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Re-regeneration to reduce negative 
effects associated with tail loss in 
lizards
James I. Barr1,2*, Catherine A. Boisvert1, Ruchira Somaweera3, Kate Trinajstic1 & 
Philip W. Bateman1*

Many species of lizard use caudal autotomy, the ability to self-amputate a portion of their tail, 
regenerated over time, as an effective anti-predation mechanism. The importance of this tactic for 
survival depends on the degree of predation risk. There are, however, negative trade-offs to losing 
a tail, such as loss of further autotomy opportunities with the regenerated tail vertebrae being 
replaced by a continuous cartilaginous rod. The common consensus has been that once a tail has been 
autotomised and regenerated it can only be autotomised proximal to the last vertebral autotomy point, 
as the cartilage rod lacks autotomy planes. However, anecdotal evidence suggests that although the 
regenerated portion of the tail is unable to autotomise, it can re-regenerate following a physical shearing 
event. We assessed re-regeneration in three populations of the King’s skink (Egernia kingii), a large lizard 
endemic to south-west Western Australia and surrounding islands. We show that re-regeneration is 
present at an average of 17.2% across the three populations, and re-regenerated tissue can comprise 
up to 23.3% of an individual’s total tail length. The ability to re-regenerate may minimise the costs to an 
individual’s fitness associated with tail loss, efficiently restoring ecological functions of the tail.

Caudal autotomy is a highly effective anti-predation strategy for squamates, ancestral for all modern taxa and for 
which we have fossil evidence from Early Permian captorhinids1,2. Caudal autotomy, and associated mechanisms, 
appear to have been lost and re-gained in multiple lizard taxa, depending on the ecological importance of their 
tail3–5. In some species, caudal autotomy is selected against ontogenetically, with fracture planes ossifying as the 
individuals mature4,6. Post-autotomy, an individual’s tail regenerates, with the original bony vertebrae replaced 
by a rigid cartilage rod that partially ossifies over time7–9. Although losing a portion of a tail can have a range of 
immediate and long term consequences (see4,10,11 for reviews), the regenerated tail can restore certain ecological 
functions associated with the original tail12–14.

Anatomy and Morphology of Caudal Autotomy
There are two ways of shedding a tail: inter-vertebral autotomy, occurring when the tail breaks between 
inter-vertebral spaces at a point of weakness4,15, and intra-vertebral autotomy – the ancestral and more frequent 
form – occurring at pre-formed breakage planes within a series of caudal vertebrae, termed post-pygal verte-
brae5,6. Intra-vertebral autotomy is under more complex neurological control of the individual compared to 
inter-vertebral autotomy, with some species able to autotomise their tail without a physical stimulus5,16. The tails 
of species with intra-vertebral autotomy are constructed as autotomisable segments; however, the cartilage rod 
that regenerates after autotomy lacks breakage planes and therefore cannot be autotomised, with future autotomy 
events having occur at the next most proximal vertebrae of the original tail5,6,9,10,17,18. In addition to the regen-
erated tail differing from the original in terms of internal morphology, the external tail in many species show a 
narrowing at the point of autotomy, as well as changes in scale pattern and colour from the original tail19.

Regeneration After Autotomy Events
It has been assumed that, as the cartilage tube has no breakage planes, lizards cannot autotomise and regenerate 
sections of already regenerated tails, but must instead autotomise the tail closer to the base each time; e.g. “the 
regenerated tail … lack[s] intravertebral autotomy fracture planes … and, therefore, subsequent autotomies must 
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take place more proximally”10; “[L]izards that experience repeated tail autotomy must lose their tails progressively 
closer to the tail base …”17; “When a tail regenerates, the new portion of is made of a rod of cartilage and thus 
lacks the intravertebral breakage planes that enable an unregenerated tail to autotomize”18 (P 154). However, it 
may not be as simple as this. Although autotomy and regeneration are primarily, and efficiently, used together, 
autotomy is not required for caudal regeneration to occur9,20–22. Lizards possess the ability to regenerate a cartilage 
rod and associated tail from an already regenerated portion of their tail, after a shearing event through the carti-
lage rod, such as a bite from a predator. This regrowth phenomenon, termed re-regeneration, has, as far as we are 
aware, only been recorded anecdotally9,23,24 and may further enhance the capacity of regeneration to reduce nega-
tive effects associated with caudal autotomy, such as time and energy trade-offs to growth and reproduction14,25–27.

