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Background
Prokaryotic organisms are found everywhere, in soil, water, animals, being responsible 
for key roles in their survival and maintenance. Bacteria in the intestines of humans, 
for example, not only aid in the digestion of food but also greatly interfere with the vital 
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systems of human beings, such as the immune system [1], thus making humans highly 
dependent on a perfect balance among microorganisms interaction.

Identifying which prokaryotes coexist in environments and in-depth knowledge about 
these microorganisms enables valuable scientific discoveries that can benefit all ecosys-
tems related to these microorganisms, especially on humans by advances in areas of dis-
ease prevention and cure [2]. Describing genes in prokaryotes genomes is one way to 
understand how these microorganisms play in complex systems.

This identification, also referred to as annotation, is commonly performed with the 
aid of prediction systems that locate genes along genomes using a reference database 
composed of genes previously annotated in related genomes. Although gene annotation 
has grown in recent years, there are still countless genes that have not been annotated, 
thus making predictions solely based on available known reference genomes quite lim-
ited and will not always be sufficient to describe the main role of these microorganisms.

Gene prediction based on the structures of the analyzed genomic sequences—also 
known as ab initio [3]—is a way to identify genes independently and more aligned with 
the current reality of prokaryotic genomic studies—which, in turn, estimates, it has 
information on only about 1% of existing species [4].

Ab initio prediction is commonly based on the identification of protein-coding 
sequences (CDS) contained in genes and can be performed by the Open Read Frame 
(ORF) extraction method [5]. The term ORF corresponds to a portion of the genome—
that is, a genomic sequence—initiated and terminated by a specific combination of 
nucleotides, known as start and stop codon respectively. However, the prediction pro-
cess is not so trivial because not every ORF found in the genome corresponds to a 
CDS [6]. Thus, ORF extraction alone does not satisfy the sufficient condition for CDS 
identification, requiring that other sequence properties need to be considered for gene 
prediction.

Although there are well-used and well-performing tools for gene prediction, such as 
FragGeneScan [7] and Prodigal [8], this task is still a challenge. This difficulty becomes 
greater when gene prediction must be performed in environmental metagenomic sam-
ples. As an example, soil samples present a wide diversity of species linked to distinct 
metagenomics complexities [9].

Metagenomic samples with a high number of species are commonly referred to as 
high complexity samples and therefore contain high genomic diversity. Using traditional 
metagenomic data analysis procedures, this diversity can produce inconsistencies [10]—
due to the mixing of genetic information—impacting the quality of gene prediction 
tools.

Metagenomic data complexity is a topic superficially considered in the evaluation of 
gene predictors, possibly justifying by the lack of metagenomic dataset benchmarks 
for such use. This scenario exposes an interesting gap in the effectiveness of the perfor-
mance analysis of these tools and highlights the need to create fair benchmarks for this 
purpose.

The inability to characterize non-coding sequences or intergenic region remains 
another challenge. Different that was previously believed, non-coding regions—where 
it is possible to find sequences as translation initiation site, promoters and termina-
tors [11]—have important information capable of distinguishing the pathogenic and 
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non-pathogenic strains [12], as well as other functions, however, our knowledge about 
the exact biological functions of these sequences is limited [13] and needs further 
investigation.

In this paper, we propose geneRFinder, an ab  initio gene prediction tool capable of 
identifying CDS and intergenic region in sequences with distinct metagenomic com-
plexities. This tool was built on the Random Forest classifier model due to its good 
performance when compared to other known classification methods applied to the dis-
covery of genes in metagenomic data [14]. Additionally, we produced and provided a 
metagenomic gene prediction benchmark for validation of gene prediction tools, that is 
composed by 9 datasets—4 manually produced datasets and 5 datasets derived from the 
benchmark data provided by the first edition of the well-known Critical Assessment of 
Metagenome Interpretation (CAMI) challenge.

Implementation
The geneRFinder is an ORF extraction based tool capable of identifying coding sequences 
and intergenic regions in metagenomic sequences, predicting based on the capture of 
signals from these regions. As it will be presented in more detail in the following subsec-
tions, properties of sequences are extracted from ORFs that are then transformed into 
numerical vectors to be learned by a Random Forest model [15]. Such model was trained 
and validated in datasets of microorganisms that had complete genome and annotations. 
The final model was tested on independent datasets having different genome complexi-
ties and sequences sizes.

