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ABSTRACT: Metal−organic frameworks (MOFs) have emerged as promising
tailor-designed materials for developing next-generation solid-state devices with
applications in linear and nonlinear coherent optics. However, the implementation of
functional devices is challenged by the notoriously difficult process of growing large
MOF single crystals of high optical quality. By controlling the solvothermal synthesis
conditions, we succeeded in producing large individual single crystals of the
noncentrosymmetric MOF Zn(3-ptz)2 (MIRO-101) with a deformed octahedron
habit and surface areas of up to 37 mm2. We measured the UV−vis absorption
spectrum of individual Zn(3-ptz)2 single crystals across different lateral incidence
planes. Millimeter-sized single crystals have a band gap of Eg = 3.32 eV and exhibit
anisotropic absorption in the band-edge region near 350 nm, whereas polycrystalline
samples are fully transparent in the same frequency range. Using solid-state density
functional theory (DFT), the observed size dependence in the optical anisotropy is
correlated with the preferred orientation adopted by pyridyl groups under conditions
of slow crystal self-assembly. Our work thus paves the way for the development of optical polarization switches based on metal−
organic frameworks.

■ INTRODUCTION
Crystal symmetry, electronic structure, and chemical stability
are key factors that determine the properties of materials for
optical devices such as polarizers,1 mirrors,2 or detectors.3

Precise fabrication of optical materials is also key to the
development of advanced technology such as entangle-photon
sources4,5 and solid-state spin platforms for quantum
technology.6,7 In addition, organic polymers are promising
optical materials because they are inexpensive,8,9 light-
weight,10,11 and moldable.10,12 However, their optical proper-
ties often degrade due to low mechanical resistance,
inhomogeneity, and temperature sensitivity, limiting their
application in precision optical devices such polarimetry and
interferometry.13 In contrast, crystalline materials have better
performance for these applications. For example, crystal
birefringence is essential to amplify and modulate the
polarization state of light in wave-plates and Pockels
cells.14,15 In many cases, birefringent crystals also exhibits
nonlinear responses due to their noncentrosymmetric lattice
symmetry, allowing applications such as optical frequency
conversion and optical parametric amplifiers.16,17

Metal−organic frameworks (MOFs) are crystalline materials
made of organic ligands and inorganic metal centers, which
have attracted great interest in materials science due to their
ability to be tailor-designed for specific applications.18,19 The
molecular-level design of MOFs has enabled important

advances in gas storage,20,21 chemical sensing,22,23 and energy
storage.24,25 MOFs also have great potential for nonlinear
optical applications. Uniaxial crystals and noncentrosymmetric
coordination networks can be constructed from tetrahedral
coordination geometries using d10 metal ions without inversion
symmetry.17 The electronic structure of d10 metal ions such as
Zn2+ and Cd2+ increases the chemical stability and optical
transparency of MOF crystals, due to their inherent resistance
to oxidation and the absence of d−d band absorptions in the
visible range.26,27 Moreover, the presence of donor−acceptor
(push−pull) type ligands in noncentrosymmetric Cd2+- or
Zn2+-based MOF structures improves the nonlinear response
because molecules with large transition dipole moments and
large differences between permanent dipole moments in the
ground and excited states increase the second-order nonlinear
optical susceptibility χ(2).17,28

The Cambridge Structural Database (CSD) contains
approximately 3900 noncentrosymmetric uniaxial MOFs
reported to date.29 However, no detailed optical studies are
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available on the characterization of applications-ready optical
devices, such as Mueller matrix polarimetry.30 Studies have
been limited to the band gap measurements of MOFs and
second-harmonic generation (SHG) signals for micrometer-
sized MOF samples.17,28 The lack of precise optical character-
ization may be due to the notorious difficulty of growing large
single-crystal MOFs.31,32 According to the vast MOF literature,
only a few reports of single-crystal MOFs grown beyond 1 mm
can be found.33−37 Although efforts to understand the
dynamics of the self-assembly process in MOFs under
solvothermal conditions are underway,38 a general under-
standing of this process is still elusive, limiting the available
strategies for the growth of single crystals for optical devices.