Here we present evidence of re-regeneration in King’s skinks (Egernia kingii), a large (up to 244 mm SVL, 
550 mm total length) scincid lizard endemic to the south west of Western Australia and its surrounding 
islands28,29. Although juveniles appear to rely more on caudal autotomy than do adults, adults still possess the 
ability to autotomise their tails30. In this study we investigate (1) the occurrence and use of re-regeneration 
across three isolated populations of E. kingii that vary in predation risk, (2) assess the internal morphology of 
re-regeneration using micro CT technology, and (3) discuss the potential mitigating effects of re-regeneration as 
well as its use in restoring tail function for lizard ecology.

Results
The changes in external morphology associated with regeneration, tail width and scale colour, are evident for both the 
primary regeneration (Fig. 1, section 3) and the re-regeneration event (Fig. 1, section 5) of the autotomised tail. The 
CT scan 3D reconstruction of the vertebral column (Fig. 1) shows, from left to right, the distal portion of the fractured 
(half) vertebrae from the recent autotomy event (1.), two original vertebrae with fracture planes present (2.), the 
partial vertebrae from the previous, older autotomy event where the cartilage regeneration has been anchored to the 
vertebrae post-fracture (3.), followed by the older more mature (primary) regenerated tissue (4.), point of secondary 
regeneration to the primary (5.), and newest (secondary) regenerated tissue (6.), both of which are externally ossified 
and lack autotomy planes. Coronal and transverse C.S taken from the CT scan highlight the difference in the internal 
structure of the regenerated tissues, specifically the degree of ossification of the primary regenerated tissue (4.) and 
secondary regenerated tissue (6.), with the primary regenerated tissue being more ossified than is the secondary 
regenerated tissue. This is further highlighted by the angled sagittal C.S of the primary and secondary regeneration, 
with the primary regenerated tissue showing a solid outer sheath, and the secondary regenerated tissue having a dis-
tinct outer and inner sheath, with both exhibiting a hollow inner core for the spinal cord tissue (5.).

Field data gathered across the three sites indicated that re-regeneration events were not isolated (Table 1). 
Higher proportions of re-regeneration were observed in sites with terrestrial predators (Coastal Mainland and 
Rottnest Island), compared to the site with no terrestrial predators (Penguin Island), with higher levels of overall 
regeneration observed in the Penguin Island and Coastal Mainland sites (Fig. 2). Re-regeneration events occurred 
at an average of 17.2% for all individuals captured across the three sites (range 13.3–25.0%), and in 23.5% (range 
17.1–46.2%) of individuals that had undergone a regeneration event. Percentage of re-regeneration represented 
on average (±SD) 18.0 ± 14.8% of the total tail length and 38.5 ± 20.6% of the total regenerated length.

Discussion
Losing a tail comes with costs, although these are less severe than being killed by a predator. These costs, whether 
they be to locomotion12,31,32, anti-predation behaviour33,34 or even to social status35, can be minimised through 
regeneration of the tail. Here, we have presented unequivocal evidence, through micro CT, that further regen-
eration of tail tissue is possible if a lizard loses part of the regenerated tail, something has only been anecdotal 
before9,23,24. From field data we show that re-regeneration occurs, and is not an isolated occurrence, in E. kingii. 
Additionally, re-regeneration is known to occur in other species, as seen in Bellatorias major (Scincidae) (Fig. 3), a 
species related to E. kingii. The ability for re-regeneration, such as we demonstrate here, is also likely to aid in res-
toration of certain behavioural and ecological functions of the tail, and subsequently increase fitness and survival.

