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Abstract: The development and application of high-throughput omics technologies have enabled
a more in-depth understanding of mitochondrial biosynthesis metabolism and the pathogenesis of
mitochondrial diseases. In accordance with this, a host of new treatments for mitochondrial disease
are emerging. As an essential pathway in maintaining mitochondrial proteostasis, the mitochondrial
unfolded protein response (UPRmt) is not only of considerable significance for mitochondrial sub-
stance metabolism but also plays a fundamental role in the development of mitochondrial diseases.
Furthermore, in mammals, the integrated stress response (ISR) and UPRmt are strongly coupled,
functioning together to maintain mitochondrial function. Therefore, ISR and UPRmt show great
application prospects in the treatment of mitochondrial diseases. In this review, we provide an
overview of the molecular mechanisms of ISR and UPRmt and focus on them as potential targets for
mitochondrial disease therapy.

Keywords: mitochondrial unfolded protein response; integrated stress response; mitochondrial
diseases; mitochondrial function

1. Introduction

Mitochondria are indispensable for the survival of the majority of eukaryotes. Mito-
chondria have an independent mitochondrial genome (mtDNA) that, in humans, encodes
13 proteins related to oxidative phosphorylation (OXPHOS). These proteins are all enzyme
subunits located in the electron transport chain (ETC). Other ETC enzyme subunits are
encoded by the nuclear genome (nDNA) and then imported into the mitochondria [1].
Thus, rather than being independent, mitochondria are closely associated with the nu-
cleus. Furthermore, with the deepening of the understanding of mitochondria, recent
research indicates that mitochondria play an important role in the metabolism of bioac-
tive substances required by cells, such as fatty acid oxidation, heme metabolism, and
one-carbon metabolism in addition to their vital role in bioenergetics [2]. The UPRmt is a
pathway for retrograde signaling from mitochondria to the nucleus that is used to preserve
mitochondrial proteostasis [3,4].
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When protein-folding errors occur in the mitochondria, the UPRmt functions in the
maintenance of protein homeostasis by activating mitochondrial chaperone proteins and
proteases to help with the correct folding of proteins or the removal of misfolded pro-
teins [5]. The UPRmt also protects other aspects of mitochondrial function, such as in
preventing electron transport chain dysfunction by promoting the assembly of oxidative-
phosphorylation-related subunits and the synthesis of coenzyme Q, for example [6]. Mi-
tochondrial diseases constitute a group of genetic disorders characterized by oxidative
phosphorylation defects leading to impaired ATP synthesis [7–9]. We therefore raise the
question of whether the UPRmt can be targeted as a potential therapeutic approach in
treating mitochondrial diseases.

In mammals, there is increasing evidence that the mitochondrial integrated stress
response (ISR) is closely linked with the UPRmt [10]. By phosphorylating serine residues
in the α-subunit of eIF-2, the ISR can prompt a decrease in total protein translation and
an increase in the synthesis of proteins involved in environmental adaptation [11]. In
fact, translation attenuation is emerging as a potential method for treating mitochondrial
diseases [12].

With further insight into the mechanisms of UPRmt and ISR, their functions and
interactions in mitochondrial diseases have gradually attracted attention. In this review,
we focus on the molecular mechanisms and interconnection of UPRmt and ISR as well as
their roles in the pathogenesis of mitochondrial diseases. We also discuss their possible
applications in the therapy of mitochondrial diseases.

2. UPRmt

2.1. In C. Elegans

The UPRmt is a stress response in which mitochondria initiate the transcriptional
activation of a set of genes encoded by nuclear DNA, such as for mitochondrial heat
shock proteins and proteases, to maintain protein homeostasis [4,13]. Some key activators
required for this response have been identified, including CLPP, UBL-5, DVE-1, ATFS-1,
LONP-1, and HAF-1 [6,14]. The corresponding pathway has also been described: unfolded
proteins are degraded into polypeptides by the CLPP protease in the mitochondrial matrix,
and the polypeptides are transported into the cytoplasm via the HAF-1 matrix polypeptide
transporter to activate the UBL-5 and DVE-1 transcriptional complex factors [15] (Figure 1).
However, this needs to be verified through more research.

