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Purpose: Pyroptosis is a form of lytic programmed cell death that is associated with the 
pathogenesis of many tumors. However, the potential roles of pyroptosis-related genes 
(PRGs) in the tumor microenvironment (TME) remain unclear.
Materials and Methods: We systematically described the genetic and transcriptional 
alterations in PRGs in gynecological cancers. An unsupervised clustering method was used 
to investigate the molecular subtypes of ovarian cancer (OV) and systematically analyze the 
TME cell infiltration characteristics. A prognostic signature and nomogram were established 
to quantify the pyroptosis patterns of individual tumors. We also analyzed the expression 
levels of eight PRGs in the OV tissues.
Results: Two distinct molecular subtypes of OV were identified, and these two distinct 
molecular subtypes could predict clinicopathological features, prognosis, TME stromal 
activity, immune infiltrating cells, and immune checkpoints. A prognostic signature was 
established, and its predictive capability was validated. Low risk score, characterized by 
activation of immunity, upregulation of programmed death-ligand 1 expression, lower tumor 
immune dysfunction and exclusion scores, lower tumor mutation burden, and favorable 
prognosis. These findings suggested that low-risk patients with OV may be more sensitive 
to immunotherapy. In addition, this signature could effectively predict the response to 
chemotherapy in patients with OV. Furthermore, a prognostic nomogram was generated, 
which exhibited superior predictive accuracy.
Conclusion: This study highlights the crucial role of PRGs in the TME and may help develop 
immunotherapies and promote individualized therapeutic strategies for patients with OV.
Keywords: pyroptosis, gynecological cancer, tumor microenvironment, immunotherapy, 
overall survival

Introduction
Pyroptosis is an inflammatory form of cell death that results in cell swelling, 
membrane lysis, chromatin fragmentation, and the release of pro-inflammatory 
factors.1 It is believed to play a key role in eliminating various bacterial and viral 
infections.2 Numerous studies have shown that in the absence of any bacterial or viral 
infection, it can chemically induce cell pyroptosis in cancer cells.3 Pyroptosis can be 
induced through the non-canonical pathway involving caspase-4, 5, 11, and the 
canonical pathway of caspase-1 dependence. Many studies have focused on elucidat
ing the molecular mechanism of pyroptosis in cancer cells, but the relationship 
between pyroptosis and cancer is complex and controversial, and the impact of 
pyroptosis on cancer varies with tissue and genetic background. Gasdermin 
D (GSDMD) is a pyroptosis executive protein that can be cleaved by inflammatory 
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caspases and is essential for the secretion of interleukin-1β, 
making it a key mediator of inflammation.4 The protein 
level of GSDMD was significantly elevated in non-small 
cell lung cancer (NSCLC) tissues and found to be linked to 
aggressive traits and worse prognosis.5 GSDMD silencing 
suppressed cell proliferation, migration, and invasion, by 
inhibiting the EGFR/Akt signaling pathway and promoting 
apoptosis in NSCLC.5 GSDME/DFNA5 (deafness, autoso
mal dominant 5), a member of the gasdermin family, has 
newly been identified as a promoter of pyroptosis upon its 
cleavage by caspase-3.6 When GSDME is highly expressed, 
active caspase-3 cleaves it, causing release of its N-terminal 
domain, following which it punches holes in the cell mem
brane, causing the cells to swell, rupture, and die. Low 
expression of GSDME leads to the classic mechanism of 
tumor cell death, namely cell apoptosis.7

A growing number of studies have highlighted the 
potential effects of the tumor microenvironment (TME) 
on the development and progression of cancer.8 Stroma 
sustains homeostasis and acts as a barrier to tumorigenesis 
under normal conditions. However, when a cell starts to 
become cancerous, the surrounding stroma changes to 
support tumor progression.9 In addition to tumor cells, 
TME also consists of fibroblasts, endothelial cells, 
immune and inflammatory cells, extracellular matrix ele
ments, as well as, diffusible cytokines and chemokines 
secreted from both cancer cells and stromal cells. The 
reciprocal crosstalk among these components eventually 
directs the development of the tumor. Emerging evidence 
also indicates crosstalk between pyroptosis and the 
TME.10,11 At present, due to technical limitations, most 
studies focus on one or two pyroptosis-related genes 
(PRGs) and cell types, while in fact, the anti-tumor effect 
is characterized by numerous genes interacting in a highly 
coordinated manner. Hence, a comprehensive understand
ing of the characteristics of TME cell infiltration mediated 
by multiple PRGs may provide important insights for 
understanding the underlying mechanism of ovarian can
cer (OV) tumorigenesis and predicting the response to 
immunotherapy.

In this study, we revealed global alterations of PRGs at 
transcriptional and genetic levels in three types of gyneco
logical cancer, then evaluated the expression profiles of the 
PRGs, and obtained a comprehensive overview of the intra
tumoral immune landscape in 1003 OV samples from public 
datasets. First, 1003 patients with OV were stratified into 
two discrete subtypes, according to the PRGs. Based on the 
DEGs between the two subtypes, the patients were also 

divided into three gene subtypes. We further developed 
a scoring system to predict the overall survival (OS) and 
characterize the immune landscape of OV.

