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Abstract

The sequential separation of male and female function in flowers of dichogamous species allows for the evolution of
differing morphologies that maximize fitness through seed siring and seed set. We examined staminate- and pistillate-phase
flowers of protandrous Saponaria officinalis for dimorphism in floral traits and their effects on pollinator attraction and seed
set. Pistillate-phase flowers have larger petals, greater mass, and are pinker in color, but due to a shape change, pistillate-
phase flowers have smaller corolla diameters than staminate-phase flowers. There was no difference in nectar volume or
sugar content one day after anthesis, and minimal evidence for UV nectar guide patterns in staminate- and pistillate-phase
flowers. When presented with choice arrays, pollinators discriminated against pistillate-phase flowers based on their pink
color. Finally, in an experimental garden, in 2012 there was a negative correlation between seed set of an open-pollinated,
emasculated flower and pinkness (as measured by reflectance spectrometry) of a pistillate-phase flower on the same plant
in plots covered with shade cloth. In 2013, clones of genotypes chosen from the 2012 plants that produced pinker flowers
had lower seed set than those from genotypes with paler flowers. Lower seed set of pink genotypes was found in open-
pollinated and hand-pollinated flowers, indicating the lower seed set might be due to other differences between pink and
pale genotypes in addition to pollinator discrimination against pink flowers. In conclusion, staminate- and pistillate-phase
flowers of S. officinalis are dimorphic in shape and color. Pollinators discriminate among flowers based on these differences,
and individuals whose pistillate-phase flowers are most different in color from their staminate-phase flowers make fewer
seeds. We suggest morphological studies of the two sex phases in dichogamous, hermaphroditic species can contribute to
understanding the evolution of sexual dimorphism in plants without the confounding effects of genetic differences
between separate male and female individuals.
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Introduction

Dichogamy, the separated presentation of male and female

sexual functions during flower development, is found in more than

4200 species of angiosperms [1]. The evolution of dichogamy may

result from selection for the avoidance of inbreeding and/or

selection for reduction of interference between the male and

female functions of the flower [2]. Complex selection pressures

from a variety of intrinsic and extrinsic forces such as the presence

of self-incompatibility mechanisms, inflorescence structure and

size, pollination mechanisms and pollinator availability, and

population dynamics influence the timing and extent of dichog-

amy in myriad angiosperm systems (e.g, [1,3–7]).

Whatever the force drives the initial evolution of dichogamy, the

separation of the sexual functions within hermaphroditic flowers

may allow for the evolution of differences in floral traits in the

staminate- (male) and pistillate- (female) phase flowers. Differences

between staminate- and pistillate-phase flowers in morphological

traits are a form of sexual dimorphism. Most studies of sexual

dimorphism in plants have focused on dioecious or monoecious

species that produce unisexual flowers [8–10]. Sexual dimorphism

in plants can result from sexual selection due to competition for

mate acquisition via pollinator attraction and may lead to

differences in secondary sexual characteristics such as petal size

and color [11–13]. Alternatively, sexual dimorphism in dioecious

species can be the result of sex-specific or viability selection

between sexes [14]. Theory predicts that selection should also act

differentially on male and female functions of hermaphroditic

flowers [12,15,16]. Dichogamy may allow populations to respond

to this differential selection leading to dimorphism of secondary

sexual characteristics between staminate and pistillate phases of

hermaphroditic flowers.

Theory also predicts that sexual selection in plants should be

stronger via male function (pollen dispersal) than via female
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function (pollen receipt) because male mating success is more likely

to be limited by the amount of pollen dispersed by pollinators,

whereas female fitness may be maximized by just a few pollinator

visits that bring adequate pollen amounts for full seed set [15,17].

Hence, the evolution of attractive traits of flowers is assumed to

occur primarily through selection for male fitness. Empirical

studies of selection on male and female fitness in plants with

hermaphroditic flowers have shown that this assumption is not

always correct. In particular, when seed set is pollen limited,

selection acts on floral traits through female function as well [18–

22]. If increased pollinator visitation increases both male and

female fitness, selection may result in a common phenotype for

both pistillate and staminate phase flowers. Conversely, if selection

is conflicting between the genders, divergent floral morphologies

may arise [20].

In dichogamous species, the staminate and pistillate stages occur

within the same flower, reducing the opportunity for gender-

related specialization due to genetic constraints relative to species

with unisexual flowers. Indeed, in some species, pollinators may

select for similarity between the gender phases, such as when

dichogamous species provide pollen as a reward for animal

pollinators [1] and pistillate flowers mimic staminate-phase flowers

with a false reward [20,23]. However, in some species, dimor-

phism of floral morphology could result from differences in timing

of gene expression or ontogenetic changes. For example, several

studies have found differences in nectar production between

gender phases of dichogamous species [24–27], generally showing

that staminate-phase flowers produce more nectar than pistillate-

phase flowers, as sexual selection theory would predict.

In addition to developmental changes in sex expression and

nectar production, many species experience floral color change as

flowers age, or due to environmental triggers such as pollination or

light. Floral color change has been described in a wide variety of

species (reviewed in Weiss [28]) and often serves as a mechanism

for plants to retain flowers beyond their period of sexual viability

while directing pollinators to flowers with rewards [29–30]. In a

recent study by Jabbari et al [31], floral color change was shown to

be associated with dichogamy in Saponaria officinalis. Flowers of S.

officinalis are protandrous, and transition from a staminate phase to

a pistillate phase. As flowers change gender, they also accumulate

anthocyanin in their petals, and transition from white to pink. This

color change is more intense when plants are exposed to sunlight

[31]. Because the pistillate-phase flowers are still receptive to

pollen receipt, this color change is not associated with a change to

sexual inviability, as in other species that show color change.

Because floral color has been shown to be a powerful cue to attract

pollinators in many species [32–34], color change in S. officinalis

could impact pollinator behavior towards pistillate and staminate

phase flowers, which in turn could affect fitness through either

male or female function.

Here we describe sexual dimorphism in several floral traits

including flower size, color, and nectar production of staminate-

and pistillate-phase flowers of S. officinalis growing in two

environmental conditions: sun and shade. We then consider how

diurnal pollinators respond to arrays of staminate- and pistillate-

phase floral arrays. Finally, we examine how female fitness, as

measured by seed set, is associated with flower color in sun and

shade environments.