We have recently reported a method to grow large single
crystals of the MOF Zn(3-ptz)2.37 This MOF shows a
noncentrosymmetric unit cell, tetrahedral d10 coordination
geometry, and tetrazole push−pull ligands [3-ptz is 5-(3-
pyridyl)-1H-tetrazolate].39 In this work, we study the
absorption of large individual Zn(3-ptz)2 single crystals across
different crystal planes and discuss the size dependence of the
anisotropy in the absorption spectrum with crystal samples of
millimeter dimensions, thus extending previous work on the
dependence of MOFs’ electronic properties with size over
submicrometer dimensions.40 Finally, we carry out solid-state
density functional theory (DFT) calculations to rationalize the
relationship between the crystallographic structure and optical
response of our large single-crystal samples.

■ METHODS
All reactants were purchased from Sigma-Aldrich and utilized
without any further purification, except for 3-cyanopyridine,
which was sublimed at 60 °C. The Zn(3-ptz)2 crystals were
synthesized based on the methodology previously reported.37

Large single crystals were obtained from a mixture of
Zn(CH3COO)2 (3.26 mmol), 3-cyanopyridine (6.52 mmol),
sodium azide (9.78 mmol), and acetic acid (3.26 mmol)
dissolved in 14 mL of distilled water in a 50 mL glass bottle
with the pH value adjusted to 2.7 using HNO3 (70%). The
glass bottle was introduced into a tube furnace at 113 °C for 40
h (Nabertherm, model 50-250/11) using a horizontal
operation and filling the furnace with alumina bulk fiber. All
crystals were filtered immediately after the reaction time was
finished and washed using ethanol absolute. The planes of the
crystal faces were characterized by indexing in a SMART CCD
diffractometer using the orientation matrix. The representation
of the planes was done using the software WinXMorph.41,42

The crystal size area was characterized by optical microscopy
as detailed in ref 37. Single crystals were measured by
transmittance in a PerkinElmer Lambda 750S spectropho-
tometer in a quartz cell, holding the (1̅01) plane on the bottom
of the quartz cell. Powder samples were measured in a quartz
holder in the diffuse reflection detector.

The simulated absorption spectra were calculated using DFT
with PBE-GGA functionals and Grimme dispersion (D3)
function correction, as implemented in CASTEP.43−47 The
crystal structure of Zn(3-ptz)2 (CSD: 184958)48 shows a space
group of I 4̅2d and a static disorder in which the nitrogen and
carbon atoms in the pyridyl group are located at the same
atomic position. Cells A and B (space group I4̅) were
generated by replacing the superposed atoms by a nitrogen or
carbon atom and orienting the position of the nitrogen in the
unit cell inward or outward toward the center of the cell,
respectively. Both cells A and B present the same cell

parameters and crystallographic position as Zn(3-ptz)2, and
both were used in calculations. By comparing single-point
energy calculations, we determined an optimal k-point mesh of
2 × 2 × 2 and a cutoff of 1100 eV for optimization and
absorption calculations. We carried out a two-step optimiza-
tion procedure for each unit cell: First, only atomic coordinates
were minimized. Second, both cell parameters and atomic
coordinates were allowed to be optimized. The optimized
coordinates and cell parameters were employed for the
estimation of the absorption spectra (see details in the
Supporting Information). The simulated polycrystalline
spectrum was obtained from calculations without a definite
direction of the electric field (isotropic dielectric tensor
average). Molecular orbital models were obtained in an all-
electron single-point calculation using the PBE approxima-
tion49 to represent the exchange-correlation energy. This
single-point calculations were based on the DFT framework50

