence of the
dimers and the oligomers in the solid state (see above). The attribution of two deformational bands to
dimers and monomers was suggested by Miyazawa and Pitzer [126] for formic acid in the gas phase
and solid nitrogen matrixes. Thus, the two series of the (γ(OH) bands at 876 cm−1 (γ(OD) = 627 cm−1),
835 cm−1 (627 cm−1), 819 cm−1 (627 cm−1), and 796 cm−1 (580 cm−1) and at 752 cm−1 (545 cm−1),
690 cm−1 (514 cm−1), and 874, 704 cm−1 are assigned to the deformational vibrations of the carboxyl
groups of the dimers and the monomers of 3 and 4, respectively.

The assignment of γ(OH) can be supported by the previously published d(OO) = f(γ(OH))
correlation [127,128] and the crystallographic data for 3 [37]. The lengths of the H-bridges in the
range of 2.65–2.70 Å (d(OO) is calculated by means of the d(OO) = 3.01–4.4 × 10−4 γ(OH) correlation,
where d(OO) is in Å and γ(OH) is in cm−1) matched very well with the experimentally measured ones
(d(OO) = 2.698 Å and 2.681 Å [37]). Moreover, the experimentally obtained wavenumber values for the
γ(OH) bands can be applied to compare the strength of the H-bonds in 3 and 4. The obtained results
show that the H-bonds in 3 were a bit weaker than in 4 (d(OO) is in the range of 2.65–2.70 Å for 3 and
2.63–2.67 Å for 4), though the difference in the strength of the hydrogen bonding was not large.

In terms of the H-bond vibrations, the IINS spectroscopy allows one to unequivocally interpret
bands (νσ) due to the almost complete disappearance of these bands upon deuteration [115,121].
Based on this phenomenon, two low-intensity bands at 555 and 390 cm−1 were assigned to vibrations
νσ

asym and νσ
sym of the H-bonds, respectively. Importantly, these bands overlapped with the bands

of other vibrations (insensitive to deuteration) both in IINS and IR spectra. However, the changes of
the IINS spectra were much clearer than ones of the IR spectra.

The relative strengths of the H-bonds in dimers and monomers of 3 and 4 can be evaluated
using atomic velocity power spectra obtained from the CPMD trajectories. The vibrational spectra
related to the atomic motion intensity (arbitrary intensities) are presented in Figure 12. The bands of
hydroxyl groups are relatively broad (red bars in Figure 12): 3100–3500 cm−1 and 2920–3250 cm−1 for
the monomers of 3 and 4 and 2400–3100 cm−1 and 2250–3200 cm−1 for the dimers of 3 and 4. The bands
of the dimers are strongly red-shifted as compared to those of the monomers. This shift indicates
that the intermolecular H-bonds in the dimers were much stronger than the intramolecular ones in
the monomers.

The stretching and bending vibration areas of the dimers of 3 and 4 did overlap (Figure 12, 3d and
4d). In contrast, the stretching and bending vibration bands of the monomer of 4 were blue- and
red-shifted, respectively, as compared to those of 3 (Figure 12, 3m and 4m). Therefore, the strengths of
H-bonds in the dimers of 3 and 4 were similar. In contrast, the intramolecular H-bond in the monomer
of 3 was weaker than that in the monomer of 4. The reason for that is that the structure of the monomer
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of 3 was more bent. This conclusion is consistent with the above interpretation of the experimental data
and demonstrates that experimental spectroscopic studies and CPMD simulations greatly enhance
each other’s results.
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3. Materials and Methods

3.1. Compounds and Deuteration

The studied compounds and solvents were purchased from Sigma-Aldrich company and used
without further purification. The deuterated sample was prepared by dissolving the product in
deuterated methanol (CH3OD). The solution was then heated to 60 ◦C and refluxed during 30 min.
After that, the methanol was removed by evaporation under reduced pressure. This procedure was
repeated three times.

