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The regulation of population density is suggested to be indirect and occurs

with a time-lag effect, as well as being female centred. Herein, we present a

quantitative analysis on the precise, timely and male-dominated self-

regulation of Chinese alligator (Alligator sinensis) populations. Analysis of

31 years of data revealed gender differences in regulation patterns.

Population dynamics were restricted by male density rather than population

density, and population growth was halted (birth rate ¼ 0) when male den-

sity exceeded 83.14 individuals per hectare, until some males were removed,

especially adult males. This rapid and accurate response supports the

notions of intrinsic mechanisms and population-wide regulation response.

Furthermore, density stress affected mating success rather than parental

care to juveniles, i.e. females avoided unnecessary reproduction costs,

which may represent an evolutionary advantage. Our findings highlighted

the importance of further studies on related physiological mechanisms

that focus on four characteristics: quantity breeds quality, gender differences,

male density thresholds and nonlinearity.
1. Introduction
Density dependence is a general tendency and fundamental principle of popu-

lation ecology [1]. It has been suggested that intrinsic (sociality and dispersal)

and extrinsic (food and predators) factors interact to shape population cycles

of vertebrates in nature [2]. Population cycles usually persist for years or

even generations, and are subject to self-regulation with the death of offspring

contributing the most to population dynamics [3]. This regulation represents fit-

ness returns in which trade-offs exist between cost and benefit [4]. Parents,

especially mothers, adjust to variable resource availability caused by density

stress by altering sex ratio [5] and survival of juveniles [6,7]. In recent years,

more studies have found that sex is a critical factor for understanding the effects

of population density [8], and sex-specific response to density has been

reported [9–11]. However, generational sex-specific effects have rarely been

considered. A study on red squirrels (Sciurus vulgaris L.) suggested that repro-

duction rate decreased when female density was high [12], which suggests that

females are at the core of population regulation. However, the importance of

males in density-dependent population dynamics remains unclear.

In the present study, we quantitatively analysed the role of male-

determined regulation of population dynamics in the Chinese alligator

(Alligator sinensis). The Chinese alligator is a critically endangered species

[13,14] that is endemic to China. Wild populations are only distributed in the

Anhui Province, and the natural population size has remained at approximately

150 individuals for 20 years. To protect this species from extinction, two captive

populations were established in Anhui Nature Reserve and Changxing Nature

Reserve. However, both the Anhui and Changxing captive populations have

encountered issues. At the Anhui Nature Reserve, 106 Chinese alligators
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Figure 1. Organization of the pools for Chinese alligators (A. sinensis) in Changxing Nature Reserve.
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were fed in a 330 m2 pool. They did not reproduce when the

population density reached 3200 ha21 but began reproducing

again when the population density decreased to 88 ha21,

which was achieved by expanding the breeding area [15].

Similarly, we observed that the population in the Changxing

Nature Reserve stopped reproducing when the population

reached a specific density. Joanen & McNease [16] reported

that the nesting success of the American alligator (Alligator
mississippiensis), a relative of the Chinese alligator, was

seriously affected by extrinsic factors, including flood,

drought and predation. However, these factors could not

explain the zero population growth in the two captive Chi-

nese alligator populations because there was sufficient food,

rarely floods and rarely any predators in the nature reserves.

Another feature of the observed zero population growth

was that reproduction commenced when some individuals

were removed from the populations. This indicated a real-

time density-dependent regulation of population by factors

other than intrinsic (sociality and dispersal) and extrinsic

(predation and food) factors, which have been widely

reported in other species. In the present study, we collected

and analysed breeding data from the Changxing population

to understand the self-regulation and population density

dynamics of the Chinese alligator and to identify the key

factors involved.
2. Methods
(a) Study population
Different situations exist in the two populations of captive alliga-

tors in China. In the Anhui Nature Reserve, more than 10 000

alligators, including adults, were fed in cement ponds and

were captured and transferred into greenhouses for overwinter-

ing. However, some of the captive individuals in the Anhui

Nature Reserve and most individuals (except for hatchlings) in

the Changxing Nature Reserve remain in the natural or restored

habitats for natural breeding, cave digging and overwintering.