Materials and Methods

Ethics Statement
No permits were required for the described study. The plant

that is the subject of this study, Saponaria officinalis, is not an

endangered or protected species and is a weed of disturbed areas,

so sampling is not restricted. Plants for this study were collected

from public areas and required no permission or from the DePauw

University Nature Park by permission of DePauw University

(www.depauw.edu). GPS co-ordinates for the sites for this study

are: Whitewater canal: 39u849N 86u189W, West Street: 39u749N

86u179W, Greenway: 39u789N 86u199W, People’s Pathway:

39u669N 86u799W, and DePauw University Nature Park:

39u649N 86u889W.

Study Populations
Saponaria officinalis is an herbaceous weed introduced to the

United States from Europe that grows in disturbed areas such as

along roadsides, edges of wooded areas, ditches, and stream banks.

It spreads clonally by underground rhizomes with shallow root

systems and produces dense clusters of inflorescences consisting of

racemes that are 0.3–0.6 m in height. Plants from five different

naturalized populations were used in this study: three located in

Marion County, IN (Whitewater canal, West Street, and,

Greenway) and two located in Putnam County, IN (People’s

Pathway and DePauw University Nature Park). GPS co-ordinates

for each site are listed above.

Establishment of Experimental Gardens
In the summer of 2012, an experimental garden was established

at DePauw University’s Nature Park and Field Laboratory in

Greencastle, IN (Putnam County). Five plants (genets, hereafter

called ‘‘genotypes’’) were collected from each of the five different

naturalized populations of S. officinalis described above. Each of the

25 plants was then split by cutting the underground rhizome into

eight separate plants (ramets, hereafter called ‘‘clones’’). There-

fore, there were eight replicates of each of 25 genotypes (five

genotypes from each of the five populations, eight clones of each

genotype, totaling 200 plants). Eight test plots that were

2.562.5 m2 were constructed at the test site. Twenty-five plants

(one clone of each genotype) were planted in each plot in a 565

grid pattern with 0.5 m separating each plant. Wooden frames

were constructed over each plot to create either a sunny or shaded

environment in an alternating, split plot design: four of the plots

were covered with 60% shade cloth and the other four were

covered with a transparent mesh. The cloth was draped over the

top of the wooden frame with approximately 1 m left open at the

bottom to allow pollinators to enter. Due to extreme drought in

2012, there were not sufficient numbers of clones of each genotype

that flowered to analyze genotypic effects; therefore, analyses

described below were conducted with a subset of these plants. For

each genotype, one clone for which there was a complete data set

was randomly selected from both the shade plots the sun plots.

One genotype lacked any clones meeting this requirement, so the

final data set included 48 total plants, two clones from each of 24

genotypes, one grown in a shade plot, one grown in a sun plot.

In the summer of 2013, as part of a separate experiment to

examine the variation among S. officinalis genotypes in floral color,

a second experimental garden was established using clones of

genotypes that showed variation in these traits in the summer of

2012. Two sets of genotypes were chosen from the 2012 plants:

four genotypes representing those whose flowers showed the least

response to sun exposure (the ‘‘pale’’ set) and four genotypes

representing those whose flowers had the greatest response to sun

exposure (the ‘‘pink’’ set). Thirty clones of each genotype were

made by splitting of the underground rhizomes. The clones were

then planted into ten plots in the new experimental garden, so

each genotype is represented in each plot with three replicate

clones (10 plots 63 clones/genotype/plot 68 genotypes = 240
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plants). Five of the plots were covered by a 60% shade cloth and

five plots were covered by a clear mesh fabric (sun treatment).

Flower Size, Shape, and Color
Naturalized Population. In the summer of 2012, one

staminate and one pistillate phase flower were collected from 30

different plants growing in the People’s Pathway population. For

each flower, we measured the length and width of one petal using

digital calipers. Corolla diameter was determined as the maximum

transverse distance across the petal display. The fresh mass of all 5

petals was taken to the nearest 0.0001 g. Next, the petals were

dried in a drying oven at 60uC for a minimum of 24 hrs and

weighed again to determine dry mass. Finally, anthocyanins were

extracted from the dried petals following the methods of Gould et

al. [35]. The amount of light absorbed by the anthocyanin extract

was quantified by visible spectroscopy using an Ocean Optics

VisTM spectrometer and LoggerProTM software. The percent

absorbance was converted to absorbance at the spectral peak,

relative to dry mass and solvent volume (ABSl527nm/g/ml).

Differences in flower measurements, mass, and anthocyanin

concentration between staminate and pistillate phase flowers were

analyzed using paired t-tests.

Correlation between Reflectance and Anthocyanin

Concentration. We examined the relationship between antho-

cyanin concentration found in petals and the ‘‘pinkness’’ of the

flowers as determined with an Ocean Optics Reflectance Spectro-

meterTM with a UV-VIS light source (200–800 nm) and fiber

optic reflectance probe. We characterized floral pinkness from the

reflectance spectra by calculating a ‘‘Pinkness Index’’ (Fig. 1). The

pinkness index (PI) is calculated from the reflectance spectrum’s

two peaks (mean percent reflectance between 455–480 and 650–

700 nm) and its valley (mean percent reflectance between 540–

575 nm) using the following equation:

PI~
%R540{575nm

%R455{480and650{700nm

Spectra from pink flowers a have lower reflectance in the valley

range, and therefore a higher pinkness index (Fig. 1). The higher

the PI value, the pinker the flower on a scale from 0 (white) to 1

(pink).

To determine whether floral pinkness is correlated with

anthocyanin concentration, and to establish whether floral

pinkness differs between gender phases, we collected one staminate

and one pistillate flower from 20 different plants growing in the

DePauw University Nature Park. Floral pinkness for each flower

was measured first. One spectrum was collected from each flower

by placing the reflectance probe the center of one intact petal from

each flower.

After the reflectance spectrum was collected, the fresh mass of

the four remaining petals was determined and the anthocyanins

were extracted and quantified as described above. The correlation

between a flower’s pinkness index and anthocyanin concentration

was calculated as the Pearson Correlation Coefficient. Differences

in pinkness index and anthocyanin concentration between

staminate and pistillate flowers on a plant were evaluated with

paired t-tests.

Floral Morphology in the Experimental Garden. To

determine the effect of sun exposure on floral morphology, we

collected one staminate phase and one pistillate phase flower from

each clone growing in the experimental shade and sun plots of the

2012 experimental garden. Petal length, petal width, corolla

diameter, and corolla mass were measured as described above.