Lizard taxa that rely heavily on their tail, either as an anti-predation tactic or for locomotion, will incur higher 
costs for not having a tail3,11,36,37, and therefore would be predicted to invest more energy both into tail devel-
opment30,38 and into quicker, and more efficient regeneration27,39. Re-regeneration may be more beneficial to 
populations or species with increased predation risk. Both our sites with terrestrial predators showed higher 
occurrences of re-regeneration, with the Coastal Mainland site having a higher proportion of re-regenerated tail 
tissue (Table 1). Additionally, three individuals at the Coastal Mainland site had tertiary regenerations on their 
tails, indicating further re-regeneration events. Invasive mammals, particularly the European red fox (Vulpes 
vulpes) and feral cat (Felis catus) impact on reptile populations in Australia40. Our Coastal Mainland site, which 
is near an urban area, had the highest diversity of predators, including feral cats, dogs, and until recently, red 
foxes in the area (J. Taylor, pers. comm). As a caveat, intra-specific male-male aggression can also produce high 
autotomy rates in populations41,42. Penguin Island, although lacking terrestrial predators, is known to have high 
densities of E. kingii, and male-male aggression may contribute to the similar regeneration proportion observed 
in our Coastal Mainland site population (Fig. 2).

Tail regeneration post-autotomy, as well as re-regeneration of the regenerated tissue post-trauma, requires 
time and energy, and is dependent on other energetic demands that the lizard faces. Recorded rates of caudal 
regeneration vary considerably between species, ranging from 0.2 mm per day to 2 mm per day4,43,44, with some 
species like Anniella pulchra (Anniellidae) regenerating much slower (4.1 mm in 11 months)45. As the loss of a 
tail can have a range of negative effects, it has been proposed that a species will balance the costs of regeneration 
against requirements for reproductive output14. Species that are short lived and mature early will prioritise repro-
ductive output over regeneration, while species that are long lived and mature late, with potential future reproduc-
tive seasons will do the opposite14. Older individuals of the gecko Coleonyx variegatus (Eublapharidae) prioritised 
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Figure 1.  Autotomised tail and 3D model reconstruction from micro CT of Egernia kingii showing the 
fractured vertebrae (1.), two intact vertebrae (2.), vertebrae and primary regeneration fusion point (3.), primary 
cartilage regeneration (4.), fusion point of primary and secondary cartilage regenerations (5.), and secondary 
cartilage regeneration (6.) Transverse C.S below correspond to lines on diagram. 1 cm tail tip taken for genetics 
is missing from the 3D model.

Metric All sites Rottnest Island Penguin Island
Coastal 
Mainland

Number caught/ with regeneration/ with re-regeneration 157/115/27 24/13/6 105/82/14 28/20/7

Percentage of total tail length (mean ± SD) that the re-
regeneration comprised 18 ± 14.8% 21.2 ± 16.2% 14 ± 11.1% 23.3 ± 19.3%

Percentage of regeneration length (mean ± SD) that the 
re-regeneration comprised 38.5 ± 20.6% 42.8 ± 18.2% 29.9 ± 18.4% 51.9 ± 20.7%

Table 1.  Summary statistics of Egernia kingii populations for the number of individuals caught at each site: 
those that had regenerated tails and those that had re-regenerated tails; the percentage that the re-regeneration 
contributed to the total tail (original and regenerated tissue), and the regenerated tissue only.
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energy investment in tail regeneration and less into growth than did younger individuals, which investing more 
energy in body growth and less in tail regeneration25. Furthermore, adult C. brevis females prioritise energy into 
egg production at the expense of tail regeneration25.