We defined the captive populations which live in the natural or
restored habitats as semi-natural populations because the con-

ditions that they are exposed to are comparatively similar to

those experienced by natural populations.

The semi-natural population in the Changxing Nature

Reserve (308930 N, 1198730 E), located in the county of Changx-

ing, Zhejiang Province, is herein referred to as the Changxing

population. The Changxing reserve is an extension of the pristine

habitat of the Chinese alligator. Area C, i.e. pristine habitat,

covers an area of 0.54 ha and 11 adult alligators (three males

and eight females) have been known to have naturally lived in

this area since April 1979 and represent the founders of the

Changxing population. In 1992, two adult males were captured

from the wild to supplement the population in area C. The

reserve has been building artificial habitats around the original

wetland landscape since 1996 to accommodate the increasing

population. The artificial habitats were numbered consecutively

as C1, C2, C3, C4, C5 and C6. Each area comprises an indepen-

dent pond and are cordoned off by fences or other barriers. The

organization of the pools is shown in figure 1. Accordingly, the

entire Changxing population was divided into seven

subpopulations: C–C6. The year of establishment, area and

number of founder individuals are listed in the electronic

supplementary material, table S1.

(b) Data collection
The breeding season of the Chinese alligator occurs in summer

from mid-July to mid-September [17]. The staff at the Changxing

nature reserve have been recording the population status in

spring and the reproduction status in autumn every year since

1979. Females in the founding population first laid eggs in

1979. However, their preferred laying site was situated on the

centre island of area C, and the island was submerged from

1979 to 1983 as a result of flooding. All nests were damaged,

and thus, no data were recorded. The population parameters

included the number of total individuals, males and females.

The reproduction parameters included the number of

nests, total eggs, incubated eggs, the juveniles that survived to

winter, male juveniles and female juveniles. The methods related

to number count, incubation, fertilized eggs identification, sex

identification, age identification, and data selection have been

listed in the electronic supplementary material, methods S1.
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Figure 2. Population density dynamics of subpopulations of the Chinese alligator (A. sinensis). Grey arrowhead marks some immigration events of the whole
population and the transfer events of area C. Red arrowhead marks deaths from 1979 to 2011. Carrying capacity of areas C – C5 is listed on the right.
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For population data, see the electronic supplementary material,

table S1; age structure of C and C1 area also see the electronic

supplementary material, table S2.
(c) Data analysis
We set the reproduction data per area per year as the samples,

and 87 samples were considered in total. In addition to the

basic data recorded by the staff of Changxing Nature Reserve,

secondary parameters were also calculated. Density represents

the number of individuals (total, males, females, nests, eggs

and hatchlings) ha21. The birth rate (here, a crude birth rate),

usually the dominant factor in determining the population

growth rate, was calculated using the total number of live

births per 1000 births in a population yr21 (see https://www.

indexmundi.com/world/birth_rate.html). We used percentages

because the population size of alligators in Changxing Nature

Reserve is small. To evaluate the effect of population parameters

on the birth process, the number of individuals in the mating

season was considered. The formula used was

crude birth rate ¼ hatchlings

individual numbers in mating season
:

SPSS software v. 20.0 was used for statistical analyses.

Figures were drawn and data fitted using ORIGIN 2017. The

Shapiro–Wilk test was used to test for normality and to deter-

mine the distribution and expression of data. Values were

represented as means+ standard deviations (M+ s.d.) and

used to describe the central tendency and variation of the nor-

mally distributed data. The median (first quartile (Q1) and

third quartile (Q3)) was used to describe the non-normal data.