3.2. Infrared and Raman Measurements

The far and middle infrared (FIR, MIR) absorption measurements were performed using a Bruker
Vertex 70v vacuum Fourier Transform spectrometer. The transmission spectra were collected with
a resolution of 2 cm−1 and with 64 and 32 scans per each spectrum for FIR and MIR, respectively.
The FT-FIR spectra (500–50 cm−1) were collected for the samples suspended in Apiezon N grease
and placed on a polyethylene (PE) disc. The FT-MIR spectra were collected for the samples in a
KBr pellet. The Raman spectra of the analyzed samples were obtained using FT-Nicolet Magma
860 spectrophotometer The In:Ga:Ar laser line at 1064 nm was employed for the Raman excitation
measurements. The spectra were recorded at the room temperature in the range of 200–3800 cm−1 with
the spectral resolution of 4 cm−1 and with the same number of scans (512/measurement).

3.3. Incoherent Inelastic Neutron Scattering (IINS) Measurements

Neutron scattering data were collected at the pulsed IBR-2 reactor at the Joint Institute of Nuclear
Research (Dubna) using the time-of-flight inverted geometry spectrometer NERA at 10 K temperature.
The spectra were converted from neutron per channel to the scattering function per energy transfer.
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At the energy transfer between 5 and 1200 cm−1, the relative IINS resolution was estimated to be ca. 3%.
The S(Q, ω) function (scattering law) can be expressed in the form of isotropic harmonic oscillator [129]:

S(Q, nω) =

(
Q2
·U2
)

n!
·exp
((

Q2
·U2
))

(1)

where Q is the momentum transfer and U2 is the mean square displacement defined as

U2 =
}

2mω
=

16.795
µν

(2)

where µ is the mass oscillator in amu, ν is the oscillator energy in cm−1, U2 is expressed in Å2, and n is
the number of excited states.

3.4. NMR Measurements

The 1H spectra were recorded at room temperature on a Bruker Avance III 500 MHz spectrometer.
CDCl3 was purchased from Sigma-Aldrich and used without further purification. The spectra were
measured using the solvent peak as an internal reference, and the chemical shifts were converted to
the conventional TMS scale. The number of scans varied between 128 and 256.

3.5. Car–Parrinello Molecular Dynamics’ Simulations

A dynamical nature of the investigated molecules 3 and 4, with the emphasis on their hydrogen
bridges, was studied using Car–Parrinello molecular dynamics (CPMD) [130]. The models of monomers
and dimers for the CPMD simulations were constructed on the basis of static DFT gas phase results.
The molecular structures were placed in cubic boxes with a = 15 Å for the monomeric forms and a = 22 Å
(for compound 3) and a = 25 Å (for compound 4) for dimeric forms. The first-principle molecular
dynamics (FPMD) calculations were performed in the gas phase with the empirical van der Waals
correction by Grimme (all DFT-D2) [131]. The Perdew–Burke–Ernzerhof (PBE) exchange-correlation
DFT functional [132] was applied. The core electrons of the studied monomers and dimers were
replaced by norm-conserving pseudopotentials of Troullier–Martins type [133]. The Kohn–Sham
orbitals were expanded using the plane-wave basis set with the maximum kinetic energy cutoff of 90 Ry.
The Hockney’s scheme [134] was used to remove interactions with periodic images and simulate isolated
molecule conditions. The orbital coefficients were propagated using the default value of the fictitious
orbital mass, 400 a.u., and the nuclear motion timestep was set to 2 a.u. The CPMD simulations were
divided into two steps: The equilibration and the production runs. During the equilibration, the ionic
temperature was set to 297 K and controlled by Nosé–Hoover thermostat chains with default settings,
with each degree of freedom coupled to a separate thermostat (“massive” thermostatting) [135,136].
The Nosé–Hoover thermostat chain was set to 3200 cm−1 frequency. The equilibration runs of the
CPMD lasted for 50,000 steps for the monomers and dimers. The data collection lasted for 500,000 steps
(24 ps) using the NVE microcanonical ensemble (the thermostat chains were detached during the
simulations). The obtained trajectories served as a basis for the distance evolution analysis of the
bridged proton and the functional groups’ dynamic as well as to determine the vibrational features of
the investigated compounds from the power spectra of atomic velocity.

The CPMD simulations were carried out using the CPMD 3.17.1 program [137]. The data analysis
was performed using locally written utilities and the VMD 1.9.3. program [138]. The graphical
presentation of the obtained results was prepared with the Gnuplot graphics package [139], and with
the VMD 1.9.3. program [138].