Re-regeneration is likely to benefit the individual and minimise long term ecological costs associated with 
caudal autotomy. Firstly, having the ability to regenerate from an already regenerated tail will ensure that an indi-
vidual does not permanently have a severely reduced tail length following a physical shearing event. Secondly, as 
a smaller portion of tail would be regenerating, as opposed to if the individual was forced to autotomise a larger 
portion of tail at the next proximal autotomy plane, both time and energy for regeneration would be reduced. 
Thirdly, the time an individual would be with a shorter tail would also be reduced. Here, we have presented data 
on additional regenerative ability in lizards, re-regeneration. We have indicated that, at least in E. kingii, this is; 
1) not an isolated event and 2) can comprise a large portion of the individual’s tail. Although the regenerated car-
tilage rod lacks autotomy planes, and its shedding therefore not likely to be under the same conscious control as 
intra-vertebral autotomy7–9, we suggest that re-regeneration may provide an additional component in mitigating 
the negative effects of caudal autotomy on an individual’s fitness, particularly in populations with high predation 
risk. Predator size, type and efficiency, i.e. whether attacks tend to be fatal or directed at the tail, may also influ-
ence the likelihood or re-regeneration events occurring46,47. More research on an ecological comparison of the 
effects of regeneration and re-regeneration is likely to be fruitful.

Methods
Field data.  Morphological data for E. kingii was collected from three locations along the coast of Western 
Australia, Rottnest Island (−31.999421°, 115.527540°), Penguin Island (−32.305839°, 115.691340° and Coastal 
Mainland (−31.868445°, 115.752549°) between 2017 and 2019. General morphologic measurements including 
snout to vent length (SVL), tail length (TL) and regeneration lengths (RL) were measured to the nearest mm 
using a plastic ruler. Total regeneration length (length of the whole regenerate) as well as length of individual 
regeneration segments (primary, secondary or tertiary) were recorded. For analysis, three cases with a tertiary 
regeneration were included as part of the secondary regeneration length. Percentage of re-regeneration occur-
rence in populations was established, as well as the percentage of the total tail length comprised of re-regeneration 
and percentage of total regeneration length comprised of re-regeneration for each individual. All statistics were 
performed in RStudio Version 1.1.38348.

Figure 2.  Comparison of proportion of regeneration and re-regeneration of tail tissue for the three study sites 
from highest predation risk (Coastal Mainland) to lowest predation risk (Penguin Island). Mean ± se are reported.

Figure 3.  Re-regeneration event in a Bellatorias major at Cape York, Queensland, showing the external 
morphology changes associated with the original (A), regenerated (B) and re-regenerated (C) sections of the tail 
(photo Ryan Francis).
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Re-regeneration specimen and CT analysis.  For micro CT a single autotomised tail was collected 
from an adult (SVL 198 mm) in February 2018 on Rottnest Island, Western Australia. The sample was frozen 
and then preserved in 100% ethanol after taking a 1 cm tail tip for genetics sampling. The sample was scanned 
using a micro-CT (SkyScan 1176 scanner; Bruker micro-CT, Kontich, Belgium) at the Centre for Microscopy, 
Characterisation and Analysis (CMCA), University of Western Australia, Western Australia. The CT scan was 
performed at 18 μm resolution (50 kV, 500 µA, 390 ms, 0.5 mm Al filter, 0.5° rotation step, 360° scan and two 
frame averaging) producing 2000 * 1336-pixel images. CT images were reconstructed in NRecon v1.7.1.0 (Bruker 
micro-CT) using the modified Feldkamp cone- beam algorithm (Gaussian smoothing kernel (2), ring artefact 
correction (8), beam hardening correction (30%) and threshold for defect pixel masking (3%)). The spinal column 
was manually selected as a volume of interest (VOI) within CTAnalyser software v1.17.7.2 (Bruker micro-CT). 
3D model was recreated in CTvox v3.3.0 r1403 (Bruker micro-CT) and coronal C.S of the model acquired from 
digital manipulation of the 3D model.

Ethical statement.  All research was carried out in accordance with the Animal Ethics Office of Curtin 
University (ARE2017-12) and Department of Biodiversity, Conservations and Attractions (DBCA) regulation 17 
licence (08-001238-4) for capture and handling of animals.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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