The activation of the UPRmt also requires chromatin reorganization, which is depen-
dent on the MET-2 and LIN-65 histone methyltransferases. Normally, LIN65 is located
in the cytoplasm, while DVE-1 and UBL-5 are distributed around the perinuclear region.
MET-2 is activated to promote the redistribution of LIN65 to the perinuclear region during
stress conditions. Then, LIN65 facilitates DVE-1 and UBL-5 redistribution and chromatin
recombination to the promoters of UPRmt-responsive genes [16,17] (Figure 1).

As a critical regulator of the UPRmt, ATFS-1 possesses a nuclear localization sequence,
a C-terminal leucine zipper domain, and an N-terminal mitochondrial-targeting sequence.
Under normal conditions, ATFS-1 is transported to the mitochondrial matrix for degra-
dation by the LONP-1 protease [18]. However, when a number of triggers lead to im-
paired ATFS-1 transportation, such as homeostasis disturbance, hypoxia, and abnormal
mitochondrial membrane potential, ATFS-1 accumulates around the nucleus to initiate
a nuclear-regulated mitochondrial repair program [6] (Figure 1). Although ATFS-1 accu-
mulation leads to the reduced transcription of OXPHOS-related subunits, coding genes,
and tricarboxylic acid cycle (TCA)-related genes during mitochondrial dysfunction, more
than 50 genes related to mitochondrial ribosome function are upregulated, as are genes
required for mtDNA replication and genes of the cardiolipin biosynthesis pathway, which
are essential for mitochondrial inner membrane synthesis. Moreover, genes required for
the import of mitochondrial proteins and OXPHOS complex assembly are also upregulated.
In addition, the expression of more than 20 genes involved in reactive oxygen species
(ROS) clearance is induced to in an ATFS-1-dependent manner. Overall, mitochondrial
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function is ultimately restored as a result of these biological changes [19,20]. Although the
regulatory mechanism of the UPRmt in mammals is similar to that of C. elegans, it also has
its distinct characteristics.
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hypoxia, and ETC dysfunction, it accumulates in the perinuclear region and causes activation of the 
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chondria and then transported out of the mitochondria by the HAF1 transporter to activate the 
UBL5 and DEV1 transcriptional complex factors. Under stress situations, UPRmt is activated as a 
result of UBL5 and DEV1 redistribution and chromatin reorganization, which is the consequence of 
LIN65 translocation from the cytoplasm to the perinuclear area due to MET2 action. Activation of 
the UPRmt produces a series of biological changes toward restoring mitochondrial function. 
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Figure 1. Activation of the mitochondrial unfolded protein response in C. elegans. Under normal
conditions, ATFS-1 is brought into the mitochondria and undergoes disassembly due to the action
of LONP-1. However, when ATFS-1 transport is blocked in cases such as homeostasis disturbance,
hypoxia, and ETC dysfunction, it accumulates in the perinuclear region and causes activation of
the UPRmt. Unfolded proteins are subsequently broken down into polypeptides by CLPP in the
mitochondria and then transported out of the mitochondria by the HAF1 transporter to activate the
UBL5 and DEV1 transcriptional complex factors. Under stress situations, UPRmt is activated as a
result of UBL5 and DEV1 redistribution and chromatin reorganization, which is the consequence of
LIN65 translocation from the cytoplasm to the perinuclear area due to MET2 action. Activation of the
UPRmt produces a series of biological changes toward restoring mitochondrial function.
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2.2. In Mammals