Materials and Methods
Data Source and Processing
Figure S1 shows a map of the process of the present work. 
The expression data, somatic mutation data, and correspond
ing clinical follow-up information from the gynecological 
tumor patient tissue datasets (TCGA-OV, TCGA-UCEC, and 
TCGA-CESC) were downloaded from UCSC. Three GEO 
OV chip datasets (GSE9891, GSE26712, and GSE49997) 
with survival times were selected from the GEO database. 
For the TCGA cohort, the fragments per kilobase million 
values were transformed into transcripts per kilobase million, 
as previously described. Four datasets were gathered, and the 
batch effect was eliminated using the “Combat” algorithm. 
Patients without complete survival information were 
excluded, and a total of 1003 OV patients were identified 
for further analysis.

Identification of Molecular Subtypes 
Based on PRGs
First, 25 PRGs were identified using MSigDB Team 
(REACTOME_PYROPTOSIS) (http://www.broad.mit. 
edu/gsea/msigdb/) and previous publications.12 Full details 
of these genes have been given in Table S1. Next, k-means 
consensus clustering was carried out on the PRGs. The 
optimal cluster number distinguished the subtypes of OV, 
which is determined by clear separation of the consensus 
matrix heatmaps and cumulative distribution function 
(CDF) curves of the consensus score. Survival analysis 
and chi-square test or Fisher’s exact test were used to 
compare the survival rates between the subtypes and deter
mine the relationships between the clinicopathological 
parameters and clusters. Principal component analysis 
(PCA) was performed to downscale the sample data, to 
identify differences in distribution between subtypes. To 
investigate the differences in PRGs in terms of biological 
processes, GSVA was conducted with a hallmark gene set 
(C2 KEGG v.7.2) derived from the MSigDB database.

Immune Correlation Analysis
To identify the immune score-based relationships among 
molecular subtypes, we used the single-sample gene set 
enrichment analysis (ssGSEA) method of the GSVA pack
age to score 23 immune cells and then compared the 
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differences in the immune scores among the molecular 
subtypes. The ESTIMATE algorithm was used to analyze 
the immune, stromal, and ESTIMATE scores for each 
sample. These scores represent the ratio of immune and 
stromal components to the total proportions of these com
ponents in the TME. Furthermore, the relationship 
between the two subtypes, based on PD-1 and PD-L1 
expression, was also analyzed.

Identification and Functional Analysis of 
Differentially Expressed Genes (DEGs)
OV patients were divided into two pyroptosis subtypes, to 
identify PRGs. The limma package was used to identify 
the DEGs between two molecular subtypes, with the cri
teria of threshold false discovery rate <0.05, and |fold 
change| >1.5. Next, the intersecting genes for the two 
subtypes were identified, and KEGG pathway and GO 
functional enrichment analyses were conducted on the 
DEGs using the R package “Clusterprofiler”.

Construction of the Pyroptosis-Related 
Prognostic Signature
A prognostic signature was constructed in three steps, as 
follows: 1) DEGs among the two molecular subtypes were 
processed using univariate Cox regression, to explore their 
associations with the OS of OV patients; 2) patients were 
classified into different groups (pyroptosis gene subtypes 
A, B, and C), for deeper analysis, using an unsupervised 
clustering method based on the expression of prognostic 
DEGs; 3) the entire cohort was randomly divided into 
training and validation groups at a cut-off of 1:1, following 
which the former was used to build a prognostic signa
ture; 4) to minimize the risk of over-fitting, the least 
absolute shrinkage and selection operator (LASSO) Cox 
regression was applied; 5) following multivariable Cox 
regression analysis, genes with p-value <0.05, were 
regarded as independent prognostic factors of patient sur
vival, and thus, utilized to construct a pyroptosis-related 
prognostic signature in the training set.

The risk value of signature was calculated as follows:

Risks Score ¼ �ðExpi � CoefiÞ

where Coefi and Expi denote the risk coefficient and 
expression of each gene, respectively. Risk scores of 
these genes for each patient were calculated on the basis 
of the coefficients of each gene in the Cox proportional 
hazards regression model, and categorized into low-risk 

and high-risk groups according to the median risk score. 
Kaplan–Meier survival curves were used to compare the 
OS between the two groups. The receiver-operating char
acteristic (ROC) curves of the risk score were plotted, and 
the area under the curve (AUC) was calculated to assess 
the performance of the risk score for prognosis prediction.

To evaluate the signature robustness in different data
sets, the risk scores of each sample were calculated sepa
rately in the testing dataset and the other three GEO 
datasets (GSE9891, GSE26712, and GSE49997). 
Kaplan–Meier analysis was performed to show the survi
val difference between the high- and low-risk groups. An 
AUC analysis was performed to evaluate the predictive 
performance of the model.

Acquisition of Tissues
Five OV and nearby non-tumor tissues were harvested 
from patients with OV at the Renmin Hospital of Wuhan 
University. The samples were preserved at −80°C until 
use. Written informed consent was obtained from all the 
individuals included in this study. The study was approved 
by the Ethics Committee of the Renmin Hospital of 
Wuhan University.

RNA Isolation and Quantitative 
Real-Time Polymerase Chain Reaction 
(qRT-PCR)
Total RNA from tissues of OV patients was extracted using 
RNAiso Plus (9108, TaKaRa, Japan), according to the man
ufacturer’s protocol. Following that, the Hifair II 1st Strand 
cDNA Synthesis SuperMix Kit (11123ES10,Yeasen, 
Shanghai, China) was used for reverse transcription of 
cDNA. qRT-PCR was conducted using Hieff qPCR SYBR 
Green Master Mix (11201ES03, Yeasen). GAPDH was used 
as an endogenous control for mRNA expression. Expression 
level analysis was performed using the 2−ΔΔCt method. All 
primer sequences used in this study are listed in Table S2.