Training and validation datasets

Complete genomes and their complementary information provided by the NCBI [16] 
genome repository was used, including annotated CDS and the gene and CDS map-
ping table for each organism, to create training and validation datasets. ORFs located 
in the genomes were extracted and, for each of them, were assigned the correspond-
ing label—positive for CDS (and internal ORFs) and negative for not being a coding 
sequence, according to the respective NCBI mapping table, thus, was recognized as a 
non-coding sequence everything that is between CDS, for example, translation initiation 
site. The ORF extraction process considered as ORF the sequences found in the genomic 
sequences that had ATG as start codon and TAG, TGA, or TAA for the stop codon.

Initially, 20 complete genomes were used to tune parameters that contributed to the 
differentiation of gene and intergenic region, as well as to identify the characteristics of 
sequences useful to generate the learning model. This model was then validated on 5 
different genomes of the training set introduced in [17]. Next, a more enriched model 
was built, consisting of 129 complete genomes and their respective annotations, of 
which 11 are archaea and 118 are bacteria. From these genomes, 712,868 sequences 
were extracted, 356,443 of which correspond to CDS, hereinafter referred to as positive 
instances, and 356,425 to intergenic regions (negative instances). The genomes names, 
the taxonomy ID, and the taxonomy level are depicted in Additional file 1: Tables S1, S2, 
and S3.
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Test datasets

The test dataset was built using 12 public genomes and respective annotations, 3 
archaea, and 9 bacteria, following the same methodology described in the previous sec-
tion to obtain the ground truth. From these organisms, 31,507 positive and 23,473 nega-
tive ORFs were extracted, totaling 54,980 sequences to be predicted. In order to make a 
fair comparison performance analysis with the current state-of-the-art gene prediction 
tools—namely FragGeneScan, Orphelia [18], MetaGene [19] and Prodigal—the 12 most 
frequently used genomes listed in their respective publications were selected for further 
analysis (Fig. 1).

Benchmark dataset from CAMI

geneRFinder was also tested on datasets extracted from CAMI [15], a metagenomic 
benchmark that features datasets for assembly and binning evaluation of samples in 
three distinct complexities (low, medium, and high), containing sequences of bacteria, 
archaea, and viruses. The benchmark introduces three assemblies—each for a level of 
complexity—considered optimal. Some information about assemblies is provided in 
Table 1. The values of N50, L50, and contig numbers were analyzed by the Metaquast 
tool [20].

From each assembly, all ORFs were extracted and submitted to CD-HIT [21], a tool 
for clustering similar sequences, returning the most significant sequences. The low 
and medium complexity sequences returned, approximately 600,000 sequences, were 
submitted to InterproScan [22], a tool that searches for protein signatures in different 

Fig. 1 The set of genomes frequently used by gene prediction tools. On the left gene predictors and on the 
right genomes
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databases (Gene3D, PANTHER, Pfam, PIRSF, PRINTS, ProDom, PROSITE, SMART, 
SUPERFAMILY and TIGRFAMs). In the high complex sequences, more than 2 billion 
sequences were returned by CD-HIT. Because of the very high computational costs to 
classify those sequences using InterproScan, 3 random samples without repetition hav-
ing 200,000 sequences each were selected. These samples of sequences of high complex-
ity were submitted to InterproScan using the same methodology previously described.

After the identification of sequences by InterproScan, sequences that had annota-
tions found in at least one bank and had IPR annotations (InterPro accession number) 
were classified as genes and the remaining ones as intergenic. The sequences, Interpro-
Scan annotations, and their respective classifications (gene or intergenic region) can 
be found in the Additional file 1. The number of positive examples (proteins found by 
InterproScan), negative examples, and total sequences for each complexity are shown 
in Table 2. All these datasets are freely available as a new benchmark, being, as far as 
we are concerned, the largest one available that presents solid ground truth of poten-
tial metagenomic genes. For information about the sequence distribution of datasets, see 
the Additional file 1.

For test datasets, the genomes names, the taxonomy ID, and the taxonomy level can be 
found in Additional file 1: Tables S4–S9.