Activation of the UPRmt in mammals is mediated by the transcription factors CHOP,
ATF4, and ATF5, which is a homolog of ATFS-1 [21,22]. As research has progressed, there
is mounting evidence that the ISR behaves in a manner highly consistent with the UPRmt

in mammals [23]. The ISR-promoted phosphorylation of eukaryotic translation initiation
factor 2 (eIF2α) stimulates the transcription of CHOP, ATF4, and ATF5, which contribute
to activation of the UPRmt [24,25], whereas the ISR is not required for activation of the
UPRmt in C. elegans [26]. In addition, additional proteins involved in the UPRmt, such
as the entire sirtuin family, were identified in a recent study [27]. The sirtuin family is a
group of nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases, and each
of its seven homologs (SIRT1–7) in mammals performs a different biological function.
Among them, SIRT1 is closely related to the UPRmt. UPRmt activators, such as heat
shock protein-60 (Hsp60, a molecular chaperone in the mitochondria) and CLPP, are
expressed in response to increased SIRT1 activity. This is consistent with the findings
in the skeletal muscles of respiratory-chain-deficient mice. That is, when SIRT1 activity
is induced by NAD+ supplementation, there is a simultaneously enhancement in the
expression levels of Hsp60 and CLPP, which are initially low due to respiratory chain
defects [28]. Similarly, increased SIRT1 activity due to NAD+ supplementation results
in UPRmt activation and tissue regeneration [29]. In addition, SIRT3 may also play an
integral role in the UPRmt. Studies on primary hepatocytes have shown that Hsp60 and
CLPP expression are significantly downregulated in the absence of SIRT3 and then increase
after NAD+ supplementation [30]. In contrast, SIRT7 usually inhibits UPRmt activation.
SIRT7 targets the promoters of mitochondrial ribosomal proteins (mRPs) and mitochondrial
translation factors (mTFs) under the action of nuclear respiratory factor 1 (NRF1), resulting
in the suppression of transcription levels and, thus, a reduction in mitochondrial protein
levels [31]. The molecular mechanism of the UPRmt deserves continued exploration, as it
may be an effective way to treat mitochondrial diseases.

3. ISR

The integrated stress response is a signal pathway activated in cells in response to
various stimulation and physiological changes [32]. The ISR regulates protein transla-
tion by managing the concentration of the ternary complex (TC). The TC is composed of
eIF2 (consisting of α, β, and γ subunits), guanosine 5′-triphosphate (GTP), and charged
methionyl-initiator tRNA (Met-tRNAi). The TC is essential for the initiation of the AUG
transcription initiation factor [33]. Under the control of four different kinases, namely
GCN2, PERK, HRI, and PKR, phosphorylation of the serine residues of the eIF2α subunit is
stimulated, which influences the TC concentration, and the overall level of protein synthesis
is reduced while there is increased synthesis of stress-related proteins involved in adapta-
tion to environmental changes [10,11,34] (Figure 2A). For example, when mitochondrial
function is impaired, eIF2α phosphorylation increases the transcription of CHOP, ATF4,
and ATF5, causing a series of responses toward restoring mitochondrial function [35–37]. In
addition to the four specialized eIF2 kinases that phosphorylate eIF2, there are two specific
phosphatases that antagonize this reaction. Both phosphatases contain a common catalytic
core subunit (protein phosphatase 1 (PP1)) and a regulatory subunit (GADD34 or CReP)
that allow the phosphatase to act specifically on eIF2 [38].