Clinical Correlation Analysis of the 
Prognostic Signature
Associations between the clinical parameters and risk score 
were evaluated using chi-square and Wilcoxon tests, and 
have been represented in heatmaps. Univariate and multi
variate analyses were performed to assess the independent 
prognostic value of risk scores and clinical parameters, 
including age, FIGO stage, grade, histological subtype, and 
tumor status. A stratified analysis was carried out based on 
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the clinical parameters of the patients, including age, FIGO 
stage, grade, histological subtype, and tumor status.

Evaluation of Immune Landscape Between 
the Two Groups
To reveal the relationship between the prognostic risk 
signature and immune cell infiltration, ssGSEA was 
used to quantify the relative infiltration of 23 immune 
cells. Differences between the two groups were 
assessed using the Kruskal–Wallis test, and the results 
are shown as a boxplot. We also analyzed the associa
tion between the fractions of 23 immune cells and the 
eight genes in the signature. Moreover, the signature 
was comprehensively analyzed to determine its rela
tionship with immune checkpoints in OV. Because 
immune checkpoint inhibitors (ICIs) can enhance anti- 
cancer immunity, we predicted the potential response 
of ICIs using the tumor immune dysfunction and exclu
sion (TIDE) algorithm.13

Mutation and Drug Susceptibility Analyses
To identify somatic mutations in patients with OV, we 
downloaded single-nucleotide polymorphism data and 
clinical follow-up information from the TCGA database. 
The downloaded single-nucleotide polymorphism data 
were organized in the multiple alignment format and 
visualized using the “maftools” package in R software. 
The horizontal histogram shows the genes with the high
est frequency of mutations. The tumor mutation burden 
(TMB; mutations per million bases) of each patient was 
calculated, and the TMB levels between the two groups 
were compared using the Wilcoxon test. A chi-square test 
was conducted to identify the genes that were signifi
cantly differentially mutated between the high- and low- 
risk groups. To explore differences in therapeutic effects 
of chemotherapeutic drugs in patients across the high- 
and low-score groups, we calculated the semi-inhibitory 
concentration (IC50) values of chemotherapeutic drugs 
commonly used to treat OV using the “pRRophetic” 
package.

Establishment of a Predictive Nomogram
Based on the risk scores and clinicopathological character
istics, the R package “rms” was employed to establish 
a prognostic nomogram. The prognostic accuracy of the 
nomogram was estimated in terms of the AUC and 
depicted by means of ROC curves. Calibration curves of 

the nomogram were used to examine the concordance 
between the predicted and observed survival.

Results
Genetic and Transcriptional Alterations 
of PRGs in Gynecological Cancer
A total of 25 PRGs were included in the present study. We 
summarized the incidence of somatic mutations in 25 PRGs 
and showed the highest mutation frequency of PRGs in the 
OV cohort (91.06%; Figure 1A), followed by the UCEC 
(53.69%; Figure 1B) and CESC cohorts (17.65%; 
Figure 1C). Among these three gynecological tumors, the 
mutation frequency of TP53 was the highest. In the OV 
cohort, the mutation frequency of TP53 was 90% 
(Figure 1A). Next, we investigated the somatic copy num
ber alterations in these PRGs and observed a prevalent copy 
number alteration in 25 PRGs. We observed extensive copy 
number variation (CNV) deletions in the UCEC cohort 
(Figure 1D), while the ratios of copy number gain and 
deletion in the OV (Figure 1E) and CESC cohorts 
(Figure 1F) were similar. Among them, PRKACA, TNF, 
and AIM2 had widespread CNV gains in the three cohorts, 
while GPX4 and CASP9 presented CNV loss. Figure 1G–I 
shows the location of CNV alterations in the PRGs on 
chromosomes. To clarify whether the expression levels of 
PRGs in patients with gynecological tumors are affected by 
these genetic variants, we compared the mRNA expression 
levels between normal tissues and tumor tissues and found 
that there was no significant correlation between the expres
sion levels of PRGs and CNV alterations (Figure 1J–L). 
Considering the significant difference in PRG expression 
between OV and normal tissues and the relatively compre
hensive clinical records, we selected the OV cohort for 
subsequent analysis.

Identification of Pyroptosis Subtypes in 
OV
To fully understand the expression pattern of PRG 
involved in tumorigenesis, 1003 patients from four eligi
ble OV cohorts were integrated into our study for further 
analysis; the detailed clinicopathological information of 
the patients is shown in Table S3. Univariate Cox regres
sion and KM analyses indicated the prognostic signifi
cance of the 25 PRGs (Table S4). The comprehensive 
landscape of PRG interactions, regulator connections, and 
their prognostic value for OV patients was demonstrated 
by means of a pyroptosis network (Figure 2A and Table 
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Figure 1 Genetic and transcriptional alterations of pyroptosis-related genes in gynecological tumors. (A–C) The mutation frequency of 25 pyroptosis-related genes in OV, 
UCEC, and CESC cohorts. (D–F) The frequency of CNV change of pyroptosis-related genes in OV, UCEC, and CESC cohorts. (G–I) The location of CNV alterations in 
pyroptosis-related genes on 23 chromosomes. (J–L) The expression distribution of 25 pyroptosis-related genes in normal and gynecological cancer tissues. *p<0.05, 
**p<0.01, and ***p<0.001.
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S5). To further investigate the expression characteristics 
of PRGs in OV based on the expression profile of the 25 
PRGs, we performed k-means consensus clustering for 
1003 patients from k=2 to k=9, based on the expression 
similarity of the PRGs (Figure S2); it appeared that k=2 
was the optimal selection. The results were most reliable 
and stable when patients with OV were divided into two 
subtypes with 463 patients in cluster 1 and 540 patients 
in cluster 2. PCA showed that the two subtypes could be 
different (Figure 2B). Kaplan–Meier analysis showed that 
patients with subtype A had a longer OS than their 
counterparts with subtype B (Figure 2C). Figure 2D 
shows the relationships between the two subtypes, reveal
ing a distinct difference between the subtypes in terms of 

