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Abstract

Fibroblast growth factor 8 (FGF8) is a potent morphogen that regulates the ontogenesis of

gonadotropin-releasing hormone (GnRH) neurons, which control the hypothalamus-pituitary-

gonadal (HPG) axis, and therefore reproductive success. Indeed, FGF8 and FGFR1 defi-

ciency severely compromises vertebrate reproduction in mice and humans and is associated

with Kallmann Syndrome (KS), a congenital disease characterized by hypogonadotropic

hypogonadism associated with anosmia. Our laboratory demonstrated that FGF8 signaling

through FGFR1, both of which are KS-related genes, is necessary for proper GnRH neuron

development in mice and humans. Here, we investigated the possibility that non-genetic fac-

tors, such as the epigenome, may contribute to KS onset. For this purpose, we developed an

embryonic explant model, utilizing the mouse olfactory placode (OP), the birthplace of GnRH

neurons. We show that TET1, which converts 5-methylcytosine residues (5mC) to 5-hydroxy-

methylated cytosines (5hmC), controls transcription of Fgf8 during GnRH neuron ontogene-

sis. Through MeDIP and ChIP RT-qPCR we found that TET1 bound to specific CpG islands

on the Fgf8 promoter. We found that the temporal expression of Fgf8 correlates with not only

TET1 binding, but also with 5hmC enrichment. siRNA knockdown of Tet1 reduced Fgf8 and

Fgfr1 mRNA expression. During this time period, Fgf8 also switched histone status, most

likely via recruitment of EZH2, a major component of the polycomb repressor complex-2

(PRC2) at E13.5. Together, these studies underscore the significance of epigenetics and

chromatin modifications to temporally regulated genes involved in KS.

Introduction

Fibroblast growth factors (FGFs) are well-known signaling proteins that are crucial for neuro-

nal fate specification, progenitor cell proliferation, and cell survival [1–7]. In the developing

brain, FGF8 is required for proper formation of the midbrain-hindbrain, telencephalon, mid-

line structures, cerebellum, and the olfactory placode (OP) [8–12]. Indeed, inactivation of

FGF8 function results in malformation of various brain regions [13–18]. As such, location and

dosage of Fgf8mRNA expression is critical for initiating developmental cellular responses, as
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they elicit downstream signaling factors, which in turn, establish patterning and orientation of

brain regions [11,17,19–22].

Our previous studies showed that FGF8 signaling is required for gonadotropin-releasing hor-

mone (GnRH) neuron ontogenesis in the OP [2,3,5,14]. However, it is still not understood what

drives Fgf8 transcription in the developing OP. Several studies showed that multiple downstream,

conserved DNA sequences could recapitulate Fgf8 expression patterns in both zebrafish and

mouse embryos [23–25]. These studies suggested chromosomal conformation is dynamically reg-

ulated in the context of tissue type, and that both activating and repressive cis-regulatory elements

can drive Fgf8 expression. However, few studies have addressed the chromatin state of the Fgf8
locus, which is likely to play a role in cis-regulatory enhancer-promoter interactions, or alterna-

tively, how the epigenomic state may control the temporal regulation of Fgf8 transcription.

Our recently published results studied Fgf8 gene transcription during emergence of GnRH

neurons in the embryonic day (E) E9.5-E13.5 OP, a heterogeneous cell population of neurons

and epithelial cells, that contributes to GnRH neuron proliferation and differentiation [26–28]

(Fig 1). In these studies, we found that Fgf8 transcription may be under the direct control of

DNA methylation [29]. Interestingly, we found that the Fgf8 promoter region and gene body

harbors three major CpG islands upstream (CpG 1, 2, 3) and one downstream of the transla-

tion start site (TSS; CpG 4) of the Fgf8 gene. Moreover, our experimental data showed that the

DNA methyltransferase (DNMT) inhibitor, 5-azacitidine (AZA), induced Fgf8mRNA expres-

sion in GT1-7 GnRH neurons [28]. Collectively, the results from these initial studies led to the

premise that the upregulation of Fgf8 transcription in the embryonic mouse OP may be a

DNA methylation-dependent process.