using the ADF-BAND program.51,52

■ RESULTS AND DISCUSSION
Size-Dependent Optical Anisotropy. We studied the

absorption of the Zn(3-ptz)2 (MIRO-101) single crystals
across different lateral crystal planes. Typical large-sized crystal
samples have opposing parallel triangular and hexagonal faces,
corresponding to the planes (101̅) and (1̅01), respectively, as
reported in the distorted octahedron habit in ref 37. For
samples with a surface area of a few square millimeters, we
measured the absorption spectra of three distinguishable lateral
faces, holding the plane (1̅01) on the bottom as depicted in
Figure 1. Regarding the large size of our samples, we were only

able to index planes of the 5 mm2 crystal by single-crystal X-ray
diffraction (SXRD), which exhibited crystallographic planes G1
= {(101), (221)}, G2 = {(02̅1̅), (01̅1̅)}, and G3 = {(021̅),
(011̅)}. For each position, we plotted its absorption spectrum
across the lateral planes G1, G2, and G3, where the subscript
was assigned according to its intensity at 350 nm (Figure 1c).
In the region below 310 nm, the three lateral planes have the
same absorption intensity, but an orientation-dependent
energy band is measured in the range of 335−365 nm. This
low-energy band in the single crystal presents an energy band
gap of Eg = 3.32 eV (see Figure 1c, inset), which is
approximately 0.6 eV lower than the band gap obtained in a
polycrystalline sample.27 This anisotropic optical response near
the band edge is expected, given the large birefringence of the
MIRO-101 crystal lattice.53

Figure 1. Crystal habit of MIRO-101. (a) Top crystal view, displaying
the three distinguishable incidence lateral planes along which the
absorption is measured: G1, G2, and G3. (b) Bottom crystal view. (c)
Single-crystal absorbance on the lateral planes G1, G2, and G3. The
inset shows the measured single-crystal band gap of Eg = 3.32 eV.
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In order to understand the lower energy band gap described
in Figure 1c, we carried out a systematic study of the size
dependence of the band-edge absorption spectrum for MIRO-
101. We prepared individual single crystals with top view
surface areas in the range of 5−37 mm2, as measured by optical
imaging. The crystal size dependence of the absorption
spectrum of MIRO-101 is shown in Figure 2a. We recorded

the absorbance spectra for crystal samples, varying the size
from a micrometer-sized powder sample to individual single
crystals with top surface areas of up to 37 mm2. Figure 2a
shows that crystals with surface areas of a few square
millimeters exhibit a low-energy shoulder that is not present
in the powder. The extracted band gap converges to 3.3 eV for
the largest samples measured in the millimeter regime (see
Figure 1c). In Figure 2b we show the absorbance of G1 and G3
and the average absorbance taken from the intensities at 360
nm. The intensity of the shoulder increases as long as the
crystal size increases. In addition, the difference observed
between G1 and G3 at 360 nm shows the anisotropy behavior
of MIRO-101, which is about 0.1 units and approximately
independent of crystal size.

This crystal size dependence of the band gap and anisotropy
effects in the absorbance of MIRO-101 can be explained in
terms of the relative orientations of the tetrazole ligands in the
unit cell during the crystallization process. Under its first
reported synthesis conditions,48 Zn(3-ptz)2 was obtained in
powder form. SXRD shows that the unit cell of MIRO-101

exhibits static disorder in which the nitrogen atom of the
pyridyl group is located at the same position as a carbon atom
in the pyridine ring, producing two types of pyridyl
orientations in the unit cell that coexist in a polycrystalline
sample. We denote these two observed unit cells as A and B.
We show in Figure 3a that unit cell A has the nitrogen atoms of
the pyridyl group oriented toward the center of the unit cell
(red dot). In contrast, the nitrogen atoms of the pyridyl groups
in unit cell B are oriented outward. Then, we used periodic
DFT to compute the formation energy, Ef, of the two
structures. From the minimized total energy of each unit cell,
we determined that the formation energy of cell A is 0.87 eV
(20 kcal/mol) lower than the formation energy of cell B (see
the DFT Methods section in the Supporting Information).