clinicopathological features. Thus, the results of the con
sensus clustering analysis were associated with the pro
gression of OV and survival of patients with OV.

Immune Landscape of Distinct Subtypes 
in OV
GSVA enrichment analysis showed that subtype A was sig
nificantly enriched in immune-activation pathways, including 
natural killer cell-mediated cytotoxicity, T and B cell receptor 
signaling pathway, activation of the chemokine signaling path
way, cytokine-cytokine receptor interaction, as well as, NOD- 
like and Toll-like receptor signaling pathways (Figure 3A and 
Table S6). To estimate the association between the two sub
types and the TME, the ESTIMATE algorithm was employed 

Figure 2 Identification of pyroptosis subtypes in ovarian cancer. (A) The interactions among PRGs in OV. The line connecting the PRGs represents the interaction between 
them. A blue line represents a negative correlation, while a pink line represents a positive correlation. (B) Principal component analysis showed that the two subtypes were 
different. (C) Kaplan–Meier curves of the OS between the two pyroptosis subtypes. (D) Comparison of the distribution of patients with different clinicopathological features 
between the two pyroptosis subtypes.
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to obtain the immune, stromal, and ESTIMATE scores (Table 
S7). Based on the Wilcoxon rank-sum test, we found 
a significant difference between the scores for subtypes 
A and B (Figure 3B). The relative fractions of 23 tumor- 
infiltrating immune cells (TIICs) were calculated using the 
ssGSEA algorithm (Table S8). Subtype B exhibited 
a decreased abundance of TIICs, such as activated B cells, 
CD4+/CD8+ T cells, and natural killer cells, which play a vital 
role in anti-tumor immunity (Figure 3C). Taken together, the 
expression of PRGs in the subtypes might have immunomo
dulatory effects on the TME. Given this, we attempted to 
determine the correlation between the subtypes and two 
important immune checkpoints and showed higher PD1 and 
PD-L1 expression in subtype A (Figure 3D and E).

Identification of Gene Subtypes Based on 
DEGs in OV
To further explore the potential biological behavior of each 
subtype of pyroptosis, we identified 349 pyroptosis 

subtype-related DEGs using the R package “limma”, and 
performed functional enrichment analysis (Figure 4A and B 
and Table S9). Interestingly, these DEGs were significantly 
enriched in biological processes that were significantly 
related to immunity (Figure 4A). KEGG analysis revealed 
that inflammation and immune-related pathways were 
highly enriched (Figure 4B), suggesting that pyroptosis 
plays a non-negligible role in the immune regulation of 
the TME. We then conducted univariate analysis to identify 
the prognostic role of 349 subtype-related genes, following 
which 107 prognosis-related genes were screened out and 
used for subsequent analysis (Table S10). To further vali
date this regulation mechanism, a consensus clustering 
algorithm was used to divide the patients into three genomic 
subtypes, based on prognostic genes: gene subtypes 
A-C (Figure S3). Patients with gene subtype B had the 
worst OS, whereas patients with gene subtype A presented 
favorable OS (Figure 4C). In addition, analysis of the 
expression of PRGs and clinical features of the three gene 
subtypes revealed significant differences between the three 

Figure 3 Immune landscapes of the two subtypes of ovarian cancer. (A) Differences in pathway activities between the two distinct subtypes, as scored using GSVA. (B) The 
relationship between TME score and the two subtypes. (C) Comparison of the relative abundance of infiltrating immune cells between the two subtypes. (D and E) 
Comparison of the expression level of PD-l and PD-L1 between the two subtypes. ***p<0.001, ns, not significant.
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gene subtypes in terms of expression of PRGs, FIGO stage, 
grade, histological subtype, tumor status, and survival sta
tus (Figure 4D).

Establishment and Evaluation of the 
Prognostic Signature in OV
A prognostic scoring system was constructed based on these 
subtype-related prognostic genes. Figure 5A shows the dis
tribution of patients in the two pyroptosis subtypes, three 
gene subtypes, and two risk score groups. We randomly 
divided 1003 patients with OV into training (n=503) and 
testing (n=500) sets. Following LASSO regression analysis, 
25 genes remained according to the minimum partial like
lihood deviance (Figure 5B and C). An optimum prognostic 
signature involving eight genes (SLC31A2, LYN, CD44, 