Pearson’s correlation analysis was used to assess the degree of

correlation between two variables; the data of which demon-

strated a bivariate normal distribution. Variables that were not

suitable for product–moment correlation analyses were sub-

jected to a Spearman’s correlation analysis. The degree of

association between two random variables was measured by

partial correlation to remove the effect of a set of controlling

random variables [18]. The trend between two variables was

depicted using a scatter diagram. Box-plots were used to present

the characters of group data. The independent samples t-test was

used to test the difference between the two groups. When the
data of two groups were homoscedastic, a normal t-test was con-

ducted; otherwise, an adjusted t-test was performed. Therefore,

the degree of freedom was not uniform. Statistically significant

differences were identified at the 95% level of confidence ( p ,

0.05) and the tests used were two-sided. The coefficient of vari-

ation (CV) was calculated to determine whether the data were

discretized. The formula used was

CV ¼ s:d:

M
� 100:

3. Results
(a) Growth mode of subpopulations
As shown in figure 2, the size of each subpopulation initially

increased, and then reproduction (i.e. population growth)

decreased to zero. For instance, the population size of area

C increased from 11 founders in 1979 to 244 individuals by

1993, and reproduction was thereafter halted for four con-

secutive years (figure 2; data are listed in the electronic

supplementary material, table S1). The growth mode

showed an S-type curve and the fitting formula of the logistic

curve was

y ¼ 446:76� 446:76� 20:36

1þ e�ðx�1988Þ=1:4
; 1980 � x � 1996;

adj:R2 ¼ 0:96, d:f: ¼ 15, p ¼ 0, ð3:1Þ

where y represents the population density and the adjusted-

fitness was 0.96, which indicated a good fit with the logistic

model. The carrying capacity (i.e. equilibrium density) K
was 446.76 capita ha21.

The population in area C began to reproduce again when

81 individuals were moved to area C1 in 1996. In 1997, the

first-generation offspring began to reproduce. However,

reproduction was halted again when the number of individ-

uals increased to 243 in 1998. A similar ‘start–stop–start–

stop’ cycle was observed in areas C1–C5, and the birth rate

reached zero when the number of individuals (i.e. population

size) reached a certain level. The data of the subpopulations

showed a strong population self-regulation mechanism.

https://www.indexmundi.com/world/birth_rate.html
https://www.indexmundi.com/world/birth_rate.html
https://www.indexmundi.com/world/birth_rate.html
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Figure 3. The difference of male density in the breeding and non-breeding samples. Variation in density of the population (a), females (b) and males (c) in the breeding
and non-breeding samples. The lines above and below the bars represent the first (Q1) and third quartiles (Q3). The blocks within the bars represent the second quartiles
(the median Q2). The fences were calculated using the following formulae: lower fence ¼ Q1 – 1.5(IQR); upper fence ¼ Q1 þ 1.5(IQR). In the formula, the IQR
(inter-quartile range) ¼ Q3 – Q1. The asterisks plotted above the whiskers represent outliers. Values above the boxes represent the sample size and the median
(Q1 – Q3). Density data points are plotted on the left of each box chart. Each point represents the density for each year in each area. (d ) The reproduction stopped
when male density exceeded threshold or decreased to 0, while it occurred in the intermediate male density.
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The equilibrium density of area C was 462.04+24.96

capita ha21, while C5 exhibited the lowest equilibrium den-

sity with only 231.12+41.52 capita ha21. The different

areas exhibited different equilibrium densities, which

suggests that population density is a correlation factor

rather than a decisive element. Therefore, the age structure

and sex structure were evaluated to identify the trigger

signal.
(b) Trigger signal
(i) Sex structure
Spearman’s correlation analysis revealed that the birth rate

declined with the increase in population density

(R ¼ 20.61, n ¼ 87, p ¼ 0), male density (R ¼ 20.84, n ¼ 87,

p ¼ 0) and female density (R ¼ 20.51, n ¼ 87, p ¼ 0), but

not in response to population sex ratio (R ¼ 20.10, n ¼ 87,

p ¼ 0.38). This indicated that the decision signal for reproduc-

tion might be attributed to the density of one gender rather

than the sex ratio. The discreteness of datasets showed
distinction in the three density parameters. The range of

data overlapped widely between breeding and non-breeding

groups for both population and female densities (figure 3a,b).

