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Abstract: We developed an efficient method for synthesis of substituted N-benzoylindole via
Pd(II)-catalyzed C–H functionalization of substituted N-(2-allylphenyl)benzamide. The reaction
showed a broad substrate scope (including N-acetyl and N-Ts substrates) and substituted indoles
were obtained in good to excellent yields. The most distinctive feature of this method lies in the high
selectivity for N-benzoylindole over benzoxazine, and this is the first example of Pd(II)-catalyzed
synthesis of substituted N-benzoylindole. Notably, this new method was applied for the synthesis of
key intermediate of indomethacin.
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1. Introduction

Indole skeletons are one of the most valuable heterocycles, due to their diverse biological activities
and broad applications in functionalized materials and chemistry [1–3]. Substituted indoles exist
extensively in nature and pharmaceuticals (Figure 1) [2,4,5]. As a result, many methods have been
developed for the synthesis of indoles, including pioneering studies by Fischer, [6] Larock [7,8],
Buchwald [9–11], and Hegedus [12–15]. Recently, an increasing number of approaches for the synthesis
of indoles by employing transition-metal-catalyzed oxidative C-H bond functionalization has been
reported (Figure 2a) [16–26]. These methods showed significant improvement with regard to the
substrate scope and reaction conditions [27–31], but N-substituents in these reports are restricted
to H, acetyl, Ts (tosyl), and Ms (mesyl). In addition, Rh(III)-catalyzed tandem C-H allylation and
oxidative cyclization of anilides with allyl carbonates or acetates have been developed, albeit with
costly Rh complexes [32–34]. Despite these achievements, it is still of great value to develop methods for
synthesizing substituted indoles, especially N-benzoyl with low cost and wide variety of substituents.
Substituted N-benzoylindole is one of the most attractive skeletons, since it is a privileged structure of
many pharmacologically active compounds such as indomethacin. Besides, the only method reported
to construct substituted N-benzoyl indole is the C-H-amination of styrenes using hypervalent iodine
as the oxidant (Figure 2b) [35,36]. However, it should be noted that the oxidants of these two methods
are not commercially available. A direct approach employing simple and readily available catalyst
and oxidant remains a challenge for the synthesis of substituted N-benzoylindole. In this context, our
strategy is to use commercially available and inexpensive catalyst Pd(OAc)2 and oxidant benzoquinone
(BQ) for C–H functionalization to construct substituted N-benzoyl indoles (Figure 2c). It was reported
that either aminopalladated or π-allyl Pd intermediates would be generated in palladium-catalyzed
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allylic C–H oxidation reaction with the usage of ambident O/N nucleophiles [37–39]. Our method
can avoid the generation of the π-allyl Pd intermediates and obtain corresponding N-benzoyl indoles.
More importantly, the synthetic utility of this method is further demonstrated by the synthesis of
essential skeleton of indomethacin.
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2. Results and Discussion

We began our study by the reaction of 1a in the presence of 10 mol% of Pd (OAc)2 as the catalyst
and BQ (1.5 equiv.) as the oxidant in MeCN at room temperature (Table 1, Entry 1). Gratifyingly, the
desired product 2a was obtained in 8% yield along with a by-product benzoxazine 3 formed via allylic
C-H cleavage (2a/3 = 1/1) [38,39]. Encouraged by this result, we further systematically optimized the
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reaction conditions to improve the conversion of the reaction and inhibit the formation of benzoxazine
3. When the reaction was performed at elevated temperature of 60 ◦C, a slightly higher yield of 2a was
achieved and the ratio of 2a to 3 was also enhanced to 4:1 (Table 1, Entry 3). Interestingly, addition of
a stoichiometric amount of AcOH facilitated this reaction to give a higher selectivity (Table 1, Entry
4), improving the ratio to 10:1. Encouraged by this result, we evaluated several acids as additives of
the reaction, as shown in Table 1 (Entries 5–8). We were excited to find that using dibutyl phosphate
(DBP) as the acid led to a significantly higher yield and the ratio of 2a to 3 was also improved to more
than 20:1 (71% yield, Table 1, Entry 8). With dibutyl phosphate as the optimal additive, two other Pd
catalysts were tested, but no satisfactory results were obtained (Table 1, Entries 9 and 10). Next, a
survey of other solvents was then carried out (Table 1, Entries 11–14). To our delight, the yield could be
further increased to 77% by using DMSO as the solvent (Table 1, Entry 11). Eventually, when 2 equiv.
of BQ was used, the reaction gave the desired product in excellent yield (81%, Table 1, Entry 15).

Table 1. Optimization of the Reaction Conditions. a.
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With the optimized reaction conditions in hand, we turned to explore the substrate scope of
this reaction. The reactions of N-(2-allylphenyl) benzamides with substituent (R) at the positions of
benzamide aryl group were initially examined. As shown in Table 2, all substrates proceeded smoothly
to afford the corresponding indole in moderate to good yields (62–90%). In general, better yields were
found for substrates with electron-rich (2g, 2h, 2i, and 2u) rather than electron-poor anilides (2b, 2c,
2d, 2e, and 2f). Prolonged reaction times were required for substrates with the latter substituents (2b,
2c, and 2d). Substrates 2b, 2c, and 2d with Cl substituent at the meta-, ortho-, and para- position of the
benzamide aryl group, respectivelu, were also studied. The results indicate that a relatively lower yield
was observed for 2b with ortho-Cl comparing with 2c and 2d. Additionally, products with substituents
at the meta-position (2d, 2e, and 2i) can be obtained in higher yields than those with para-substituents
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(2c, 2f, and 2h). Similarly, indoles with two substituents on the phenyl ring (2j and 2u) were also
obtained in pretty good yield.