EPB41L3, VSIG4, FCN1, IRF4, and ISG20) was ultimately 
defined based on stepwise multivariate Cox regression ana
lysis. Risk score = (0.347 × SLC31A2 expression) + (−0.368 
× LYN expression) + (−0.377 × CD44 expression) + (0.432 × 
EPB41L3 expression) + (0.280 × VSIG4 expression) + 
(−0.251 × FCN1 expression) + (−0.240 × IRF4 expression) 
+ (−0.200 × ISG20 expression). Next, we calculated the risk 
score of each sample and observed a significant difference in 
the risk score between pyroptosis gene subtypes. The risk 
score of subtype A was the lowest, and the risk score of 
subtype B was the highest, indicating that low-risk score 
may be closely related to immune activation-related features, 
while high-risk score may be related to immune inhibition- 
related features (Figure 5D). More importantly, as compared 
to subtype A, subtype B had a significantly higher risk score 

Figure 4 Identification of gene subtypes in ovarian cancer, based on DEGs. (A and B) Functional enrichment analyses of DEGs between the two pyroptosis subtypes. (C) 
Kaplan–Meier curves for OS of the three gene subtypes (p<0.001). (D) Comparison of the distribution of patients with different clinicopathological features between the 
three gene subtypes.
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(Figure 5E). The risk score distribution of the training set is 
shown in Figure 5F and G. The figure indicates that the risk 
of death of a patient with a high-risk score sample was 
significantly higher than that of a patient with a low-risk 
score sample. Similarly, the Kaplan–Meier curves revealed 
a higher chance of death in the high-risk group than that in 
the low-risk group (Figure 5H). To assess the predictive 
ability of the signature, ROC curves for 3-year and 5-year 
survival were created, which exhibited AUC values of 0.722 

and 0.789, respectively (Figure 5I), indicating preferable 
sensitivity and specificity.

To validate the robustness of the model, we calculated 
the risk score in the testing set and other 3 GEO data sets 
(GSE9891, GSE26712, and GSE49997), and the results 
showed that the risk score distribution was consistent with 
that of the training set and higher risk scores also indicated 
worse OS (Figure S4A–D). Kaplan–Meier survival analysis 
demonstrated that the high-risk group exhibited 

Figure 5 Construction of prognostic signature for patients with ovarian cancer in the training set. (A) Alluvial diagram for distribution of pyroptosis subtypes in groups with 
different gene subtypes, risk scores, and survival outcomes. (B) Cross-validation for optimal penalty parameter selection in the LASSO model. (C) LASSO coefficient profiles 
of 25 prognostic genes. (D) The difference in risk score between the gene subtypes. (E) The difference in risk score between the pyroptosis subtypes. (F and G) The 
distribution and scatter plots of the risk score. (H) Kaplan–Meier curves of the OS between the different risk groups. (I) ROC curves of the signature to predict 3- and 
5-year survival.
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a significantly poorer prognosis than the low-risk group 
(Figure S4E–H). The ROC curves indicated that the signa
ture showed promising performance in predicting the OS of 
OV patients (Figure S4I–L).

Expression Levels of the Eight PRGs That 
Constitute the Prognostic Signature in 
OV Tissues
Expression levels of the eight prognostic PRGs were mea
sured in five OV tissues and adjacent normal tissues using 
RT-qPCR. As shown in Figure S5, VSIG4, CD44, IRF4, 
EPB41L3, and SLC31A2 were elevated in OV tissues, and 
ISG20, FCN1, ICOS, and LYN were downregulated in OV 
tissues, as compared to the corresponding normal tissues.

Clinical Correlation Analysis of the 
Prognostic Signature
To further verify the significance of the prognostic signa
ture in clinical practice, we examined the correlation 
between the prognostic signature and the available clinical 
characteristics of OV. We observed that higher risk scores 
in patients were significantly associated with advanced- 
stage, serous histological subtype, and tumor status 
(p<0.05; Figure S6A–C). To determine whether this prog
nostic risk score might independently predict the OS for 
OV patients, we performed univariate and multivariate 
Cox regression analyses in the entire cohort by incorpor
ating the factors of age, FIGO stage, histological subtype, 
grade, tumor status, and risk score. The results suggested 
that age, FIGO stage, tumor status, and risk score can 
independently predict the prognosis of patients with OV 
(Figure S6D–E). A stratified analysis was carried out 
based on the clinicopathological characteristics of the 
patients, including age, FIGO stage, grade, histological 
subtype, and tumor status. Patients could be divided into 
significantly different low- and high-risk groups according 
to all these variables, which further indicated that our 
model still had good predictive power in different clinical 
subgroups (Figure S7).

Evaluation of the Differential Immune 
Landscape Between the High- and 
Low-Risk Groups
Due to the strong association between clinicopathology and 
TME immune activity, we comprehensively investigated the 
correlation between the risk score and the abundance of 

immune cells using the ssGSEA algorithm. The results 
demonstrated that infiltration of activated B cells and CD4+ 

and CD8+ T cells increased in the low-risk group, while 
regulatory T cells and follicular helper T cells associated 
with poor prognosis had a higher proportion in the high-risk 
group (Figure 6A). Spearman correlation analysis showed 
a strong correlation between the eight genes in the model 
and most of the immune cells (Figure 6B). These results 
indicated that these eight genes play a critical role in immune 
infiltration and might have significant clinical value in patients 
with OV. In addition, we analyzed the correlation between 
immune checkpoints and the risk model developed in this 
study. Figure 6C shows that 30 immune checkpoints were 
differentially expressed in the two groups, including PD-1, 
PD-L1, and CTLA-4. Furthermore, the TIDE algorithm was 
used to predict the likelihood of response to immunotherapy. 
Interestingly, we found that low-risk patients may be more 
sensitive to immunotherapy than high-risk patients 
(Figure 6D).