Male density was an exception. When the population entered

into the non-breeding state, the male density was higher than

that during the breeding state (figure 3c). The minimal value

of the non-breeding group (81.23) was higher than the maxi-

mal value of the breeding group (77.76). Furthermore, the CV

of the population density, female density and male density in

the non-breeding state were 33.87%, 45.72% and 1.36%,

respectively. This suggests that the male density (83.16+
1.13) was a constant value when the population stopped

breeding and indicates that male density controls the self-

regulation of the population and determines whether the

population reproduces or not (figure 3d ).

(ii) Age structure
The sex–age structure showed that the total male density

(comprised hatchlings-yearlings, juveniles, subadults and

adults) in the non-breeding sample group approached a
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constant value (figure 4b), but this was not apparent in the

breeding group (figure 4a). Among the four age stages,

male density and female density overlap between the
breeding group and the non-breeding group, except for

adult males (figure 4c,d ). The adult-male density in the non--

breeding group was significantly higher than that in the
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breeding group (t40 ¼ 3.83, p ¼ 0); however, the boundary is

not as clear as it is with total male density (figure 4c).

There is still 25% data overlap in the two groups, which indi-

cates that there is a breeding response to adult-male density

but that other factors also illicit such a response.

Further investigation in specific years has been con-

sidered. According to the data records presented in the

electronic supplementary material, table S1, 81 individuals

(14 males and 67 females), born in 1984, 1985, 1986 and

1987, were moved to area C1 in 1997. The ages of these indi-

viduals ranged from 9 to 13 years. The removed alligators

were mostly adults and near-mature individuals. By 1996,

the female offspring born in 1984 had matured; however,

no reproduction occurred until they were removed to area

C1. Reproduction in area C, which had been halted for 4

years, recovered after these individuals were removed. This

suggested that excessive density stress hindered the increase

in population density. Furthermore, the increase in juveniles

restrained reproduction in the population.

All founder-males and founder-females in area C1 were

mature in 1999 and 2000, respectively, and their offspring

reached maturity at least 7 years later (i.e. from 2007

onwards). However, the non-reproducing phenomenon of

area C1 occurred in 1999, 2000, 2004, 2005 and 2007. Specifi-

cally, 80 offspring were moved from area C1 to area C2 in

2000. These 80 individuals were born in 1998 and 1999 and

they ranged in age from 2 to 3 years. After removing these

young individuals, the reproduction in area C1 recovered in

2001. In 2002, 64 individuals were moved to C4. These 64

individuals comprised all of the offspring and 25 founders;

thus, only adults remained in area C1. In 2003, these adults

reproduced and gave birth to 77 surviving hatchlings

(33 males and 44 females). In 2004, the reproduction stopped

when these hatchlings reached seven months of age. Repro-

duction recovered when some alligators were removed

(mainly adults and subadults) and soon halted when new

hatchlings were supplemented into the population. This

phenomenon was observed not only in area C1 but also in

areas C2–C5. These findings indicate that the density of

juveniles also contributes to density pressure in Chinese

alligator populations. However, this effect is based on the

adult-male density, which contributes the largest difference

to breeding or non-breeding status among the four age stages.
(c) Regulation mode
The dynamics of male density indicated that regular repro-

duction occurred when the male density was below the

threshold value (figure 5a). There are four steps of reproduc-

tion in each breeding season: mating, ovulation, egg-laying

and incubation (figure 5b). The adult females still built

nests and laid eggs despite not producing any hatchlings

during the non-breeding years. However, the nest density

(independent sample t-test: t60.828 ¼ 25.534, p ¼ 0) and egg

density (independent sample t-test: t52.833 ¼ 26.674, p ¼ 0)

were significantly lower in the non-breeding group than in

the breeding group. According to the calculated age structure

data (only for areas C and C1), the ratio of nests to adult

females in the non-breeding group was also lower than that

in the breeding group (Mann–Whitney test: Z ¼ 24.369,

n ¼ 43, p ¼ 0). This may indicate that ovulation may be

induced or impeded by the males because the ratio of adult

females that took part in the breeding activities responded
to male density (R ¼ 20.561, d.f. ¼ 43, p ¼ 0), especially

adult-male density (R ¼ 20.677, d.f. ¼ 43, p ¼ 0).