3.6. DFT Calculations

This part of the calculations was performed with the Gaussian 09 suite of programs [140] using
the density functional theory (DFT) with the three-parameter functional proposed by Becke with the
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correlation energy according to the Lee–Yang–Parr formula, denoted as B3LYP [141,142]. The triple-zeta
split-valence basis set, denoted as 6-311+G(d,p) [143–145] according to the Pople’s notation, was
applied. The use of diffuse functions is a proper approach for studies of hydrogen bonding [146].
Initially, the geometry optimization was carried out and followed by harmonic frequencies’ calculations,
confirming that the obtained structures correspond to the minima on the potential energy surface (PES).
Next, the one-dimensional reaction path of the bridged proton transfer from donor to the acceptor atom
within the intramolecular hydrogen bond was studied. The applied approach was based on stepwise
elongation of the O-H distance (with 0.05 or 0.1 Å increments) with full optimization of the remaining
structural parameters. The calculations were carried out in the gas phase and with the solvent reaction
field using acetonitrile as a solvent. The Polarizable Continuum Model (PCM) method [147] was used
to reproduce the solvent influence on the studied molecules. All the performed calculations were
conducted for the electronic ground state and without any extra charges on the molecules and dimers.
The obtained results were visualized using the MOLDEN software [148].

3.7. PED Analysis

The potential energy distribution (PED) of the normal modes was calculated in terms of natural
internal coordinates [149] using the Gar2ped program [150].

4. Conclusions

The result of the interplay between competing noncovalent interactions in the condensed phase may
appear to be quite unexpected. The conformation of carboxyl groups is assumed to be dominantly cis
due to so-called Z-effect [59]. However, the conformation can be changed in H-bonded associates [56–59].
We herein reported a comprehensive computational and experimental study of this phenomenon
using 3-nitrophthalic (3) and 4-nitrophthalic acids (4) as model systems. It was observed that an
intermolecular H-bond interaction between the adjacent carboxyl groups of these molecules became
favorable only when one of the groups was involved in a strong intermolecular H-bond. However,
even in this case, the spatial distance between the carboxyl groups needed to be increased. If the
latter was not possible, for example due to steric hindrances, as in 3, the intramolecular interaction
was energetically unfavorable. As a result, the intramolecular steric hindrances critically affected the
solubility, the crystal packing, and the intramolecular proton exchange of phthalic acids.

The structural and energetic parameters of intra- and intermolecular interactions in the monomers,
dimers, and aggregates of 3 and 4 were estimated for the gas, liquid, and solid phases.

Supplementary Materials: The following are available online, Figure S1: The dimeric forms of compounds 3 and
4 and relative energy values obtained at B3LYP/6-311+G(d,p) level of theory, Figure S2: Structures and atoms
numbering of studied compounds 3 and 4, Figure S3: Calculated potential energy curves for the gradual nitro group
rotation of conformers 3(I) and 4(II), Figure S4: Calculated (B3LYP/6-311+G(d,p), PCM approach for acetonitrile
(a) and gas phase (b)) potential energy functions by the gradual displacement of one proton for compounds 3 and
4 whereas the remaining parameters were optimized: in the intramolecular hydrogen bond of monomers, in the
intermolecular hydrogen bond of dimers and in the intermolecular hydrogen bond of dimers for fixed adjacent
bridged proton; Figure S5: Time evolution of the metric parameters of two symmetric hydrogen bridges. The CPMD
gas phase simulations of the dimers of 3 and 4. Donor-proton distance, proton-acceptor distance, donor-acceptor
distance; Table S1: 1H NMR data for compound 3 in CDCl3 in the presence of N,N-diethylethanamine (Et3N),
Table S2: 1H NMR data for compound 4 in CDCl3 in the presence of N,N-diethylethanamine (Et3N), Table S3:
1H NMR data for compound 4 in CDCl3 in the presence of N,N-dimethylpyridin-4-amine (DMAP), Table S4:
Experimental IR, Raman, IINS and calculated DFT (B3LYP/6-311+G(d,p)) spectral data of compound 3 and
its mono deuterated (OH→OD) derivative, Table S5: Experimental IR, Raman, IINS and calculated DFT
(B3LYP/6-311+G(d,p)) spectral data of compound 4 and its mono deuterated (OH→OD) derivative.
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