Feature engineering

Several genomic information has been used to build gene predictors, including GC 
content, sequence length, and others. The GC content corresponds to the percentage 
of guanine and cytosine bases present in a sequence, being traditionally used in appli-
cations to classify genes, as Prodigal, MetaGene and Orphelia, since in some cases the 

Table 1 Metagenome assembly statistics from CAMI datasets

Low Medium High

Assembly file size 149M 537M 2,7G

Genomes 40 (22 unique; 18–6 real 
and 12 evolved—com-
mon strains)

132 (32 unique; 100–87 
real and 13 evolved—
common strains)

596 (197 unique; 399–345 
real and 54 evolved—
common strains)

Circular elements (plas-
mids, viruses and other 
circular elements)

20 100 478

N50 163,697 191,017 249,005

L50 230 686 2,899

Contigs 12,857 38,584 39,171

Table 2 Benchmark dataset using CAMI genome assemblies

Positive Negative Total

Low 41,068 214,521 255,589

Medium 57,894 289,748 347,642

High (sample 01) 34,640 165,360 200,000

High (sample 02) 34,445 165,555 200,000

High (sample 03) 34,486 165,514 200,000
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coding sequences have higher GC content than non-coding sequences [23]. The length 
counts how many nucleotides are in the sequence, having the ability to distinguish cod-
ing sequences from non-coding ones—it is important in this context because sequences 
from intergenic regions are, usually, smaller in comparison to the ones found in coding 
regions [24], being used by predictors as Prodigal, MetaGene and Orphelia. The K-mer 
frequencies correspond to the number of occurrences of each k-length fragment of a 
DNA sequence [25], being a 2-mer corresponding to a fragment of 2 nucleotides, 3-mer 
corresponding to a fragment of 3 nucleotides and so on. The k-mer not is a feature com-
monly used by gene predictors. Codon usage bias refers to the differences in the num-
ber of synonymous codons in coding DNA. A codon is a nucleotide triplet that encodes 
an amino acid (e.g. ATG). Since 64 combinations can be made with 4 nucleotides taken 
three at a time and considering that there are only 20 amino acids, there is more than 
one codon per amino acid, in most cases. Two or more codons that encode the same 
amino acid are called synonymous codon [26, 27]. Variations of features from codon 
usage has being used by predictors as FragGeneScan, MetaGene and Orphelia.

In previous work, we select 15 features to build the first version of geneRFinder [28]. 
After feature redundancy evaluation, 11 features were experimentally selected based on 
the importance index of each feature to the model and the correlations among them. 
Of these, 4 correspond to GC content, (a) GC content throughout the sequence, (b) 
GC content from the first position, (c) GC content from the second position, and (d) 
GC content from the third position of each nucleotide triplet. Another 6 features cor-
responding to the k-mer frequency, being the frequency variances from 2-mer to 6-mer 
and the codon usage bias of each of the synonymous codon (c_weight) [29]. Lastly, the 
sequence length was considered in the feature set. The features have a strong correlation, 
grouping into two main sets, as shown in Fig. 2. The first group refers to GC content 
features, these features are classic ones in gene prediction. The second group refers to 
k-mer features, these features are widely used in other branches of Bioinformatics such 
as assembly [25] and binning [30], but still little explored in gene prediction problems.

The feature importance index was calculated according to [31] based on training set 
with 712,886 sequences and, as Fig. 3 presents the sequence length as the most impor-
tant one, followed by k-mer features, having more than 80% importance index. Although 
GC content features are widely used to discriminate between gene and intergenic 
regions, in our model they were of minor importance when compared to other features. 
However, their use in combination with other features influenced the prediction perfor-
mance, as noted in [28].

Random forest parametrization

The Random Forest (RF) classifier [32] was used to build the gene prediction model, 
obtaining better performance when compared to other state-of-the-art predictors. The 
RF method was chosen based on our previous studies [14] and because it was used in 
similar cases with good performance [33, 34]. Different from other predictors, such as 
FragGeneScan that is built on a hidden Markov model for representations based on data 
abstraction and Prodigal that uses a “trial and error” approach based on rules, the Ran-
dom Forest method used in this work seeks a balance to determine in the decision trees 
what is the best classification for each data.
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Four models having 100, 200, 500, and 700 decision trees with five  fold cross-
validation with 5 repetitions on the performance evaluation training set were built 
(Fig.  4). As stated previously, each instance of the model, which corresponds to a 
sequence, is represented by 11 numeric features and their respective class. The 700 
decision trees model present the best performance result, reaching 92.75% hits on 
mtry of 3 (number of features considered in each tree node during its construction) 
for training the geneRFinder model. However, the 100 decision trees model got a 
similar performance having less complexity [35], it was the model selected for the 
geneRFinder tool.