To test our hypothesis, we focused on two mechanisms that contribute to methylation: CpG

dinucleotide methylation and histone modifications. The ability of DNA and histone methylat-

ing proteins to modify chromatin architecture is a key developmental regulatory component,

which maintain genes in an active or inactive state, and control cell fate decisions. In general,

DNA methylation changes are catalyzed by DNMTs, which convert cytosines to 5-methylcyto-

sine (5mC), and methylated DNA can be demethylated by ten-eleven translocation methylcyto-

sine dioxygenases (TETs), which convert 5mC to 5-hydroxymethylcytosine (5hmC) [31]. In

neurons, the transition from progenitor to a differentiated neuron is associated with high levels

of 5hmC [32–34]. At the genomic level, it is well known that 5hmC associates with genes impor-

tant for neuronal function and correspond with gene transcription [32,35,36]. However, it is

unclear how neural OP progenitor cells coordinate the process of DNA demethylation of the

Fgf8 locus during development and what factors are required for this process.

As previously indicated, the methylation pattern of histones is of equal importance in

respect to Fgf8 transcription. Specifically, two modifications, H3K27me3, a repressive histone

mark, and H3K4me3, an activating histone mark, form bivalent domains which poise neuro-

genic genes for activation, and are thought to respond to developmental cues. Chromatin-asso-

ciated proteins, such as the polycomb repressive complex 2 (PRC2), which contribute to

H3K27 trimethylation, are also important for developmental gene regulation, as they have

been shown to regulate proliferation, neurogenesis, WNT signaling, cell cycle exit, and com-

paction of chromatin [37]. Interestingly, mice mutant for Fgf8 or PRC2 genes (i.e., histone-

lysine N-methyltransferase Ezh2) share a common phenotype in which embryos fail to

undergo gastrulation and have reported proliferation defects [38–40]. Additionally, Fgf8 is

suppressed in the trunk tissue of developing embryos [41] by a mechanism that recruits PRC2

proteins. These studies suggest a mechanism for Fgf8 transcription via local histone modifica-

tions that may affect the accessibility of the chromatin. However, little is known about whether

PRC2 proteins also regulate OP Fgf8 transcription during GnRH neuron emergence, and

whether they contribute to GnRH neurobiology.

TET1 regulates Fgf8 in GnRH neurons
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Here we show that Fgf8 expression in the developing mouse OP is under the control of epi-

genetic switches involving both DNA and histone-modifying proteins. Specifically, we studied

epigenetic control of Fgf8 transcription in the E9.5—E13.5 mouse OP, which is known to have

high Fgf8 transcriptional activity. First, we examined DNMT and TET mRNA expression as

well as protein-DNA binding profiles, and whether inhibition of DNMTs upregulated Fgf8
mRNA in embryonic OP explants. Second, we investigated 5hmC conversion via TET1 on

CpG islands along the Fgf8 promoter during OP cell differentiation. Specifically, we focused

on TET1, since unlike the other TETs, it is associated with gene promoters [42]. Third, we

demonstrated that Fgf8 histone modifications, along with other DNA modifiers, are essential

for the precise timing of Fgf8mRNA production during mid-gestational mouse development.

Together, we show that the state of Fgf8 chromatin contributes to temporally-dependent regu-

lation of transcriptional activity.

Materials and methods

Timed-breeding of mice and nasal explant cultures

Adult wildtype 129P2/OlaHsd�CD-1 male x female mice were timed-bred in the late afternoon

in our animal facility (12L:12D cycle) with access to food and water ad libitum. All procedures

Fig 1. A) Schematic of transient Fgf8 transcription during GnRH neuronal emergence in the embryonic mouse OP. B) Fgf8 and GnRHmRNA expression at

E10.5 (n = 2) or at E10.5+3 days in-vitro (DIV) (n = 3) in the mouse OP. p< 0.0005, p< 0.01; Student’s t-test C) MethPrime CpG prediction of CpG islands on

mouse Fgf8 promoter with relative locations of CpG1-4 primers [30]. � indicates p<0.05.

https://doi.org/10.1371/journal.pone.0220530.g001
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were approved by the Institutional Animal Care and Use Committee at Kent State University.