Floral pinkness and anthocyanin concentration were subsequently

determined for each flower, using the methods above.

Differences between staminate and pistillate phase flowers were

analyzed using a two-way ANOVA, with floral gender phase

(staminate and pistillate) and treatment (shade and sun) as

independent fixed effects.

UV Nectar Guides. The presence or absence of UV nectar

guides was determined on staminate- and pistillate-phase flowers,

using both a qualitative and quantitative method. To ascertain

whether nectar guides were visually apparent, four flowers of

different ages representing the early staminate to late pistillate

stages were collected from plants growing in the DePauw

University Nature Park’s naturalized population. These flowers

were photographed with a Nikon D90 digital SLR camera with a

24–200 mm Nikkor Lens under various combinations of light,

lens, and filter conditions: natural daylight, light from a UV lamp

(762 UV Ultraviolet Light Field and Lab Lamp from SIRCHIE

Finger Print Labs Inc., 4-watt Longwave UV-A black light, peak

wavelength at 365 nm) outside or in a darkroom, Nikon glass lens

or pinhole camera lens, with or without Kodak 18A UV filter (to

remove visible wavelengths).

Figure 1. Reflectance spectra from a white staminate-phase flower, Pinkness Index (PI) = 0.0764 (A) and a pink pistillate-phase
flower, PI = 0.4896 (B) of Saponaria officinalis.
doi:10.1371/journal.pone.0093615.g001
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To investigate the presence or absence of nectar guides using a

quantitative method, pairs of staminate and pistillate pairs of S.

officinalis flowers were collected from twenty-five plants in a natural

population in an open field near DePauw Nature Park (in full sun).

The reflectance spectra from one petal from each flower was

examined at two points (distal and proximal to the flower center)

using the same Ocean Optics Reflectance SpectrometerTM with a

UV-VIS light source (200–800 nm) and fiberoptic reflectance

probe. The UV spectra were characterized by calculating the ratio

of mean reflectance values across the UV wavelengths (200–

350 nm) divided by a baseline. We determined the baseline to be

the average of the two peaks in the visible range (455–480 and

650–700 nm). Since the spectrophotometer collected both UV

and visual wavelengths simultaneously for each flower, the visual

range baseline can be used to correct any error in UV mean

calculation due to calibration differences or overall reflectance

differences between trials/data sets. The data were analyzed using

a two-way ANOVA with the UV ratio as the dependent variable

and the independent variables being floral sex and petal position.

Nectar production and floral age
Ten individual plants representing different genotypes were

transplanted from the People’s Pathway population in May 2013

into 8-inch pots filled with a mixture of Metromix—TM and compost.

The plants grew in the greenhouse until they began to bolt in late

June. As each plant began to bolt, it was moved to a Percival

growth chamber set at 25uC for 16 h (day) and 17uC for 8 hr

(night).

Seven flower buds were selected on each plant, marked with

jewelry tags upon opening, and monitored daily. One flower from

each plant was collected to represent 1–7 days post-anthesis.

Nectar from each flower was collected from the base of the flower

by peeling back the calyx tube and using 10ml capillary tubes to

extract all the visible nectar. Nectar volume was calculated by

measuring the height of the nectar within the capillary tube

(diameter = 0.5 mm) with digital calipers. Sucrose concentration

of the nectar was determined by transferring the nectar from the

capillary tube to the center plate of a hand-held refractometer.

Changes in nectar volume and sucrose concentration from day 1–

7 were analyzed with repeated-measures ANOVA.

Pollinator Observations
Because a previous study of S. officinalis demonstrated that

flowers exposed to sun accumulated more anthocyanins in the

pistillate stage than those kept in shade [31], we were able to

manipulate the color of pistillate flowers and decouple this variable

from the change in flower shape that also occurs as flowers

transition from staminate to pistillate. We were then able to test

pollinator responses to both flower gender and flower color.

Inflorescences were collected from plants in the experimental

garden and/or from surrounding populations that had either been

exposed to sun or covered with shade cloth. Individual plants in

naturalized populations were covered with tomato cages draped

with 60% shade cloth for this experiment. Cut inflorescences in

green florist tubes filled with water were arranged in test tube

racks, and individual flowers were removed so that each array

contained the same number of a single type of flower: either

staminate white flowers, pale pistillate flowers or pink pistillate

flowers.

For pollinator observations, two arrays of different flower types

were placed side by side approximately 0.5 m apart. Pollinator

visits were observed and recorded for twenty-minute intervals

between 12:00 and 15:00 on sunny, clear days in June and July at

the DePauw Nature Park adjacent to the experimental garden.

In 2012, 34 trials comparing white staminate and pink pistillate

flower arrays, and 22 trials comparing white staminate arrays and

pale pistillate arrays were conducted. In 2013, 27 replicates of

three trial types were conducted: white staminate vs. pink pistillate

arrays, white staminate vs. pale pistillate arrays, and pale pistillate

vs. pink pistillate arrays. During each trial, the type of insect,

which array it visited first, and how many flowers it visited in each

array was recorded. An insect that visited an array was considered

to be a potential pollinator if it landed on a flower and probed the

interior of the flower.

The raw data were first transformed to correct for zeros by

adding 0.5 and taking the square root of each data point (so it

would meet the assumptions of the Student’s t-test). For each trial

type we used paired t-tests to compare the number of pollinator

visits to each array and the number of pollinator visits per flower in

each array. The ratio between initial visits to the two arrays within

each trial type was tested against a null hypothesis of 50:50 using a

binomial test.

Seed Set
Experimental Garden 2012. We examined seed set of hand-

pollinated and open-pollinated flowers on sun- and shade-grown

plants. Concurrent to the investigation of the size and color of

staminate- and pistillate-phase flowers, three buds on each clone

grown in the experimental garden were tagged using small jewelry

tags prior to opening. The first flower was emasculated in bud and

then left to be open-pollinated. The second flower was emascu-

lated in bud and when its stigmas were exerted from the floral tube

(approximately 2–3 days post-anthesis) it was hand pollinated by

brushing the stamens from polliniferous flowers collected from

different plants across the stigmatic surface. The third flower was

left intact, and when it reached the pistillate stage was also hand

pollinated using the same procedure as described for the second

flower. Each flower was then allowed to mature, and the ripened

fruit was collected 4–5 weeks later prior to capsule dehiscence. The

number of seeds in each fruit was then counted.