Activation of the ISR during mitochondrial respiratory chain dysfunction is mainly
achieved through two kinases: HRI and GCN2 (Figure 2B). For the first, mitochondria
dysfunction activates OMA1 (a protease localized to the inner mitochondrial membrane) to
promote the conversion of DELEL to DELES (a protein involved in the ISR that has two
forms). The latter activates HRI, which then leads to an increase in ATF4 expression [12,39].
For the second, mitochondrial dysfunction reduces cytoplasmic aspartate and asparagine,
leading to GCN2 activation, which in turn activates the ISR [40,41] (Figure 2B). After ISR
activation, the downstream molecules of uORFS, CHOP, ATF4, and ATF5 are preferentially
translated. Normally, uORFS inhibits downstream translation. Nevertheless, eIF2α phos-
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phorylation resulting from ISR activation inhibits the action of uORFS, thereby relatively
increasing its downstream translation [42].
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Figure 2. Relationship between UPRmt and ISR and activation process in mammals. (A) Four ki-
nases, GCN2, PERK, HRI, and PKR, regulate ISR activation, and two other specialized phosphatases
antagonize the ISR. The ISR controls protein translation mainly through the TC. (B) Mitochondrial
dysfunction induces intracellular stress response mainly through GCN2 and HRI. First, activation of
the Oma1 endosomal protein results in conversion of DELEL into DELES. Then, the phosphorylation
of eIF-2α serine residues by HRI leads to a series of adaptive metabolic changes that promote the re-
covery of mitochondrial function and increase the expressions of key UPRmt regulators such as ATF4,
ATF5, and CHOP. Second, mitochondrial dysfunction reduces cytoplasmic aspartate and asparagine,
which promotes GCN2-induced phosphorylation and, thus, causes corresponding metabolic changes.
The activated UPRmt plays a role in maintaining protein homeostasis in mitochondria to enhance
mitochondrial function. The UPRmt also causes a mild increase in phosphorylation levels.

CHOP expression is increased in mitochondrial dysfunction and interacts with C/EBPβ,
which tends to accumulate in the perinuclear region, and then regulates ATF4. ATF4
plays an important role in the UPRmt [43,44]. As an important downstream target gene
of the ISR, ATF4 can stimulate the alteration of cellular metabolites, especially serine.
Serine contributes to the pathogenesis of mitochondrial diseases, including, for instance,
mitochondrial-related alcoholic liver disease [21,45]. In mammals, ATF5 is a crucial regula-
tor of the UPRmt. A recent study of point mutations causing mitochondrial diseases found
that knockdown of ATF5 inhibits excessive activation of the UPRmt, resulting in improved
mitochondrial function [22,46].
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4. Relationship between UPRmt and ISR

Both the UPRmt and ISR are activated during mitochondrial dysfunction and take
part in the pathogenesis of mitochondrial diseases [47–49]. In mammals, the important
role of the ISR in UPRmt activation is gradually being explored [23,50]. The ISR promotes
UPRmt activation, and the UPRmt leads to a mild increase in eIF2α phosphorylation, which
can reduce the stress on chaperone proteins and proteases. All of this contributes to the
maintenance of mitochondrial function. Moderate activation of the ISR and UPRmt can
counteract stress and improve mitochondrial function. For example, in C. elegans, UPRmt

activation can enhance OXPHOS assembly, protein homeostasis, and coenzyme Q synthesis
and inhibit the transcription of OXPHOS subunits. The overall effect of these responses
is to promote mitochondrial repair, which extends the lifespan of C. elegans with mild
mitochondrial dysfunction [21,51,52]. Activation of the ISR reduces total protein transla-
tion and promotes serine biosynthesis, one-carbon metabolism, and proline biosynthesis,
resulting in adaptive metabolic changes. For example, the inhibition of protein synthesis
by rapamycin has extended the lifespan of complex-I-deficient mice [53,54].

5. Mitochondrial Diseases

Mitochondrial diseases (MDs) are a group of inherited defects in oxidative phosphory-
lation leading to impaired ATP synthesis and insufficient energy [55,56]. The prevalence
of MDs is as high as 1:5000. The clinical manifestations are heterogeneous, with single-
system or multisystem involvement. The age of onset ranges from newborns to the elderly,
and it can progress to the point of severe clinical symptoms. Organs with high energy
requirements are the most commonly affected, such as the skeletal muscles, nervous sys-
tem, etc. [57–61]. Because nuclear DNA (nDNA) and mitochondrial DNA (mtDNA) are
both involved in the encoding of complexes in the electron transport chain, mitochondrial
diseases can be triggered by mutations in either nDNA or mtDNA [62]. The pathogeneses
of MDs are diverse. The same mutation of mtDNA can cause different phenotypes, whereas
different mutations of mtDNA or nDNA can cause the same phenotype. Moreover, a
particular phenotype is often caused by a combination of multiple mutations [63,64].