We want to emphasize that although geneRFinder can work with fewer features 
and the models showed better performance with fewer features (mtry of 3) in Fig. 4, 
in our tests, the use of fewer features brought less precision to the model and it 
allows possible bias. Thus, our tests indicated that 11 features are a reliable quantity 
to perform the prediction, as this can be confirmed in our results.

Model performance metrics

To evaluate the performance of the gene predictors, four metrics were adopted: accu-
racy, sensitivity, specificity, and AUC. All these metrics express the relations between 
True/False Positives and True/False Negatives. True Positives are positive examples that 
were correctly predicted as positive; True Negatives are negative examples that were pre-
dicted as negative; False Positives are negative examples that were wrongly predicted as 
positive; and False Negatives are positive examples that were predicted as negative.

Accuracy represents the hit rate considering the total number of dataset instances 
and can be defined by the Eq. 1.
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The sensitivity expresses the proportion of annotated genes that have been correctly pre-
dicted, and, on the other hand, specificity indicates the percentage of correctly classified 
intergenic sequences. These measurements are given, respectively, by Eqs. 2 and 3.

Additionally, AUC (Area Under ROC Curve) is a summary metric that incorporates 
specificity and sensitivity into a single value.

The libraries, inputs, outputs and running time

The geneRFinder predictor was built using the R version 3.4.4 [36] language, using the 
SeqinR package version 3.6-1 [29] for reading sequences and extracting GC content 
features and the K-mer package version 1.1.2 [37] for extracting k-mer variance fea-
tures. Model training and sequence prediction are performed using the Caret pack-
age version 6.0-84 [31]. The code is parallelized using the doParallel package version 
1.0.15 [38]. The predictor allows the user to define triplets considered as start codon 
(ATG/GTG/TTG), however, in all cases TAA/TAG/TGA will always be considered as 
a stop codon. The user can also define how many cores can be used by the program. It 
must be informed as an input parameter to the predictor of the FASTA file contain-
ing the reads or contigs to be analyzed. As output, a FASTA file containing the CDS 
found in the input file is produced, a FASTA file containing the intergenic sequences 
is optional.

geneRFinder makes predictions at approximately 500 kb/min, or 1000 sequences 
with 500 bp per minute, using 4 GB of memory and 5 cores. All scripts and datasets 
used in this manuscript can be found at https ://osf.io/g4qk5 / to reproduce the tests.

Results
Benchmark data

The impact of metagenomic sample complexity on gene prediction was not fully 
explored by prediction tools until now. There is still no consensus on the datasets 
used to exploit fair performance comparison of gene prediction tools. Thus, each tool 
considers different datasets for its analysis.

Although these previous predictors produced similar results, the databases used to 
evaluate two well-known gene prediction tools—FragGeneScan and Prodigal, for exam-
ple, contain less than 25% of common organisms (Fig.  1). The utilization of specific 
databases per gene predictor may be justified by the lack of a consolidated benchmark 
dataset for this purpose.

As with many computational methods, the use of different inputs for gene prediction 
tools—that is, prediction performance testing using specific organisms—can directly 

(1)Acc =
(True Positive + True Negative)

(True Positive + True Negative + False Positive + False Negative)

(2)Sens =
True Positive

(True Positive + False Negative)

(3)Spec =
True Negative

(True Negative + False Positive)

https://osf.io/g4qk5/
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impact the quality of the results produced by these tools, favoring some of them and 
impact negatively in others. Sequence hit rates can vary considerably for different organ-
isms, due to the sequence similarities found with the training datasets used. Therefore, 
the performance rates obtained by different tools using different datasets may be biased, 
making the comparison process between them questionable.

It is evident that the establishment of a standard dataset for metagenomic gene pre-
diction becomes fundamental for improving evaluation of gene predictors. The CAMI 
challenge paves the direction to make fair benchmarking available to the community but 
gene prediction was not tackled at that time. In this context, the CAMI-oriented data-
sets built and used in this work were compiled to provide the scientific community with 
a fair gene prediction benchmark, ready to use and freely available at https ://sourc eforg 
e.net/p/gener finde r-bench mark.

The benchmark is made up of 9 datasets, as shown in Table 3. For each one of them is 
provided:

• List of names, taxonomy ID and taxonomic level of the genomes of the organisms 
that make up the dataset (genomes.csv)

• Set of sequences extracted from the respective selected genomes (sequences.fasta)
• Ground truth for each of the extracted sequences (groundtruth.csv)

The data provided in the benchmark can be downloaded directly from the browser 
or using the multiplatform client interface, also available from the benchmark web-
site, through the command line given below, where dataset_name is the database name 
(training1, training2, etc.) and resource corresponds to the desired file and can assume 
the values genomes, sequences, ground truth and all—in the last case, to download all 
the contents of the database.