In addition, nest density ranged from 0 to 20.36 at the

threshold of male density, while the egg density aggregated

to zero thereafter, and lastly the hatchling density reached

zero (figure 5c). In addition, the fertility rates of the non-

breeding group were all zero. Therefore, the ovulation ratio

and fertility ratio responded to density stress. This indicated

that density stress acts on the mating success of adult individ-

uals and is different from the parental care to juveniles, which

has been reported as the main intrinsic factor in other species

[5–7].

Male density showed similar parabola trends as nest den-

sity, egg density and hatchling density (figure 5c). We used

the hatchling density to investigate the effect of male density

on mating success. A parabola function explained more about

the relationship between male and hatched juvenile densities

than a monotonic linear curve (figure 5c). The fitting formula

used was

y ¼� 0:08ðx� 40:48Þ2 þ 144:83; 0 � x � 81;

adj:R2 ¼ 0:49, d:f: ¼ 84, p , 0:01, ð3:2Þ

where x is male density and y is the corresponding hatchling

density. The goodness of fit was only 0.49, which indicated

that this fitting model was not suitable to conduct quantitat-

ive inference. This may have been because the incubation

success was also affected by the incubation conditions,

especially incubation temperature. Although the nest site

and nest parameters, such as nest materials, can be chosen

by the mother alligator, the climate is uncontrollable. How-

ever, the qualitative trend of the fitting model was

reasonable because the p-value was less than the set signifi-

cance level. With the increase in male density, the density

of hatchlings increased at first to a maximum value of

40.5 ha21, and then decreased with further increases in

male density. The density of hatchlings decreased to zero

when the male density reached 81.23 capita ha21. There

was an optimal range of male density that enabled high

breeding success to be maintained. Extremely high or low

male densities are not conducive to the development of a

population. By controlling the hatching success, male density

affects the female density dynamic. In species with a constant

sex ratio, population density is proportional to male density.

In species that have environmentally determined sex, such as

the Chinese alligator, the female density and population den-

sity do not change proportionally with male density because

the sex ratio varies with environmental variation (figure 5d ).

This phenomenon may have contributed to the lack of pattern

in the population density that we initially observed (figure 2).
4. Discussion
The population dynamics of the Chinese alligator observed in

this study were consistent with those of the saltwater crocodile

(Crocodylus porosus). A report on 12 wild subpopulations

(1975–2009) of saltwater crocodiles (C. porosus) revealed two

important phenomena: (i) the number of crocodiles did not

increase much, although their average body size continued

to increase, which indicates that density stress is related to

the increase in density rather than the increase in biomass;

and (ii) the expected carrying capacity of different
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subpopulations showed considerable variation in abundance

and biomass [19]. The results of our study are consistent

with this previous study, i.e. that the increase in the number

of individuals contributed to density stress, and also that the

different subpopulations showed variation in capacity. The

lack of information available to the authors of the previous

study, however, made it impossible to identify the reasons

why the different rivers supported different densities of

crocodiles. Therefore, the researchers indicated that it may

have been a result of differences in habitat quality along the

river systems.

In Chinese alligators, the analysis of data spanning 31

years provided us the opportunity to elucidate the decisive

role of male density in the regulation of the population of

this species. The population-density dependence or different

carrying capacities are a misinterpretation of male-density

dependence. The same driving force, i.e. male density depen-

dence, may also provide a reasonable explanation for the
variation in carrying capacity of different subpopulations of

crocodiles (C. porosus). However, detailed sex-structured

data are needed to confirm this.

Another previous study reported that the removal of

large male caimans (greater than 180 cm total length) report-

edly resulted in a population increase [20]. This supports a

compensatory mechanism that would be triggered by the

removal of large males, i.e. recruitment and the enhanced

growth to maturity of subadult males. In addition, high

adult male, but not female, density has been found to

reduce juvenile survival owing to the predation of adult

males on juveniles in a territorial lizard (Anolis sagrei) [21].