5.1. MDs Caused by Mutations in mtDNA

In humans, mtDNA encodes 13 structural proteins of the mitochondrial respiratory
chain, and the rest are encoded by nDNA [65]. The reason for the high mutation rate of
mtDNA is that mtDNA is not protected by histones and chromatin and has low mitochon-
drial repair enzyme activity [66,67]. Nevertheless, cells can tolerate mtDNA mutations
until they exceeds a certain threshold rate (such as a 70% mutation rate) and become symp-
tomatic [68]. There are two mutational patterns in mtDNA that result in the development
of MDs. The first is point mutation, such as MELAS, which is usually inherited from the
mother and is clinically characterized by recurrent shock, myopathy, ataxia, myasthenia,
mental retardation, and deafness beginning before the age of forty [69]. The second is
large deletion, which commonly occurs during embryonic development, such as in the
case of CPEO, which is clinically characterized by chronic, bilateral progressive ptosis;
the gradual onset of ocular motility disorders; impaired eye movement in all directions;
and eventual fixation of the eyes [70] (Table 1). Some nDNA mutations can also lead to
secondary mutations in mtDNA, usually large deletions and point mutations that thus lead
to MDs [71].

5.2. MDs Caused by Mutations in nDNA

Unlike mtDNA, which is inherited maternally, nDNA follows classical Mendelian
inheritance. Since the first case of MD caused by a nDNA mutation was reported in
1985 [72], various nDNA mutations causing MDs have been successively identified: first,
mutations in genes encoding respiratory chain subunits, such as those associated with
complex I activity [73,74]; second, nuclear genes encoding proteins involved in mtDNA
replication or transcription, such as the TP gene associated with MNGIE [75,76]; and third,
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mutations in genes relating to protein assembly and the maintenance of protein function,
such as hereditary spastic paraplegia [77] (Table 1). With the advent of next-generation
sequencing (NGS) technology, the discovery of pathogenic mutations has advanced at a
breathtaking pace, and more than 300 pathogenic mutations affecting OXPHOS have been
identified to date [78,79]. Establishing a genetic diagnosis is a challenging process due to
the lack of correlation between clinical phenotypes and genotypes, variability in clinically
affected tissues, and diversity of mutation patterns. The study of these mutations not only
helps to elucidate the pathogenesis of MDs, but also provides evidence for the diagnosis
of MDs and potential therapeutic directions [80,81]. Thus far, pathogenic mutations in
nDNAs are more prevalent in pediatric cases, while mtDNA mutations are more common
in adults [7].

Table 1. Diseases caused by DNA mutation and mutation sites or genes.

Mutation Type Related Diseases Mutation Site or Gene

mtDNA mutation

Point mutation

MELAS syndrome,
MERRF

LHON

Leigh’s syndrome

m.3243A>G
m.8344A>G MT-TI, MT-TL1, MTTK, MT-TS1, and MT-TS2

m.11778G>A, m.3460G>A, and m.14484T>C
MTFMT, MTTW, MTTV MTTL1, and MTTK

Large deletion
KSS,

Pearson,
CPEO

mtDNA deletion
mtDNA deletion

POLG mutation and mtDNA deletion
nDNA mutation

Respiratory chain subunits

Complex I deficiency

Complex II deficiency

Complex III deficiency

Complex IV deficiency

Complex V deficiency

TMEM126B mutation
NDUF1V, NDUFV2, NDUFS1, NDUFS2, NDUFA12,
NDUFAF2, NDUFAF5, NDUFAF6, FOXRED1, and

SDHA
SDHAF mutation [82]