Table 3 Benchmark description

a The estimated number of genomes was obtained by taxonomic analysis performed by the Kaiju tool [39]

Dataset name Genomes Sequences CDS Description

Training1 20 108,004 54,002 First training set

Validation 5 19,337 14,016 Validation set used to setup parameters of model built

Training2 129 712,886 356,443 Second training set used to build final model

Test1 12 54,980 31,507 First test set used to evaluate geneRFinder

Test2low 40 255,589 41,068 Data extracted from low complexity metagenomic (CAMI)

Test2medium 132 347,642 57,894 Data extracted from medium complexity metagenomic 
(CAMI)

Test2high1 160a 200,000 34,640 Data extracted from high complexity metagenomic (CAMI) 
(sample 01)

Test2high2 156a 200,000 34,445 Data extracted from high complexity metagenomic (CAMI) 
(sample 02)

Test2high3 157a 200,000 34,486 Data extracted from high complexity metagenomic (CAMI)
(sample 03)

https://sourceforge.net/p/generfinder-benchmark
https://sourceforge.net/p/generfinder-benchmark
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Revisiting gene prediction

To analyze the geneRFinder performance, prediction tests were performed based on 
sequence length, being a fundamental feature, the most important feature in our model, 
to discriminate whether a sequence is coding or not. We performed the tests in dataset 
test1 (with 12 genomes) to predict sequences from 100 to 2000 bp, as shown in Fig. 5. 
geneRFinder achieved accuracy and sensitivity performance above 75% for sequences of 
all length, reaching more than 90% for sequences above 600 bp. The specificity of geneR-
Finder reached more than 75% for all sequences, reaching a higher percentage in larger 
sequences. This test showed that the longer the sequence, the more information there is 
to characterize it, but even in small sequences, its performance was satisfactory.

We used FragGeneScan and Prodigal for comparison analysis using the introduced 
benchmark. FragGeneScan is considered one of the best performing tools for gene pre-
diction [40], being used by EBI Metagenomics [41] and MG-RAST [42], two important 
pipelines for metagenomic data analysis [43]. Prodigal was added to the EBI Metagen-
omics pipeline as a complement to FragGeneScan to predict large sequences [41], while 
only FragGeneScan is used for small sequences.

For the dataset test1 (with 12 genomes), the prediction results are shown in Fig.  6. 
The best accuracy was obtained with the geneRFinder, with a percentage difference of 
approximately 20% more than FragGeneScan and Prodigal. With less considerable dis-
tances than the others, the best sensitivity was obtained with FragGeneScan, with dif-
ferences of 2% and 7% against Prodigal and geneRFinder, respectively. The geneRFinder 
also achieved better specificity performance, with 55 percentage points higher than 
Prodigal and 60 percentage points higher than FragGeneScan.

When evaluating predictors performance in sequences from low complexity metage-
nome (test2low), Fig.  7, geneRFinder obtained the best accuracy, with a percentage 
variation of 53% compared to Prodigal and 63% against FragGeneScan. In sensitivity, 
FragGeneScan hit 99% of the data, 1% more than Prodigal and 5% more than geneR-
Finder. In geneRFinder specificity obtained better result, correctly classifying 64% more 
sequences than Prodigal and 76% more than FragGeneScan.
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In the results of medium complexity sequences (test2medium), Fig. 8, the accuracy of 
the geneRFinder gene was 93.8%, compared to 40.1% for Prodigal and 29.6% for FragGe-
neScan. FragGeneScan sensitivity differed in percentage terms by only 2% of Prodigal 
and 5% of geneRFinder. In specificity geneRFinder again had better performance (93.6%), 
with 65 percentage points more than Prodigal and 78 more than FragGeneScan.

For the tests in the high complexity metagenome, the predictions were made in the 3 
datasets (test2high1, test2high2, and test2high3) and the average of the results is pre-
sented in Fig. 9. geneRFinder achieved better performance in accuracy, with 93.4% cor-
rectness and percentage differences of 54% and 64%, respectively, against Prodigal and 
FragGeneScan. In sensitivity, FragGeneScan showed 2 percentage points higher than 
Prodigal and 5 percentage points higher than geneRFinder. In specificity, geneRFinder 
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Fig. 6 Gene predictors performance using the dataset test1
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had the largest distance against FragGeneScan, 79 percentage points, and 66 more than 
Prodigal.