According to the data pertaining to Chinese alligators,

another mode may be involved, which differs from such com-

pensatory mechanisms and predation effect. The removal of

male individuals, especially adult males, caused disinhibition

of reproduction rather than enhancing the survival of juven-

iles and subadult males. An advantage of this birth-inhibition
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regulation mode is the reduced cost of reproduction, so that

the adult females conserve energy and can reproduce in the

next breeding season once the density stress reduces. How-

ever, this does not mean that density stress has no impact

on the survival rate of juveniles and subadults of the Chinese

alligator. The alligators in Changxing Nature Reserve had

sufficient food and were protected from predators. The

hatchlings were raised by breeders, and therefore, their

death rate was independent from the population density

stress. Scarcely any deaths occurred after the Changxing alli-

gators reached 2 years of age. In wild populations, the

density stress may also affect the age-structured death pro-

cess. However, because other factors that are important in

the wild were unconsciously controlled in the Changxing

nature reserve, the sex-specific and real-time regulation of

the birth process could be detected. The three cases outlined

above for three different species indicate that male density

effects both reproduction and survival, and may contribute

towards a general regulation mode in reptiles.

The dynamics of density pressure in Chinese alligators

are extremely rapid. This provides ecological evidence for

the role of hormone secretions in population regulation.

Christian [22] proposed that stress, as a factor that stimulates

the adreno-pituitary system, results in the secretion of the

adrenocorticotropic hormone in order to release hydrocorti-

sone. Elsey et al. [23] found that the level of plasma

corticosterone was positively correlated with the stocking

density of both captive adults and juveniles of the American

alligator, which is a relative of the Chinese alligator; while

the formation of density stress may refer to the physical

(vision and bellow [24]) or chemical (pheromone [25]) com-

munication. However, the physiological mechanisms

require a comprehensive study and this study provides

some advice. Our empirical data suggest that there are

three aspects of population regulation: gender differences,

nonlinear and quantity breeds quality. Some physiological

studies [26–33] only proposed two or three levels: blank,

high density and low density. These conclusions are, how-

ever, not complete for the following reasons: (i) stress might

be a response to the density of one gender rather than popu-

lation density; (ii) the responses of individuals and the overall

population to stress are not linear; both high and low den-

sities may have equal impacts on a population which will

thus lead to a one-sided conclusion or conflicting viewpoints;

and (iii) it is difficult to guarantee high density in a true high-

density range and vice versa because the change in quantity

does not cause an essential change within a certain range.

Therefore, we recommend that future studies on physiologi-

cal mechanisms also consider sexual differences and

gradient levels.

Another detected effect of male density was the negative

relationship between the population density and the sex ratio

(R ¼ 20.498, n ¼ 87, p ¼ 0). In the non-breeding group, an

inverse-proportion function fitted well the two parameters

(figure 6) when male density was a constant value. The sex

ratio and population density were linked to male density.

This furthered our understanding of the population

dynamics and evolution of the sex ratio in this species. The

female-biased sex ratio (1 : 4.517) [34] of the Chinese alligator

can help to maintain the male density below the threshold

value to ensure that sustainable reproduction takes place in

the population.
The male density-dependent pattern is important for

the effective management and protection of Chinese alliga-

tors, an endangered species. The natural population of the

Chinese alligator is fragmented in several habitats. Our

findings showed that reproduction will be halted if the

male, especially adult-male density is excessive, except for

some male alligators that disperse to other habitats. How-

ever, if habitat fragmentation is extensive, it would not

benefit the population to continue increasing as it would

be difficult for the male alligators to disperse to a new

habitat. Interconnection of the fragmented habitats can alle-

viate this issue and allow the alligators to disperse from

populations with high-density stress to those with low-

density stress. It is recommended that if male density is

maintained at approximately 40.5 ha21, the population

will achieve maximal reproduction success. In addition to

male density, the sex ratio, which is affected by climate

and intrinsic factors, also plays an essential role in the

development of the population. A system analysis regard-

ing the sex ratio of Chinese alligators should be

conducted in a future study.
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