TTC19 and BCS1L
UQCRFS1 mutation [83]
SURF1, SCO1, and SCO2
FASTKD2 mutation [84]

ATPAF2, TMEM70, and ATP5E
mtDNA replication or

transcription
MNGIE
MEMSA

TP gene mutation
POLG mutation

Protein function HSP
Nerve system

SPG11 mutation
SLC25A1 mutation [85]

6. Roles of UPRmt and ISR in Mitochondrial Diseases

The mechanism underlying the development of mitochondrial diseases is respiratory
chain dysfunction due to various causes. The improvement and application of high-
throughput omics technologies have enabled a more complete understanding of the physi-
ological function of mitochondria (a detailed and understandable overview can be found
in [86]). In the event of mitochondrial dysfunction, activated UPRmt increases the produc-
tion of ATP by improving glucose uptake, enhancing glycolysis, promoting the assembly
of OXPHOS-related subunits, and improving mitochondrial antioxidant capacity by regu-
lating the related genes. The UPRmt effectively reduces the mitochondrial load and repairs
mitochondrial function through the abovementioned ways. If the UPRmt fails to reduce
the mitochondrial load, mitophagy is initiated via the mitophagy–lysosome pathway. The
dominant intracellular mitophagy pathway is mediated by PINK1 (PTEN-induced puta-
tive kinase 1) and Parkin (E3 ubiquitin ligases). The timely and appropriate removal of
damaged or aged mitochondria through selective mitophagy is important for maintaining
intracellular homeostasis. A recent study found that the activation of mitophagy alleviated
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mitochondrial dysfunction in the skeletal muscles of aged mice and human patients [87].
In another study, ferroptosis was found to be associated with OXPHOS deficiency and mi-
tochondrial disease, and Oma1-Dele1-mediated ISR was shown to have antagonistic effects
on ferroptosis in mitochondrial cardiomyopathy cardiomyocytes [88]. Similarly, the ISR
protects cells by altering the expression of related substances, such as nucleotides, serine,
and the FGF21 and GDF15 cellular metabolic factors. However, if stress is not reduced,
the ISR triggers apoptosis to eliminate damaged cells. This suggests that activation of the
ISR and UPRmt, at least in some mitochondrial diseases, can have a protective effect. The
results from applications of metabolomics, genomics, and proteomics in other mammalian
and human MD models also support this theory.

Although activation of the UPRmt helps to promote the recovery of mitochondrial func-
tion, some studies have also shown that UPRmt overactivation leads to some detrimental
outcomes, such as increased accumulation of mutant mtDNA and exacerbation of mitochon-
drial damage. Moreover, in mammals, the mechanism of UPRmt action in mitochondrial
function may be more complex and needs to be further investigated [46,89,90]. The ISR is
inseparable from the UPRmt, and studies have also suggested its possible involvement in
mitochondria-related diseases, such as activation of the ISR by mitochondrial dysfunction
in AD patients [91]. However, when the ISR is continuously activated, it may also lead to
deleterious effects, such as in excessive ISR activation leading to atherosclerosis [92]. It
can be seen that mitochondria also function as signaling organelles, thus participating in
maintaining overall cellular homeostasis, and they are closely related to the occurrence and
development of diseases [93]. The relationship between these two and their role in MDs
still needs to be further validated to help understand mitochondrial pathogenesis and to
help understand treatment protocols.