Table 2. Substrate scope of substrates with substituents at the positions (R) a,b Conditions: See
Supplementary Materials for details.
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Subsequently, we investigated the effects of substituents (R1) residing on the aromatic moiety
of the N-(2-allylphenyl) benzamide (Table 3). All the substrates 1k–t gave the desired products 2k–t
in satisfactory yields (67–78%), but 48 h were required for the starting materials to be consumed
completely in most cases. The reaction yields were not significantly influenced by the electronic
properties of R1 substituent. The effect of the same substituted group at different position was also
studied. Indoles with methyl substituent at C5 position (2k and 2l) were obtained in slightly lower
yields than at the C7 position (2s and 2t), due to the steric of the 1-position of the indoline. Besides,
a gram-scale reaction of 1q (2.9 g, 10 mmol) was performed affording the product 2q in an identical
yield with the small-scale reaction (71% vs. 77%). In addition, the structure of 2r was determined by
X-ray crystallography [40].

To further examine the propensity for the reaction, indoles with different N-substituents were
investigated (Table 4). Under the standard reaction conditions, the reaction proceeded smoothly and
indoles bearing N-acetyl (2v) and N-Ts (2w) were also obtained in 81% and 75% yields, respectively.

To evaluate the synthetic utility of this novel method, we used it as the key step to build up
the scaffold of the nonsteroidal anti-inflammatory drug molecule indomethacin (Scheme 1). When
substrate 4 was subjected to the standard reaction conditions, the desired product 5 was obtained
in 71% yield, which is the key intermediate of indomethacin. The following two steps to the final
product indomethacin are described in a previous report [36]. Although indomethacin derivatives
can be synthesized using Fisher indole synthesis and other cyclization methods, this methodology
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offers an alternative way to synthesize the key intermediate substituted N-benzoylindole 5 in one step,
which is crucial to further diversity-oriented synthesis of analogs of indomethacin derivatives.

Table 3. Substrate scope of substrates with substituents at the positions (R1) a,b Conditions: See
Supplementary Materials for details.Molecules 2020, 25, 1233 5 of 9 
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On the basis of the previous studies, a plausible reaction mechanism is proposed (Scheme 2).
Initially, the PdII catalyst first coordinates to the olefin to generate an intermediate a, followed by
insertion of the alkene into the PdII-N bond in an amidopalladation reaction to give an intermediate
b. Subsequent β-hydride elimination from the resulting alkyl-PdII species affords the intermediate
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c, which undergoes spontaneous isomerization–aromatization to form product 2a [12,31]. Pd(0), in
equilibrium with LPdH, was then reoxidized by the action of BQ.Molecules 2020, 25, 1233 6 of 9 
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3. Materials and Methods

Column chromatography was performed on silica gel (Silica-P flash silica gel from Silicycle, size
40–63 µm). TLC was performed on silica gel 60/Kieselguhr F254. Mass spectra were recorded on
an AEI-MS-902 mass spectrometer (EI+) or a LTQ Orbitrap XL (ESI+). 1H, 13C, and 19F NMR were
recorded on a Varian AMX400 (400, 100.6, and 376 MHz, respectively) or a Varian Unity Plus Varian-500
(500, 125, and 471 MHz, respectively). Chemical shift values for 1H and 13C NMR are reported in
ppm with the solvent resonance as the internal standard (CHCl3: δ 7.26 ppm for 1H, δ77.0 ppm for
13C). Data are reported as follows: chemical shifts, multiplicity (s = singlet, d = doublet, t = triplet,
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q = quartet, br = broad, m = multiplet), coupling constants (Hz), and integration. Melting points were
determined on a Buchi B–545 melting point apparatus. All reactions were performed under anhydrous
conditions and under N2 atmosphere. All chemicals used were of analytical grade and were used as
received without any further purification. All anhydrous solvents used in reactions were purchased in
SureSeal bottles or dried over molecular sieves. Flash column chromatography was performed on
Biotage Isolelera One with prepacked columns.

4. Conclusions

In summary, we developed an effective method for the synthesis of substituted N-benzoylindoles.
Pd(II)-catalyzed synthesis of substituted N-benzoylindole was realized for the first time via C–H
activation, starting from readily available substituent N-(2-allylphenyl) benzamide. Using inexpensive
BQ as the oxidant, a series of substituted indoles were prepared in good to excellent yields under mild
reaction conditions, which overcome the formation of byproduct benzoxazine. It should be noted
that dibutyl phosphate (DBP) is the key to obtaining high yield and chemoselectivity in the present
reaction. The indoles can be readily converted to many useful skeletons. As an example, this method
was successfully used for the synthesis of a key skeleton of indomethacin.

Supplementary Materials: The following are available online, 1H, 13C, and 19F-NMR spectra of compounds
1a–1w, 2a–2w, 4 and 5.
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