Pollen limitation was estimated by comparing the number of

seeds per fruit in the emasculated open-pollinated and the

emasculated hand-pollinated flowers separately in the shaded

plants and the sun exposed plants by a paired t-test. To determine

if emasculation had a negative effect on seed production, the

number of seeds per fruit in the emasculated hand-pollinated and

the intact hand-pollinated flowers were compared in the shaded

plants and the sun exposed plants separately by a paired t-test.

To determine the effect of floral size on seed production, the

Pearson Correlation Coefficient was calculated between petal

length, petal width, and corolla diameter of the pistillate-phase

flower collected for color analysis and the number of seeds

produced by the emasculated, open-pollinated flower described

above. To determine the effects of floral color on seed production,

we determined correlations between floral pinkness and anthocy-

anin concentration of the pistillate-phase flower collected for color

analysis, and number of seeds produced by the emasculated, open-

pollinated flower. Each analysis was performed separately for the

shaded plants and the sun-exposed plants.

Experimental Garden 2013. In 2013, one staminate and

one pistillate flower was collected from each clone and analyzed

for color by determining the anthocyanin concentration of the

petals and by calculating the pinkness index from the reflectance

spectra as described above. In addition, just as in 2012, three buds

on each clone were tagged and subjected to the same pollination

treatments as above.

Pollen limitation was again tested for by comparing the number

of seeds per fruit in the emasculated open pollinated and the
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emasculated hand-pollinated flowers separately in the shaded

plants and the sun exposed plants by a paired t-test.

To determine the effect of floral color on seed production

through pollinator visitation, a nested ANOVA was performed

using the General Linear Model analysis of SPSSTM. The

dependent variable was number of seeds produced in the

emasculated open-pollinated flower. The independent variables

were treatment (sun versus shade), and genotype (1–8) nested

within color set (pale versus pink). This analysis was the repeated

for the emasculated hand-pollinated flowers to determine if

differences in seed set among genotypes were persistent if pollen

limitation was removed.

Results

Flower Size, Shape, and Color
Individual petals of S. officinalis flowers grow larger as the flower

transitions from the staminate phase to the pistillate phase.

Measurements from flowers from plants growing in a natural

population showed that petals were wider and longer in pistillate

phase flowers compared to staminate flowers. Furthermore, this

increase was not just due to an increase in water accumulation;

pistillate flowers had higher fresh mass and higher dry mass than

staminate flowers (Table 1). Despite the increase in petal size,

staminate flowers had a larger display in terms of corolla diameter

(Table 1). This can be explained by the fact that as the flowers

transition from staminate to pistillate, the petals also reflex

downward, changing the shape of the flower (Fig. 2). Finally,

pistillate flowers had significantly higher anthocyanin concentra-

tions per gram of dry mass (Table 1, Fig. 2).

Correlation between Reflectance and Anthocyanin

Concentration. Anthocyanin concentration (ABSl527nm/g/

mL) and the pinkness index calculated from light reflectance

spectra were significantly correlated for both staminate flowers

(r = 0.550, P = 0.012) and pistillate flowers (r = 0.621, P = 0.003).

Staminate flowers and pistillate flowers are also significantly

different for both anthocyanin concentration (t = 28.057, P,

0.001) and pinkness index (t = 28.851, P,0.001; Fig. 3).

Floral Morphology in the Experimental Garden. For

plants of known genotype growing in the experimental garden,

flower size and shape showed the same pattern as flowers collected

from unknown genotypes in natural populations. Staminate-phase

flowers had significantly smaller petals, but larger corolla

diameters than pistillate-phase flowers (Table 2, Fig. 4A, B).

Furthermore, this pattern was the same whether or not the plants

were growing in shade or sun plots; none of the flowers size

measurements showed a significant treatment effect or a significant

gender by treatment interaction (Table 2).

Flower color was significantly different in staminate- and

pistillate-phase flowers as measured by both anthocyanin concen-

tration and pinkness index (Table 2, Fig. 4C, D). Color was also

affected by sun exposure, unlike the morphological traits. Flowers

growing in the sun had significantly higher anthocyanin concen-

trations than those in the shade and had marginally significantly

higher pinkness indices (Table 2, Fig. 4C, D). Pistillate-phase

flowers are always pinker than staminate-phase flowers. There was

a significant gender by treatment interaction for anthocyanin

concentration, indicating pistillate-phase flowers turned signifi-

cantly pinker in the sun than in the shade, with pinkness index

showing the same pattern, although it was not statistically

significant (Table 2, Fig. 4C, D).

UV Nectar Guides. Photographs taken in a darkroom with a

UV-black light source and without the UV filter did not reveal any

nectar guides for any of the sex-phases visible to the human eye.

However, when the raw UV reflectance was corrected for the

height of the peaks in the visible spectrum, there was a small but

significant difference in the UV reflectance values of distal and

proximal positions on the petal (F = 35.83, P,0.001). In addition,

there was also a significant effect of gender (F = 6.60, P = 0.012)

and a significant interaction between position and gender

(F = 7.38, P = 0.008). In other words, staminate flowers had a

higher UV ratio than pistillate flowers overall, and there was more

of a contrast in reflectance between the distal and proximal petal

positions in the staminate phase than there was in the pistillate

phase (Fig. 5).

Nectar production and floral age
Sucrose concentration in nectar collected from flowers on plants

growing in the growth chamber did not change across the seven

days flowers were monitored (Repeated measures ANOVA,

Greenhouse-Geisser correction, F = 0.937, df = 2.531, P = 0.474,

Fig. 6A). Nectar volume was significantly lower on the first day

after anthesis, and then rose on the second day when flowers are

still in their staminate phase (F = 11.227, df = 1, P = 0.010). Nectar

volume remained steady on days 2–5 as flowers transitioned from

staminate to pistillate phase, and then started to decline slightly on

days 6 and 7 and flowers began to senesce, but the difference was

not statistically significant (P.0.1 for all comparisons after day 2,

see Fig. 6B).

Pollinator Observations
Flowers used in the arrays differed in both color and shape. By

shading plants we were able to construct arrays of inflorescences

composed of pale staminate flowers, pale pistillate flowers, and

pink pistillate flowers (Fig. 7).