7. Treatment of Mitochondrial Diseases
7.1. Current Treatments for Mitochondrial Diseases

Due to the complexity of the pathogeneses and clinical manifestations of MDs, there
is a lack of effective treatments. In general, symptomatic treatment is more common
than etiological treatment [94]. At present, the main treatments can be divided into the
following: The first is symptomatic treatment, such as endurance training for patients
with hypotonia and hearing aids for patients with hearing impairments. The second is
enhancement of the mitochondrial respiratory chain, such as use of the drugs idebenone for
Leber’s hereditary optic neuropathy and dichloroacetate for lactic acidosis in MDs [95,96].
The third is increasing mitochondrial biosynthesis with bezafibrate, a PPAR agonist that
induces mitochondrial biogenesis by affecting the PPAR-PCG-1α pathway, or resveratrol,
which induces PCG-1α activation by activating sirtuins [97,98]. The fourth is gene therapy,
in which the phenotypes caused by defective genes are corrected using vectors to introduce
normal versions of those genes. At present, major progress has been made in the treatment
of Leber’s hereditary optic neuropathy, where 2/5 patients have been reported to show
improved vision and the other 3/5 show unchanged vision after treatment [99–101]. The
fifth includes other treatments, such as the use of antioxidants, cardiolipin protection, the
restoration of nitric oxide production, and nucleoside bypass therapy [102–105].

7.2. Potential Therapies for Mitochondrial Diseases Targeting UPRmt and ISR

There is growing evidence that mitochondrial stress responses triggered by gene de-
fects are one of the major factors in MDs, not just OXPHOS defects [106]. With progress
in research on the UPRmt and ISR, their roles in maintaining the balance of mitochondrial
material metabolism have gradually been emphasized. They also generate some effects
consistent with current treatments for MDs: activation of the UPRmt and ISR results in
increased synthesis of mitochondria-associated substances, the inhibition of nuclear and
mitochondria-encoded gene expression, improved antioxidant responses, the stimulation
of mitochondrial function, and enhanced cellular defense mechanisms [107]. There is much
evidence that the large accumulation of unfolded, misfolded, or invalid proteins is a typical
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sign of mitochondria-related neurodegenerative diseases. There is also corresponding
experimental evidence that activation of the UPRmt could have a protective effect against
these neurodegenerative diseases [108]. Several drugs have been found to improve cellular
mitochondrial function and metabolic activity by targeting the UPRmt and ISR. As the
main metabolite of curcumin, tetrahydrocurcumin (THC) has stronger antioxidant activity
than curcumin. According to a new study in a mouse model, THC activates the UPRmt

through the PGC-1α/ATF5 pathway to improve impaired mitochondrial function and
reduce ROS production, thereby protecting against pathological cardiac hypertrophy and
oxidative stress by antioxidant effects [109]. Choline is a positively charged tetradentate
base that is essential for biological metabolism as a component of all biological membranes
and a precursor of acetylcholine in cholinergic neurons. Sirtuin 3 (SIRT3) is a mitochon-
drial deacetylase enzyme that is enriched in metabolically active tissues, such as liver,
heart, brain, and brown adipose tissue. SIRT3 is involved in regulating multiple aspects
of mitochondrial biology, including ATP production, mitochondrial dynamics, and the
UPRmt. Choline was shown to regulate metabolic remodeling and the UPRmt through
the SIRT3–AMPK pathway to improve mitochondria-associated cardiac hypertrophy in
mice [110]. Recent studies have found that pterostilbene, a resveratrol analogue, can also
increase the activity of sirtuins through the SIRT/FOXO3a/PGC1α/NRF1 signaling axis to
induce UPRmt activation, thereby ameliorating the pathological changes caused by mito-
chondrial mutations [111,112]. While nicotinamide ribose (NR) is a precursor compound for
NAD+ and NADH/NAD+, its homeostasis is considered to be central to the maintenance
of a healthy cellular state. Increasing NAD+ levels and restoring NADH/NAD+ homeosta-
sis is an attractive therapeutic approach for reversing the development of mitochondrial
diseases. Recently, it was shown that NR could also be involved in the maintenance of
mitochondrial protein homeostasis in mice with amyotrophic lateral sclerosis (ALS) by acti-
vating the UPRmt to alleviate the corresponding neurodegenerative phenotype [113]. All of
the abovementioned evidence suggests that the UPRmt may be central to the pharmacologi-
cal mechanism of a variety of drugs for the treatment of mitochondrial diseases. The use of
hypoxia in the treatment of MDs has also been reported, but it is worth exploring whether
hypoxia induces the UPRmt and whether the ISR is involved [114]. In addition, activation
of the ISR leads to a reduction in overall protein translation, and it was shown that the
partial inhibition of protein translation could ameliorate respiratory chain dysfunction [115].
These studies provide strong evidence for the UPRmt and ISR as potential targets for the
treatment of MDs. However, it has also been shown that UPRmt and ISR overactivation is
detrimental. As previously mentioned, UPRmt overactivation leads to the accumulation
of mutant mtDNA. In mice, mutated tRNA synthetase could slowly overactivate the ISR
via GCN2, and the resulting axonal peripheral neuropathy leads to the development of
Charcot–Marie–Tooth (CMT) disease [116]. Moreover, the regulation of mitochondrial
function mediated by the UPRmt and ISR also plays an irreplaceable role in germ cells. For
example, it was found in a recent study that oocytes inhibit the activity of respiratory chain
complex I by overactivating UPRmt, thereby reducing the production of ROS to maintain
female fertility [117]. Mitochondria are not just organelles that produce energy for the cell
but also play a multifaceted role in maintaining cellular activity. The mitochondrial stress
response plays an important role as a bridge between the mitochondria and the cell. More
research is required to clarify the multiple roles of the UPRmt and ISR as well as their close
association with MDs.