Mutation and Drug Susceptibility Analyses
We explored the differences in somatic mutations between 
the high- and low-risk groups based on the TCGA-OV 
cohort (Figure 7A and B). Waterfall plots depicted the 
frequently mutated genes in OV stratified by high- and 
low-risk groups. The top three mutated genes were TP53, 
TTN, and MUC16. Although the high- and low-risk 
groups had similar somatic mutations (92.42% vs 
92.68%), the mutation frequencies of TP53, TTN, 
MUC16, and CSMD3 were significantly different. Next, 
we estimated the relationship between the signature and 
TMB. The results indicated that the TMB (p=0.003; 
Figure 7C) in the low-risk group was lower than that in 
the high-risk group. To evaluate the influence of TMB on 
the survival of OV patients, all patients were categorized 
into low- and high-TMB groups, based on the optimal cut- 
off value determined by the “survminer” package in 
R. The results demonstrated that patients with high TMB 
had prolonged survival (p=0.019; Figure 7D). The subse
quent stratified survival analysis showed that the risk score 
could distinguish the survival of OV patients in both high- 
and low-TMB subgroups, and the trend of survival advan
tage in the high-TMB group was reversed by the risk score 
(Figure 7E). Our results proved that for patients with OV, 
the risk score is an effective and robust prognostic factor 
independent of TMB, and different genetic mutation land
scapes exist in the two risk groups. We then selected 
chemotherapy drugs that are currently used for the 
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treatment of OV, and evaluated the sensitivity of patients 
in the two groups to these drugs. Patients in the high-risk 
group had lower IC50 values for chemotherapy drugs, such 
as cisplatin, docetaxel, doxorubicin, and elesclomol, while 
patients in the low-risk group might be more susceptible to 
treatment with gemcitabine, paclitaxel, and gefitinib. 
Together, these results showed that PRGs were related to 
drug sensitivity (Figure 7F–L).

Development of a Nomogram for 
Predicting Survival
To improve the clinical power of the signature, we estab
lished a nomogram to predict 3- and 5-year survival rates 
in OV.e, according to the algorithm (Figure 8A). The AUC 
of the nomogram for predicting the 3- and 5-year survival 

times in the whole cohort were 0.730 and 0.785, respec
tively (Figure 8B), while the 3- and 5-year AUC values of 
the nomogram in an external cohort (GSE9891) were 
0.771 and 0.722, respectively (Figure 8C). Subsequently, 
calibration plots were established in the whole cohort, as 
well as, the external cohort, which suggested that in com
parison to an ideal model, the proposed nomogram had 
a similar performance (Figure 8D and E).

Discussion
A growing number of studies have revealed a crosstalk 
between pyroptosis and anti-tumor immunity.14,15 Although 
most studies have focused on a single PRG or a single type of 
TME cell, the overall effect and TME infiltration character
istics mediated by the combined effects of multiple PRGs have 
not yet been fully recognized. In the present study based on the 

Figure 6 Evaluation of the immune landscape between the high- and low-risk groups. (A) Correlation of risk score and immune cell types. (B) Correlation of immune cell 
infiltration and the eight genes in the proposed model. (C) Differential expression of immune checkpoints in the two risk groups. (D) Distribution of TIDE scores in high- 
and low-risk groups. *p<0.05, **p<0.01, and ***p<0.001, ns, not significant.
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Figure 7 Comparison of the mutation and drug susceptibility between the two risk groups of ovarian cancer. (A and B) Waterfall plot of somatic mutation features in the 
high-risk (A) and low-risk (B) groups. Each column represents an individual patient. The mutation frequency is listed in the upper bar chart, and the proportion of each 
mutation type is shown in the bar graph on the right. (C) Difference in TMB levels between the high- and low-risk groups. (D) Survival analysis between the high- and low- 
TMB groups. (E) Survival analysis among patients stratified by risk score and TMB. (F–L) The IC50 values of seven chemotherapy drugs between the high- and low-risk 
groups. Cisplatin (F), docetaxel (G), doxorubicin (H), elesclomol (I), gemcitabine (J), paclitaxel (K), and gefitinib (L).
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Figure 8 Establishment of a prognostic nomogram for ovarian cancer. (A) A nomogram for integration of clinicopathological parameters and risk score in the whole set. 
(B and C) ROC curves for predicting the 3- and 5-year survival ROC curves in the whole and external sets. (D and E) Calibration curves of the pyroptosis-clinical 
nomogram in the whole and external sets. Calibration curves depict the calibration of the pyroptosis clinical nomogram in terms of the agreement between the predicted 3- 
and 5-year overall survival and observed outcomes. ***p<0.001.
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PRGs were further identified by means of consensus cluster
ing. The two subtypes exhibited significantly distinct clinical 
features, immune status, biological processes, and outcomes. 
The OV subtype is also characterized by significant immune- 
related biological pathways. To further verify this regulation 
mechanism, a consensus clustering algorithm was used to 
categorize patients into three genomic clusters, according to 
the prognostic DEGs between the two pyroptosis subtypes. 
These findings suggested that PRGs might serve as prognostic 
biomarkers for estimating the clinical outcome and immu
notherapy response of OV. Therefore, we combined LASSO 
regression and multivariate Cox regression analysis to screen 
for the most informative prognostic indicators that could com
pose the final signature. Ultimately, we derived a prognostic 
risk signature that showed favorable predictive ability. The 
expression levels of the eight genes in the model were also 
explored experimentally in OV tissues. The pyroptosis pattern 
characterized by immune inhibition presented a higher risk 
score, whereas the pattern characterized by immune activation 
presented a lower risk score. Patients divided by risk score into 
low- and high-risk score groups exhibited significantly differ
ent clinicopathological characteristics, prognosis, mutation, 
TME, immune checkpoints, response to immunotherapy, and 
drug susceptibility. High-risk scores in patients were signifi
cantly associated with advanced-stage, serous histological 
subtype, tumor status, and poor prognosis, suggesting that it 
exhibits satisfactory clinical utility, which might improve 
prognostic predictions of survival risks and lead to the creation 
of additional clinical therapies. A low-risk score was charac
terized by activation of immunity, upregulation of PD-L1 
expression, lower TIDE scores, lower TMB, and a favorable 
prognosis. These findings suggested using multivariate Cox 
regression analysis, a nomogram was constructed, which 
demonstrated superior predictive accuracy. Based on the 
total points calculated by the nomogram, clinicians may 
recommend certain courses of action. For example, the guide
lines could suggest that patients with poorly differentiated 
histology should undergo palliative chemotherapy because of 
their low life expectancy. On the other hand, patients with 
well-differentiated histology have a better prognosis, so 
debulking surgery could be chosen in their case. However, 
solely depending on the TNM classification for patient selec
tion may be ambiguous and doctors would have to rely on their 
clinical experience. Using the nomogram proposed in this 
study, oncologists would be in a better position to select 
patients with better survival rates, because they would have 
a higher probability of benefiting from palliative resection, as 
it consists of a larger combination of clinicopathological 