Table 1. Differences in floral traits (mean 6 s.e.) of staminate- and pistillate-phase flowers from 30 individuals of Saponaria
officinalis.

Staminate Pistillate t (df) P

Petal Width (mm) 6.9660.16 7.7160.15 9.06 (28) ,0.001

Petal Length (mm) 14.3060.17 15.0260.19 5.29 (28) ,0.001

Corolla Diameter (mm) 27.2760.42 25.0660.57 24.01 (28) ,0.001

Fresh Mass (g) 0.03660.001 0.04160.001 7.57 (29) ,0.001

Dry Mass (g) 0.00560.0002 0.00660.0002 2.55 (29) 0.016

ABSl527nm/g/mL 6.7460.76 40.3163.74 10.03 (29) ,0.001

doi:10.1371/journal.pone.0093615.t001
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In 2012, for trials comparing arrays of white staminate-phase

and pink pistillate-phase flowers, a total of 85 pollinators were

observed over 680 minutes, including honeybees, sweat bees,

wasps, bumblebees, and butterflies. In all comparisons, pollinators

preferred staminate-phase flowers to pink pistillate-phase flowers

(Fig. 8A, B and Fig. 9A). Staminate arrays received more insect

visits per 20 min interval (t = 2.23, P = 0.033), had more flowers

visited (t = 2.80, P = 0.009) and insects were more likely to visit a

staminate array first (P = 0.012). In contrast, when arrays of white

staminate-phase were compared to pale pistillate-phase flowers,

pollinator activity was similar on the two kinds arrays. None of the

comparisons were significantly different (Fig. 8A, B and Fig. 9A).

In 2013, pollinators again preferred staminate-phase flowers to

pink pistillate-phase flowers (Fig. 8C, D and Fig. 9B). Staminate

arrays received more insect visits per 20 min. period (t = 4.01, P,

0.001), had more flowers visited (t = 4.76, P,0.001) and insects

were more likely to visit a staminate array (P,0.001) first. When

arrays of staminate-phase flowers were compared with arrays of

pale pistillate-phase flowers, staminate arrays did not have a

greater number of insect visits (t = 0.788, P = 0.438) nor were they

more likely to receive an initial visit from an insect (P = 0.305), but

the number of flowers visited was significantly higher (t = 2.54,

P = 0.018) (Fig. 8C, D and Fig. 9B). Finally, when pale pistillate

arrays were presented with pink pistillate arrays, the pale arrays

were more likely to receive an initial visit (P = 0.001, Fig. 9B), but

did not receive more overall insects visits (t = 1.70, P = 0.101), and

had marginally more flowers visits, although this difference was

not statistically significant (t = 1.85, P = 0.077) (Fig. 8C, D and

Fig. 9B).

The total number of insects visiting the staminate vs. pink

pistillate and the staminate vs. white pistillate trials was lower in

2012 than in 2013 (F = 18.77, P,0.001), likely due to the 2012

drought in the Midwest, but there was not an effect of trial type on

the number of insect visitors (F = 0.038, P = 0.847) or interaction

between year and trial type (F = 0.714, P = 0.400). Therefore,

within each year, both trial types received the same number of

total insect visitors and the differences seen between inflorescence

arrays within trials is not due to a difference in overall insect

visitors. Likewise, in 2013, there was no overall effect of trial type

on the total number of insects visiting each of the three trial types

that were performed in that year (F = 0.072, P = 0.931).

Figure 3. Correlation between anthocyanin concentration and pinkness index. The relationship between anthocyanin concentration and
color of petals calculated as a pinkness index in staminate- and pistillate-phase flowers from 20 S. officinalis plants in a natural population.
doi:10.1371/journal.pone.0093615.g003

Figure 2. Staminate-phase (left) and pistillate-phase (right)
flowers of Saponaria officinalis.
doi:10.1371/journal.pone.0093615.g002
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Seed Set
Experimental Garden 2012. In 2012, plants growing in the

experimental garden experienced severe pollen limitation. Flowers

that were emasculated and left to be open pollinated produced

significantly fewer seeds than flowers that were emasculated and

hand pollinated in both the shade and sun plots (t = 24.85, P,

0.001 and t = 24.25, P,0.001, respectively, Fig. 10). Further-

more, emasculation had no effect on seed set; emasculated and

intact hand-pollinated flowers produced similar numbers of seeds

per fruit regardless of treatment (t = 0.964, P = 0.346 and

t = 0.512, P = 0.613, Fig. 10).

The number of open-pollinated seeds produced in emasculated

flowers was not correlated with any of the measures of flower size

in pistillate-phase flowers (P.0.05 for all pairwise tests). There

was, however, a significant negative correlation between pinkness

index and seed production in shaded plants (Fig. 11B). The

correlation between anthocyanin concentration and seed produc-

tion was also negative for these plants, but this difference was not

statistically significant (Fig. 11A). In the sun-exposed plants, seed

production was not significantly correlated with either anthocya-

nin concentration or pinkness index (Fig. 11C, D).

Experimental Garden 2013. Despite cooler weather, great-

er rainfall, and greater insect activity on our experimental arrays,

plants in the 2013 garden again showed pollen limitation of seed

set. Emasculated open-pollinated flowers produced significantly

fewer seeds than emasculated hand-pollinated flowers in both the

shade (22.9161.47 vs. 33.1161.61, P,0.001) and the sun

(26.2761.65 vs. 33.8561.78, P,0.001).

Sun and shade treatments affected the anthocyanin concentra-

tion of petals in the same manner as before, with flowers from the

sun treatment having significantly higher anthocyanin concentra-

tion than those from the shade treatment (P,0.001, Table 3).

Furthermore, the four genotypes in the pink group had

significantly higher anthocyanin concentration in their petals than

those four genotypes in the pale group (P,0.001), however, there

was some variation among the genotypes within the pale and pink

groups (P = 0.001, Table 3). Finally, both pale and pink genotypes

showed a similar response to sun exposure as there was not a

significant interaction between group and treatment (P = 0.141).