In Figure 3b the relative orientation of the pyridyl groups in
unit cell A shows differences in the absorption band in the
region of 345−365 nm, which coincides with the observed
band-edge absorption of large single-crystal samples (see
Figure 1c). Solid-state DFT analysis shows that both cells
absorb at similar intensities below 320 nm and only unit cell A
exhibits the absorption band around 360 nm, suggesting that
the pyridyl groups tend to arrange in an A-like cell orientation
for larger single crystals. The calculated band gap of MIRO-
101 assuming unit cell A is Eg = 3.15 eV, which should be
compared with the 3.32 eV single-crystal band gap from Figure
1. The simulated absorption spectrum of MIRO-101 assuming
the more energetic cell B conformation only exhibits the high-
energy band at 310−320 nm.

In Figure 4 we show an analysis of the molecular orbitals
obtained by single-point calculations for the valence band
(HOMO) and conduction band (LUMO) in the vicinity of the
Fermi level. The results show differences between the unit cell
types A and B, which could explain the crystal’s anisotropic
behavior. Assuming the edge of the lower optical transitions is
related to the molecular orbitals at the edge of the Fermi level,
we can appreciate in Figure 4, parts b and c, that the
calculations of cell A show an inter-pyridyl group transition,
favoring a large isotropic behavior. Meanwhile, in cell B
(Figure 4, parts e and f), this type of transition is an intra-
pyridyl group, lowering the isotropic behavior.

The orientation of push−pull molecules, such as pyridyl-
tetrazole, during the self-assembly of molecular crystals in
solution plays a critical role in the formation lower energy

Figure 2. Size dependence of the band-edge absorption. (a)
Absorbance along the incidence plane G1 for single-crystal samples
of different top surface areas. The powder absorption is shown for
comparison. (b) Normalized absorbance across the lateral planes at
360 nm.

Figure 3. Orientation-dependent absorption bands. (a) The geometry of two orientations of pyridyl groups relative to the center of the unit cell
volume (red dot). The nitrogen atoms of the center pyridyl groups point inward and outward in cells A and B, respectively. Other atoms are
omitted for clarity. (b) DFT absorption spectra for MIRO-101 with unit cells A (black) or B (red). Cell B leads to absorption at the measured band
edge.
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bands of excitonic states, primarily due to the relative
orientation of the permanent and transition dipole mo-
ments.54,55 When synthesis conditions favor high nucleation
rates and fast crystal growth, producing small polycrystalline
samples, the dynamics of the crystal packing of MIRO-101 is
under a kinetic control.37 Our slow crystallization rate
conditions suppress the kinetic control of the self-assembly
process, producing large single crystals in the most stable
thermodynamic state (cell A). Although other cell A-like
domains can be produced during the crystallization process in
the single crystal (three pyridyl groups oriented inward and
one outward), our spectroscopic observations and theoretical
calculations support a net microscopic orientation. Additional
work is needed to understand the relation between the optical
anisotropy of the Zn(3-ptz)2 crystal and the coordination
chemistry of the 5-(3-pyridyl)tetrazolate ligand with Zn(II)
ions at low pH. We suspect that the relative availability of
crystal polymorphs with significantly different optical polar-
ization responses is a common feature of highly polar ligands
with multiple coordination modes.

■ CONCLUSION
We studied the anisotropic absorption of individual large single
crystals of the MOF framework Zn(3-ptz)2 (MIRO-101) as a
function of crystal size, studying polycrystalline samples in the
micrometer regime to single crystals with surface areas of up to
37 mm2. Using solid-state DFT calculations, we correlated the
relative orientation of the pyridyl-tetrazole ligands in the unit
cell with the thermodynamic control during the crystallization
process. This microscopic orientation is able to modify the

band edge in the absorption spectrum, reducing the band gap
for MIRO-101 from 3.9 eV for micrometer-sized polycrystal-
line samples to 3.3 eV in millimeter-sized single crystals. Our
characterization of the anisotropic optical response of a large
noncentrosymmetric MOF is a significant step forward in the
development of birefringent MOF crystals for efficient
polarization modulation and frequency conversion devices.
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