parameters. Thus, using a nomogram to identify subgroups 
of patients with a more homogeneous prognosis, physicians 
can assess a diverse range of parameters with more objective
ness and precision for OV, so that the interpretation of clinical 
trial outcomes becomes clearer. The nomogram can also be 
used to assess individual clinical outcomes and the potential 
for specific OV treatments.

OV is one of the main causes of death from gynecolo
gical malignancies. Although progress has been made in 
the treatment of OV, most patients relapse after first-line 
treatment, depending on the tumor and non-tumor hetero
geneity of the tumor and surrounding TME. The TME in 
OV is a crucial orchestrator of OV progression, and there
fore, should be considered as a necessary target of combi
nation therapy. Substantial heterogeneity exists across 
patients with OV, which contributes to differential clinical 
outcomes and highlights the crucial role of the TME in OV 
tumorigenesis and progression.16–18 There is increasing 
evidence regarding the clinical significance of the TME 
in the context of predicting tumorigenesis, progression, 
prognosis, and therapeutic efficacy in various 
cancers.8,19,20 The typical structure of the TME comprises 
of immune and inflammatory cells, endothelial cells, myo
fibroblasts, fibroblasts, adipose cells, and the extracellular 
matrix.9 In this study, we conducted a thorough analysis of 
the association between the signature and TME immune 
activity. The results showed a significant difference 
between the pyroptosis subtypes A and B. GSVA enrich
ment analysis showed that subtype A was significantly 
enriched in e immune pathways and showed a higher 
risk score. Additionally, we discovered that characteristics 
of the TME and the abundance of 23 TIICs were different 
between the two molecular subtypes, implying the vital 
role of PRGs in OV progression. Specifically, OV is an 
immunogenic tumor with a spontaneous anti-tumor 
immune response. Lymphocyte infiltration in tumor biopsy 
samples has been associated with improved survival of 
patients with a range of cancers, including melanoma.21 

Tumor-infiltrating T cells, especially CD4+ and CD8+ 

T cells, are present in the ovarian TME and are closely 
associated with a good prognosis. In the subset of high- 
grade serous OV, tumors harboring BRCA1/2 mutations 
demonstrate a higher neoantigen burden, as well as CD3+ 

and CD8+ tumor-infiltrating lymphocytes. Increased levels 
of PD-1 and PD-L1 expression on TIICs, as compared to 
that in homologous recombination-proficient tumors indi
cates that PD-1/PD-L1 inhibitors may be more effective in 
BRCA1/2-mutated tumors than in homologous 
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recombination-proficient tumors.22 Several studies have 
demonstrated that a high density of CD8+ T cells predicts 
a relatively favorable signal for the prognosis of OV 
patients.23,24 Although CD4+ T cells are generally non- 
cytotoxic, they can help recruit and activate CD8+ 

T toxic lymphocytes and enhance their anti-tumor immune 
effects. Some studies have demonstrated that the densities 
of tumor-infiltrating CD4+ T cells in OV tissues are higher, 
and higher densities indicate a good prognosis.23 In this 
study, subtype A and low-risk scores, with a favorable 
prognosis, showed higher immune infiltration of activated 
CD4+ and CD8+ T cells, suggesting that they play an 
active role in the tumorigenesis and progression of OV. 
As the predominant antigen-presenting cells, dendritic 
cells (DCs) play an antigen-presenting role in activating 
T cells and natural killer cells,e.25 Our results suggest 
insufficient DC infiltration in subtype B and high-risk 
score groups. A recent prospective study revealed that 
patients with high infiltration of T and B cells have sig
nificantly prolonged overall survival.26 In our study, the 
relative abundance of B cells in subtype B and high-risk 
score groups with worse OS was lower than that in sub
type A and low-risk score groups, suggesting that B cell 
infiltration inhibits the development of OV. Collectively, 
our results demonstrated a quantitative and qualitative 
difference in the landscape of immune infiltration between 
the distinct pyroptosis subtypes and risk subgroups.