In the morning, females with a sperm plug were denoted as embryonic day (E) 0.5. Adult preg-

nant female 129P2/OlaHsd�CD-1 mice were sacrificed at E9.5, E10.5 or E13.5. The uterine

horns were quickly removed from the mice, and kept in sterile ice-cold phosphate-buffered

saline (Sigma-Aldrich, P3813). Following, the nasal region containing the OPs was surgically

isolated using a dissection microscope, placed on 0.65 μm Durapore membrane filters (Milli-

pore, DVPP04700), transferred to cell tissue culture inserts (Corning, 353095), and grown

using the liquid-air interphase method with in phenol-red free Dulbecco’s modified Eagle’s

medium (DMEM)/F12/glutamax (Thermofisher Scientific, 10565018) supplemented with B27

(Thermofisher Scientific, 17504044) and 1% pen/strep/myc (Sigma-Aldrich, A5955) media.

For expression assays of TETs and DNMTs, Chromatin immunoprecipitation, and MeDIP

experiments, E9.5, E10.5, or E13.5 nasal explant tissues were collected, immediately flash fro-

zen and kept at -80˚C.

Cell culture

Immortalized mouse GnRH GT1-7 and GN11 neurons (generously donated by Dr. Pamela

Mellon, University of San Diego, CA; generously donated by Dr. Sally Radovick, Robert Wood

Johnson Medical School, NJ) were grown in phenol-red free DMEM containing 4.5 g/L pyru-

vate and 548 mg/L-glutamine, 10% fetal bovine serum (ATCC, 30–2020), 1% pen/strep

(Sigma-Aldrich, A5955) [43]. Cells were kept in a humidified incubator at 37˚C with 5% CO2.

Pharmacological treatments

OP explants were treated for 72 h (i.e., 3 days in vitro (DIV)) in the presence of vehicle

(0.005% DMSO) or 1 μM 5-azacitidine (AZA) (Tocris Biosciences, 3842). Our AZA dose and

length of treatment was based on previous studies showing that these conditions were able to

induce gene expression [44,45]. Furthermore, AZA was able to induce Fgf8mRNA expression

in GT1-7 neurons from our previous studies [28]. Total cellular RNA extraction and cDNA

synthesis were performed as described below.

RT-qPCR

Total cellular RNA was extracted with TriPure (Roche, 11667165001) according to the manu-

factures instructions. RNA purity and concentration was measured using the Synergy H2

multi-mode reader with a Take3 Micro-Volume plate adapter (Biotek). ProtoScript II First

Strand cDNA Synthesis Kit (New England Biolabs, E6560L). ProtoScript II First Strand cDNA

Synthesis Kit was used to reverse transcribe 0.5 μg of total RNA. RT-qPCR was performed in

triplicate with gene-specific, intron-spanning primers (Table 1) using a Mastercycler EP Real-

plex2 (Eppendorf, EPPE6300000.604) with SYBR Green PCR Master Mix (Roche,

04707516001). Relative mRNA expression levels were calculated using the ΔΔ-2CT method

[46]. Hypoxanthine phosphoribosyltransferase 1 (Hprt-1) was used as a housekeeping gene.

Methylated immnuoprecipation (MeDIP)

Olfactory placodes from 4–6 E9.5, E10.5, and E13.5 embryos were treated with RNaseA, lysed

overnight and isolated with phenol chloroform. 5 μg of DNA was sonicated to 500–200 bp.

DNA was incubated at 95˚C for 10 minutes and quickly placed on ice. Dynabeads (Invitrogen,

11203D) were incubated for 2 hours with salmon sperm and washed with PBS-T. DNA (800

ng) was immunoprecipitated with 1.25 μg of either rabbit anti-5mC (Active Motif, 61255), rab-

bit anti-5hmC (Active Motif, 39791), or normal rabbit IgG (Millipore, 12–370), and 8 ng (1%)

TET1 regulates Fgf8 in GnRH neurons
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of the precipitated DNA was saved as input control. Following incubation, DNA was incu-

bated for 4 hours at 4˚C on a 3D rotator with the respective antibodies. Beads were pelleted

using a magnet and washed in PBS and TE buffer on a 3D rotator for 10 minutes at 4˚C. Anti-

bodies were digested with PK at 60˚C for 2 hours followed by a 10 minute 95˚C PK inactiva-

tion step. Samples were subsequently purified using phenol-chloroform and glycogen. Each

sample was ran on an Eppendorf RT-qPCR program with primers flanking 4 CpG islands on

the Fgf8 gene. Relative enrichment was calculated using the percent input method, where each

immunoprecipitation is adjusted to input loading controls, and compared to negative control

IgG for significant 5mC or 5hmC enrichment. Non-specific primers flanking upstream of the

of Fgf8 were used as negative control in the DNMT3b ChIP.