In addition to having less-pink flowers, the pale genotypes

produced significantly more seeds per fruit in both the open-

pollinated and hand-pollinated flowers (Fig 12A and 12B,

P = 0.008 and P = 0.003, Table 3). There was a trend, but non-

significant effect of treatment on seed set in the open-pollinated

flowers, with those flowers in the sun producing more seeds than

those in the shade (Fig. 12A, P = 0.072, Table 3), perhaps due to

higher pollinator activity in the sun plots. This effect disappears in

the hand-pollinated flowers (Fig. 12B, P = 0.978), and there is a

slight interaction effect between group and treatment (Fig. 12B,

P = 0.049, Table 3), indicating that seed set in the pale and pink

genotypes are being affected differently by the sun and shade

treatments.

Discussion

Dichogamy and Floral Morphology
In Saponaria officinalis, dichogamy does not simply entail a shift

from a staminate to a pistillate stage within the protandrous

flowers. Individual flowers undergo a transformation in size,

shape, and color as well, therefore showing sexual dimorphism

between the gender phases. Sexual dimorphism is commonly

defined as differences between males and females in secondary

sexual characteristics [13,36]. This study confirms that selection

can also act to influence the evolution of the two discrete

reproductive strategies when the genders are combined in

hermaphroditic flowers [12].

Delph and Herlihy [14] showed that sexual selection or sex-

specific selection for fecundity or survival can lead to sexual

dimorphism. Floral traits that increase pollinator attraction should

evolve under selection for increased male fitness more so than for

selection for increased female fitness. However, selection can also

act on pollinator attraction through female function if pollen is

limiting [18–22]. In S. officinalis, staminate flowers have wider

corollas than pistillate flowers (Fig. 2). This change in display size is

not the result of senescence; in fact, the petals become longer,

Table 2. Two-way ANOVA results describing the effects of treatment (shade vs. sun) and floral stage (staminate vs. pistillate) on
floral traits of protandrous S. officinalis.

Flower Trait Effect df F P

Petal Width (mm) Gender 1 14.04 ,0.001

Treatment 1 0.884 0.350

Gender x Treatment 1 1.25 0.267

Petal Length (mm) Gender 1 4.48 0.037

Treatment 1 0.225 0.626

Gender x Treatment 1 1.28 0.261

Corolla Diameter (mm) Gender 1 29.04 ,0.001

Treatment 1 1.31 0.255

Gender x Treatment 1 3.12 0.081

ABSl527nm/g/mL Gender 1 54.92 ,0.001

Treatment 1 7.60 0.007

Gender x Treatment 1 7.26 0.008

Pinkness Gender 1 52.85 ,0.001

Treatment 1 3.60 0.062

Gender x Treatment 1 2.94 0.091

doi:10.1371/journal.pone.0093615.t002
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wider, and heavier as the flower transitions to pistillate phase

(Table 1). Rather, the decreased display size of the pistillate flowers

is due to a change in shape, as the petals reflex toward the corolla

tube. If interference between male and female functions was

important in the evolution of protandry in this species, additional

changes in floral morphology would also be expected to occur that

would further reduce interference between stamens and pistils [1].

The reflexing of the petals in the pistillate stage also pulls the

stamens further from the styles, in agreement with this prediction

(Fig. 2).

As in a previous study [31], pistillate flowers had higher

anthocyanin concentrations than staminate flowers, and this

difference increased when plants were exposed to the sun

(Fig. 4C). In addition to measuring anthocyanin concentration

by the absorbance values of petal extracts, we also measured

flower color by capturing the reflectance spectra of intact petals.

Since the petals remain intact, reflectance spectroscopy allows one

to study the color of petals more as they are actually seen by

pollinators [37]. Just as anthocyanin concentration increased with

sun exposure, so did the pinkness index of the reflectance spectra

(Fig. 4D). The positive correlation between anthocyanin concen-

tration and pinkness index (Fig. 3) indicates that it is likely the

increase in anthocyanins that leads to the observed change in

flower color. The increased anthocyanin production under the sun

treatment was independent of changes in floral morphology

related to dichogamy. There was no difference between any of the

size measurements of flowers in the sun and shade treatments

(Fig. 4A, B).

No nectar guides were detectable to the naked eye under black

light in S. officinalis. However, when comparing proximal and distal

ends of the petals, the reflectance spectrometer detected higher

UV reflectance in staminate-phase flowers than pistillate-phase

flowers. Furthermore, there was a larger discrepancy in UV

reflectance between the distal and proximal positions in the

Figure 4. Size and color of staminate- vs. pistillate-phase flowers. Flower size as measured by petal length and corolla diameter (A and B,
respectively) and flower color as measured by anthocyanin concentration and pinkness index (C and D, respectively) in staminate- and pistillate-
phase flowers of S. officinalis growing in shaded or sun-exposed plots in an experimental garden in 2012. Boxes represent the median and quartile
ranges for each variable. Open circles represent values that lie between 1.5 and 3 box lengths from the end of the box. Different letters above each
box indicate significant differences (a= 0.05).
doi:10.1371/journal.pone.0093615.g004
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staminate phase than there was in the pistillate phase (Fig. 5). The

percent reflectance values are low (,10%) for S. officinalis (Fig. 5).

But if small bees and flies, the main daytime pollinators of S.

officinalis, can detect this difference, the differences between

pistillate-phase and staminate-phase flowers may play an influen-

tial role in shaping pollinator discrimination between the gender

phases. The greater difference between the petal positions in

staminate-phase flowers suggests that the nectar guides are more

prominent (there is more difference between the light and dark

areas) when the flowers are in the staminate phase. The dark

center may also be used as a contrast against the pollen grains,

which are known to reflect ultraviolet light in many flowers [38].

Regardless, changes in floral color in the visible spectrum do not

have to be associated with changes in the UV spectrum. In a

review of species displaying floral color change, Weiss [28], found

no evidence of changes occurring in the UV spectrum.

Carlson and Harms [25] reviewed over 20 studies of dichog-

amous species that reported greater nectar production during the

staminate phase, and Varga et al. [27] reported greater nectar

production in staminate phase hermaphrodites of the gynodioe-

cious Geranium sylvaticum. Our study of Saponaria officinalis is unusual

in that we did not detect differences in sugar concentration or

nectar volume (after day 1) that corresponded with floral age or

gender phase (Fig. 6). Our study was the first to consider changes

in daily nectar quantity over the floral lifetime in S. officinalis. A

previous study of nectar dynamics in this species [39] concluded

that covered and uncovered flowers showed a daily rhythm of

nectar production, with an increase in nectar production at night

and early morning hours. This cyclical variation may correspond

to the activity of nocturnal pollinators (moths), which are more

likely to be nectar gatherers than diurnal small bees and flies [40].