Tumor cells that undergo necroptosis, ferroptosis, and pyr
optosis can trigger powerful anti-tumor immunity in vivo and 
in vitro, and ICIs can synergistically improve their efficacy, 
even in ICI-resistant tumors.27 Recently, many studies have 
focused on immune checkpoint molecules, such as PD-1/PD- 
L1 and CTLA-4, as components of new strategies for cancer 
therapy, and found that these molecules can significantly reg
ulate the immune function of TICs.28,29 Studies have shown 
that ICIs inhibit tumor development by alleviating the dysfunc
tion of effector T cells. It is traditionally believed that CD8+ 

T cells activated by immunotherapy induce tumor cell death 
via two approaches mediated through perforin granzyme and 
Fas-FasL.30,31 However, many recent studies have established 
a new mechanism for CD8+ T cell-mediated inhibition of 
tumors, by inducing iron death and pyrolysis.32,33 In the 
TME, PD-1 on the surface of activated T cells binds to PD- 
L1 and PD-L2 receptors on the surface of tumor cells, to 
activate a series of signal factors in immune cells. This process 
initiates a series of signaling factors in immune cells, to inhibit 
T cell activation and promote T cell failure, thus helping tumor 
cells evade immunosurveillance.34 To date, the use of 

antibodies that inhibit PD-1 or PD-L1 has achieved moderate 
results in OV, with a median response rate of 10% to 15%.35,36 

Interestingly, the combination of anti-PD1 nivolumab and anti- 
CTLA4 ipilimumab showed promising results for platinum- 
resistant OV, in a six-month interim analysis, with an overall 
response rate of 34%. Nevertheless, the final results are still 
awaited for this clinical trial.37 Moreover, several biological 
agents have been studied as therapeutic strategies that could be 
used in combination with PARP inhibitors for immunothera
pies, including anti-CTLA-4 and anti-PD-1/PD-L1. The ratio
nale of this treatment is based on the hypothesis that BRCA1/2, 
and wild-type BRCA1/2 homologous recombination deficient- 
ovarian tumors display a higher neo-antigen load than homo
logous recombination-proficient cancers, which in turn 
produce a more effective anti-tumor immune response.38 In 
addition, there is evidence that BRCA deficiency may induce 
a stimulator of interferon genes-dependent innate immune 
response, by inducing type-I interferon and pro-inflammatory 
cytokine production.39 In addition to OC, a key point of immu
notherapy is to find reliable biomarkers for the identification of 
responders to ICIs. Several biomarkers, such as PD-L1, MSI, 
and TMB, have a higher level of validation.40 In this study, we 
observed higher expression levels of PD-1 and PD-L1 in 
subtype A and low-risk score groups of OV. TIDE prediction 
showed that the low-risk group had a significantly lower TIDE 
score. Moreover, we found that a higher TMB level was 
observed in the high-risk group, and patients with high TMB 
had prolonged survival. These findings suggested that patients 
with low-risk scores have significant therapeutic and clinical 
benefits.

The signature constructed in the present study contained 
eight genes, of which five genes (CD44, VSIG4,41 

EPB41L3,42 IRF4,43 and ISG20)44 are closely related to the 
genesis and development of OV. CD44 is a cell surface glyco
protein that mediates the response of cells to the microenviron
ment and participates in a variety of intracellular processes, 
including differentiation, proliferation, and movement.45 

Increasing evidence indicates that CD44 affects the progres
sion of cancer metastasis, maintenance of cancer stem cells, 
and development of chemoresistance through a variety of 
mechanisms in a variety of cancers, including OV, and thus, 
represents a promising therapeutic target for the treatment of 
OV.46 There is ample evidence that CD44 and STAT3 act 
synergistically at multiple levels in the TME, to promote 
tumor angiogenesis, immunosuppression, and cancer meta
bolic reprogramming, which is conducive to cancer 
progression.47 Zhou et al48 revealed that high expression of 
CD44 is significantly correlated with worse prognosis and 
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promotes OV progression through activation of epithelial- 
mesenchymal transition, by regulating Snail, ZEB1, and 
Caveolin-1. VSIG4, a novel B7 family-related macrophage 
protein, can inhibit T-cell activation. VSIG4 RNA and protein 
expression levels were found to be higher in OV tissues and 
associated with the progression and recurrence of OV.41 

Recently, a five-gene signature was built to predict the prog
nosis of patients with OV.44 They found that the expression of 
ISG20 was significantly downregulated and that ISG20 over
expression inhibited the proliferation, migration, 
and invasion of OV cells and the growth of 
a xenotransplantation model.

Conclusion
In this study, we revealed global alterations of PRGs at the 
transcriptional and genetic levels in three types of gynecologi
cal cancer and demonstrated the extensive regulatory mechan
isms between multi-layer PRG alterations and patient 
clinicopathological features, prognosis, and TME cell- 
infiltrating characteristics in OV. These findings highlight the 
key role of PRG in TME and help develop immunotherapies 
and promote individualized therapeutic strategies for OV 
patients.
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