7.3. Advantages of UPRmt and ISR in the Treatment of Mitochondrial Diseases

The efficacy of drug therapy for MDs varies due to the type of disease and individual
differences, and the side effects of drugs are unavoidable. In addition to drug therapy, gene
therapy has shown promising results so far in the treatment of LHON but involves huge
medical costs. More human trials are needed to confirm the safety of gene therapy consid-
ering that the first patient who received clustered regularly interspaced short palindromic
repeats (CRISPR) gene-editing technology died during treatment. In addition, although



Cells 2023, 12, 20 10 of 15

mitochondrial replacement therapy (MRT) technology for mitochondrial disease preven-
tion significantly reduces the levels of mutated mitochondria, it is faced with controversial
ethical issues, and safety and efficacy need to be further studies. In contrast, the UPRmt

and ISR have a number of advantages as new targets for the treatment of mitochondrial
diseases. Firstly, both the UPRmt and ISR are important in the maintenance of intracellular
metabolic homeostasis, so the safety of using them as therapeutic targets is unquestionable.
Secondly, the molecular mechanisms of these two reactions have become clearer, and the
corresponding signaling pathways have been uncovered in recent years, so the reliability
of these pathways as therapeutic targets is indisputable. In addition, the effectiveness of
their use as therapeutic targets is obvious because of the significant therapeutic outcomes
observed in a large number of animal models of different types of mitochondrial diseases.

8. Discussion and Conclusions

In mammals, the ISR and UPRmt are closely associated and play a prominent role
in maintaining the homeostasis of mitochondrial components and metabolism. Current
studies have also indicated that they both play important roles in the development of
mitochondrial diseases. Animal studies have demonstrated that some relevant drugs can
ameliorate disease phenotypes by activating the stress response with significant efficacy.
Therefore, their potential as new targets for the treatment of MDs is undeniable. However,
the current understanding of the exact mechanisms of the ISR and UPRmt and their rela-
tionship is still limited for topics such as the activation of corresponding kinases caused
by different mitochondrial stresses in the ISR; the downstream regulatory pathways of
CHOP, ATF4, and ATF5; and the effect on the UPRmt. There are different signaling path-
ways for activating the UPRmt, and it is also unclear whether there is any cross-linking
between the different signaling pathways. Moreover, it has been shown that they produce
different response outcomes in different cellular environments. The overexpression of
UPRmt and ISR also induces impaired mitochondrial function, and the specific regulatory
mechanism remains unclear. Further studies are expected to provide evidence to address
these questions and to provide more reliable theoretical support for new targeted therapies
for mitochondrial diseases.
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