FragGeneScan and Prodigal had difficulty to discriminate which sequences were not 
coding ones, on the other hand, geneRFinder was able to more clearly detect both cod-
ing and non-coding sequences, reaching more than 90% specificity in all datasets.

When analyzing the proportion of predictors sensitivity and specificity represented by 
the AUC in Fig.  10, geneRFinder achieved better performance in the 4 datasets. This 
proportion, measured as a percentage by the area under the ROC curve, was at least 24 
percentage points higher than in other tools. The individual predictions of each dataset 
can be found in the Additional file 1.
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Fig. 8 Gene predictors performance using the medium complexity metagenome

Fig. 9 Gene predictors performance using the high complexity metagenomes
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In order to verify if the differences in prediction performances of the geneRFinder, 
FragGeneScan, and Prodigal were significant, we calculated the statistical differences 
between predictors performance using McNemar’s test [44] for all datasets. McNemar’s 
test is suitable for comparing the performances of distinct ML classifiers, especially when 
it is not possible or feasible to train models several times, as is the case with FragGeneS-
can and Prodigal tools, which are available with ML models previously trained.

McNemar’s tests were performed for all possible pair combinations between predic-
tors and performed individually on each complexity. Unanimously, the null hypothesis—
that both predictors show equivalent performances—was rejected with a 99% statistical 
confidence interval, thus indicating that the performance of geneRFinder results from 
statistically effective differences and not just casual variations of performance. The codes 
and input files needed to reproduce these tests can be found at https ://osf.io/g4qk5 / and 
the contingency tables can be found in Additional file 1: Tables S10–15.

The accuracy, sensitivity, and specificity express the performance of the classifier 
under different perspectives; as mentioned previously, the accuracy presents the general 
success rate of the classifier, but it does not offer the conditions to evaluate the strengths 
and weaknesses of each one of them; the sensitivity and specificity, respectively, allow us 
to analyze the performance of the classifier by predicting sequences known to be posi-
tive (corresponding to CDS) and negative. FragGeneScan, for example, has the best aver-
age sensitivity rate. This means that, from all sequences that corresponded to CDS, this 
tool rated approximately 99% of them correctly on all datasets. However, this same tool 
misclassified an average of 80% of non-CDS sequences. In gene annotation processes, in 
which experts perform the painstaking work of trying to identify the gene correspond-
ing to each CDS, according to these statistics, many sequences will undergo such anno-
tation. Low specificity in this context implies undue submission of several sequences 
to the annotation process and, consequently, the waste of working time. In contrast, 
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geneRFinder could achieve superior rates for specificity—beyond equivalent rates for 
sensitivity, which can be seen in Fig. 9, demonstrating its better performance.

Conclusion
Gene prediction is a classical and key challenge in (meta)genomics. Computational 
methods for gene finding are mostly based on machine learning strategies. In the very 
beginning, gene predictor explored the power of Hidden Markov Models, evolving to 
the exploration of neural networks, support vectors and recently ensemble strategies 
(Random Forest, Gradient Boosting Machines, etc.). Gene predictors usually provided 
similar results though they differ clearly in their benchmark data. Thus, there is some 
skepticism regarding the extent to which the model’s performance of these gene pre-
dictors was fairly taken into account during comparison analysis. This situation is more 
critical in large scale and complex biological datasets like those in metagenomics.

We provided a new benchmark data based on the well-known CAMI challenge. CAMI 
provides datasets of unprecedented complexity and degree of realism, though it does 
not provide datasets to assess gene predictors. We generate nine datasets of distinct 
complexities, being 5 of them derived from available CAMI metagenome assemblies 
to assess the robustness of gene predictors, making it freely available for future bench-
marking, and the remaining 4 datasets manually developed.

The geneRFinder is introduced to deal with the prediction of protein-coding in dis-
tinct metagenomic complexities and non-coding sequences. Comparison analysis with 
state-of-the-art gene predictors highlights its utility, providing a good balance between 
sensitivity and specificity performance metrics. Unlike FragGeneScan and Prodigal, gen-
eRFinder allows predicting without requiring other segments of the sequence, such as 
the translation initiation site, since its features capture the signals present in coding and 
non-coding sequences independently. This characterization explains the reason for gen-
eRFinder achieved high specificity once it was trained to find coding and non-coding 
sequences, and not just genes.
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