Pollinator Discrimination
Diurnal pollinators preferred staminate flowers over pink

pistillate flowers in both 2012 and 2013 in terms of the total

number of insects visiting, number of flowers visited, and number

of initial visits (Fig. 8 and 9). However, when the contrast in color

between the arrays was reduced by comparing staminate arrays to

pale-pistillate arrays from shaded plants, pollinators no longer

discriminated against pistillate flowers, in general (Fig. 8 and 9). In

2013, we compared pale pistillate flowers arrays to pink pistillate

flower arrays. Again, there was a trend for pinker flowers to

receive fewer insect visits and have fewer flowers visited, but these

differences were not statistically significant (Fig. 8). However, the

pinker arrays received a significantly lower percentage of initial

insect visits than the pale pistillate flowers (Fig. 9B). Taken

together, our pollinator observations indicate that pollinators use

color to discriminate among flowers more than differences gender

phase, size or shape.

Our results are only applicable to the diurnal pollinators that

were observed in this study. S. officinalis is also pollinated by

nocturnal moths, but in a study by Jabbari et al. [31], when either

set of pollinators were excluded from inflorescences, there was no

difference in fruit or seed set compared to control flowers.

Therefore, diurnal pollinators contribute substantially to seed set

in this species. The diurnal bees and flies are more likely to be

gathering pollen, whereas the nocturnal moths are more likely to

gather nectar [40]. Bertin and Newman [1] found that simulta-

neous hermaphroditism was more likely to associated with pollen-

reward species and dichogamy associated with nectar-reward

species. They hypothesized that these associations might be related

to the difficulty of attracting pollen-collecting pollinators to

stamen-less pistillate phase flowers. Therefore, selection may

reduce dimorphism between gender phases to ensure pollination

of pistillate-phase flowers through mimicry in species that only use

Figure 5. Possible UV nectar guides in S. officinalis. Differences in
the UV reflectance at proximal and distal ends of petals of S. officinalis in
staminate- and pistillate-stage flowers. Boxes represent the median and
quartile ranges for each variable. Open circles represent values that lie
between 1.5 and 3 box lengths from the end of the box. The average
percentage of light reflectance in the UV range was corrected for overall
amount of light reflected over the entire spectrum (see Methods).
doi:10.1371/journal.pone.0093615.g005

Figure 6. Nectar in S. officinalis flowers over time. Sugar concentration (A) and nectar volume (B) of flowers S. officinalis in a growth chamber.
Flowers are staminate for days 1–2, and transition to pistillate for days 3–5, and then begin to senesce over days 6–7. Error bars represent standard
error of the mean for flowers collected from 10 different plants. An asterisk (*) indicates a comparison that is statistically different from the
subsequent day (a= 0.05).
doi:10.1371/journal.pone.0093615.g006
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pollen as a reward [23]. We did find substantial pollen limitation

of seed set in S. officinalis, indicating pollinator activity is reducing

female fitness. However, since we did not find a difference in

nectar production between the gender phases, (Fig. 6), we predict

that we would detect weaker preferences among the nocturnal

than among diurnal pollinators in S. officinalis.

Seed Set and Female Fitness
Low pollinator activity was found to limit seed set in our

experimental gardens in 2012 and 2013 (Fig. 10). Therefore,

pollinator discrimination against pistillate-phase flowers has the

potential to reduce female fitness. Under pollen limitation,

selection should lead to a correlation between attractive structures

and female fitness [19]. In 2012, we found that there was a

negative correlation between the pinkness of pistillate-phase

Figure 7. Artificial decoupling of shape and color in S. officinalis. Inflorescence arrays were constructed of either pale staminate flowers (A),
pale pistillate flowers from plants that had been shaded (B), or pink pistillate flowers from plants growing in the sun (C).
doi:10.1371/journal.pone.0093615.g007

Figure 8. Insect preference for staminate-phase or pistillate-phase flowers of S. officinalis. The number of insect visitors (A) and the
number of flowers visited (B) in artificial arrays of inflorescences of staminate-phase vs. pink pistillate-phase flowers and arrays of staminate-phase vs.
pale pistillate-phase flowers in 2012. In 2013, the number of insect visitors (C) and the number of flowers visited (D) was recorded for 3 types of arrays:
staminate-phase vs. pink pistillate-phase flowers, staminate-phase vs. pale pistillate-phase flowers, and pale pistillate-phase vs. pink pistillate-phase
flowers. An asterisk (*) indicates a comparison that is statistically different (a= 0.05).
doi:10.1371/journal.pone.0093615.g008
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flowers that a plant produced and the number of seeds that were

produced in emasculated, open-pollinated flowers (Fig. 11) in the

shaded plants, though not in the sun-exposed plants. Thus, diurnal

pollinator preferences for pale flowers may have led to predictable

differences female fitness in plants with reduced sun exposure.

In 2013, the garden contained two subsets of genotypes selected

from the 2012 plants: one set that produced paler pistillate flowers

in 2012 and one set that produced pinker pistillate flowers in 2012.

As they did in 2012, pinker genotypes produced higher levels of

anthocyanins in 2013 than pale genotypes (Table 3), indicating

some heritability for this trait. As predicted from the pollinator

observations, the pinker genotypes also produced fewer seeds than

the paler genotypes in open-pollinated flowers in both the shade

and sun treatments (Fig. 12A, Table 3).

The difference in seed production between the pale genotypes

and the pink genotypes is not solely a function of pollinator

visitation. The pink genotypes also produced fewer seeds in hand-

pollinated flowers (Fig. 12B) in 2013, indicating that variation in

Figure 9. Likelihood of initial visits. The percentage of insects that initially visited artificial inflorescences of staminate-, pink pistillate-, or pale
pistillate-phase flowers in pollinator observation trials in 2012 (A) and 2013 (B). Each trial type was tested against a hypothesis of each flower type
receiving 50% of the first visits of an insect visitor. An asterisk (*) indicates a ratio significantly different from 50:50 (a= 0.05).
doi:10.1371/journal.pone.0093615.g009

Figure 10. Pollen limitation. Seeds produced by emasculated open-pollinated and hand-pollinated flowers and intact hand-pollinated flowers of
S. officinalis growing in shaded and sun exposed plots in 2012. Different letters above the bars indicate statistically significant differences (a= 0.05).
doi:10.1371/journal.pone.0093615.g010
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seed production is due in part to some other difference between

the two sets of genotypes, such as pleiotropic effects of genes

involved in anthocyanin production, or increased investment in

pigment production reducing investment in seed production [41].

The reduction in seed set in the pink genotypes was not as drastic

in the hand-pollinated flowers as it was in the open-pollinated

flowers (Fig. 12). This indicates that pollinator preferences for pale

flowers did influence the difference in seed set between the pink

and pale sets of genotypes in 2013. In the hand-pollinated flowers,

there is a significant interaction between the pale/pink sets and

treatment (Table 3). In this case, the pink genotypes produced

fewer seeds when in the sun than when they were in the shade

(Fig. 12B).

Conclusions

Staminate and pistillate phase flowers of S. officinalis are

dimorphic in size, shape, and color. In addition, pollinators

discriminate against pistillate-phase flowers based on their color.

This pollinator discrimination may lead to a reduction in seed set

in those individuals that produce pinker pistillate flowers and,

hence, have increased dimorphism in flower color. If the

morphological changes in the protandrous flowers of S. officinalis

actually reduce female fitness, the question remains: why is this

dimorphism maintained?

The evolution of sexual dimorphism in plants such as S. officinalis

involves complex interactions between differing selection pressures

for male and female reproductive roles, indirect selection of

Figure 11. Correlation between flower color and seed production. The relationship between the number of seeds produced by emasculated
open pollinated flowers and the color of a pistillate phase flower collected from the same plant in shaded plots (A and B) and sun-exposed plots (C
and D). Best-fit lines added for clarity.
doi:10.1371/journal.pone.0093615.g011

Table 3. Nested ANOVA results examining the effects of treatment (shade vs. sun) and genotype (nested within pale vs pink sets)
on anthocyanin concentration and seed set in open-pollinated and hand-pollinated flowers of S. officinalis.

ABSl527nm/g/mL Open-pollinated seed set Hand-pollinated seed set

Treatment (sun vs shade) 45.62 (1) 3.23 (1) (1)

P,0.001 P = 0.072 P = 0.978

Set (pale vs pink) 111.04 (1) 7.13 (1) 8.92 (1)

P,0.001 P = 0.008 P = 0.003

Genotype (nested within set) 23.43 (6) 22.56 (6) 78.82 (6)

P = 0.001 P = 0.001 P,0.001

Treatment*Set 2.17 (1) 0.15 (1) 3.87 (1)

P = 0.141 P = 0.700 P = 0.049

Treatment*Genotype 12.26 (6) 2.69 (6) 5.55 (6)

P = 0.057 P = 0.847 P = 0.476

Values in the table are the Wald Chi-square statistic (df) and the probability value for each effect in the test for model effects.
doi:10.1371/journal.pone.0093615.t003
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correlated traits, selection for reproductive assurance, and is

mediated by the degree to which traits are under the control of

shared genetic architecture [9,13–14].

Dichogamy and gender dimorphism between the staminate and

pistillate phases may have multifaceted effects on plant fitness

beyond pollinator attraction and seed set. Dichogamy will reduce

within-flower self-fertilization, but if multiple flowers are open on a

plant, self-fertilization through geitonogamy is still likely [4,42]. A

pollinator preference for either gender might reduce the level of

geitonogamy by reducing the number of flowers visited by a single

pollinator. Color change in S. officinalis may be acting similarly to

other species that retain color-changed flowers after they are

sexually viable, by increasing display size to attract pollinators

from a distance but then directing pollinators to specific flowers

when they approach [28]. This scenario would be more likely if

pistillate flowers were more likely to be visited first, which does not

occur (Fig. 9), or if plant architecture was structured so that

pollinators tended to move from female flowers to male [43], but

we would need more information about how dichogamy could

reduce geitonogamy in loosely arranged inflorescences like those

found in S. officinalis and the interaction between gender

preference of pollinators and potential preference for larger floral

displays.

Another unanswered question in this system is the effect of the

floral morphology changes on male fitness. It is presumed that

increased pollinator visits would lead to increased seed siring. So in

this respect, increased attractiveness of staminate flowers matches

the predictions of Bateman’s Principle [17]. In addition, increased

display size leading to increased pollinator attraction is predicted

to enhance male fitness more than female fitness. For example, in

monoecious Sagittaria trifolia, Huang et al. [44] found that

pollinators preferred male flowers to female flowers on inflores-

cences of the same size. They also found that pollen removal (male

fitness) was limited by pollinator visitation, but pollen receipt

(female fitness) was not. If anthocyanin production in pistillate

flowers of S. officinalis is constrained by pleiotropy, perhaps

delaying pigment production until flowers are past the staminate

stage serves to increase pollinator visitation to reproductively male

flowers. The biosynthetic pathway of anthocyanin production has

been well characterized and various steps in the pathway have

been identified as points that regulate the production of pigment in

response to ontogenetic and environmental changes in several

species [45–49]. We are currently examining the gene expression

of enzymes involved in early and late stages of anthocyanin

production across the floral stages, environmental conditions (sun

versus shade), and across genotypes to determine the molecular

basis of floral color change in S. officinalis.

The increase in pinkness of pistillate flowers may simply be a

non-adaptive by-product. Anthocyanin pigments have been found

to protect against photoinhibition in vegetative tissues (e.g., [50]),

by serving as a sunscreen to block blue-green and UV light,

producing varying colors (red, purple, or blue) based on pH levels,

and helping to fight heat stress and desiccation [41,51].

Pigmentation in flowers may be a result of a correlation with

pigment production in vegetative tissue, as described in Armbrus-

ter [52]. If genetic variation exists in the degree of color change, it

has the potential to be shaped by selection. In this study we

presented evidence that some genotypes produce pinker flowers

than others. This is part of a larger study being conducted to

determine genotypic differences in overall flower color, flower

color response to environmental conditions, and several vegetative

traits. Studies of sexual dimorphism are complicated by the fact

that it can be difficult to disentangle the effects of sex-specific

selection, sexual selection, and correlated genetic responses to

selection [12–14,36]. Saponaria officinalis provides an opportunity to

study the fitness effects of dimorphism of reproductive traits while

reducing the confounding effects of genetic differences between

individuals of different genders, since both reproductive strategies

are expressed in the same individual.
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