Chromatin immunoprecipitation (ChIP)

ChIP was used to examine histone modifications (H3K4me3 and H3K27me3) along with

TET1, DNMT3a, DNMT3b and DNMT1, and EZH2 interaction along the promoter region of

Fgf8. Embryos were dissected at E9.5, E10.5 or E13.5, and pooled in microcentrifuge tubes

containing 4–6 OPs per sample. Chromatin was harvested using the EZ-Magna-ChIP kit

(Millipore, 17–10086) according to manufacturer’s instructions. Briefly, cells were cross-linked

with 1% formalin for 10 min and lysed. The protein cross-linked genomic DNA was frag-

mented to 200–600 base pairs using sonication. All chromatin samples were verified for cor-

rect shearing density on an agarose gel before continuing. Magnetic Protein A/G beads were

blocked with salmon sperm for 2 hours, and washed in PBS. Following, the fragments were

immunoprecipitated using 1.25 μg of either rabbit polyclonal antibody against DNMT3b,

DNMT1, DNMT3a (Abcam, ab2851, ab13537, ab2850), EZH2, TET1, H3K4me3, and

H3K27me3 (Active Motif, 39901, 61443, 39915, 39155) or control IgG (Millipore, 12–370) for

3 hours at 4˚C on a 3D rotator. Magnetic beads were pulled out of solution using a magnet,

and bound fragments were washed four times for ten minutes. Proteinase K (10 mg/ml) was

used to reverse crosslinking, and DNA was isolated using phenol chloroform. The relative

Table 1. Forward and reverse primer sequences for detection of genomic DNA and mRNA transcripts used in this study.

Target Forward (5’-3’) Reverse (5’-3’) bp

DNA

Fgf8 CpG 1 AACTGCTCGTGGTCGTACAG GTGCCCCCAACTAACTCCTC 152

Fgf8 CpG 2 GGTGGACGTCGAGCACAG AAGGGCTATCCCGAAAAGGTG 156

Fgf8 CpG 3 ACATTAGGCGACCCAGAGAC CGGGATCGTCCAGGGATTG 144

Fgf8 CpG 4 GGTACAAGGGCAATGGGGAC CACCTTACCGAAGGGGTCTC 275

Fgf8-non-specific GTCAGTCTGCGAATATAGCTCAG CACAGTACCAACAAGTGTCACAG 314

Fgf8 3’UTR CCCAACTACCTGCAGAGCAA TTGAGGAACTCGAAGCGCAG 242

mRNA

Tet1 ACAAAAAGCGTACCTGCACC CCGGTTTTCACGTCACTTCC 214

Tet2 AGGGACCAGAACCAGGCT TTGAATGAATCCAGCAGCACC 171

Tet3 CCTCGGCGGGGATAATGG ACGAGCATTTATTTCCACCTCG 78

DNMT3a GAGCCGCCTGAAGCCC TTTCGATCATCCTCCCGCTC 230

DNMT3b ATCCATAGTGCCTTGGGACC CTCCTGTCATGTCCTGCGT 294

DNMT1 GTACATGCTGCTTCCGCTTG CAAGTCTTTGAGCCGCCTG 197

Fgf8 AGAAGACGGAGACCCCTTCG TGAATACGCAGTCCTTGCCTT 158

GnRH GGCATTCTACTGCTGACTGTGT CTACATCTTCTTCTGCCTGGCT 252

Fgfr1 ATGGTTGACCGTTCTGGAAG TGGCTATGGAAGTCGCTCTT 171

Hprt CTCATGGACTGATTATGGACAGGAC GCAGGTCAGCAAAGAACTTATAGCC 123

https://doi.org/10.1371/journal.pone.0220530.t001
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amount of protein occupancy on the identified sites on the promoter of Fgf8 was measured

using a Mastercycler EP Realplex2 (Eppendorf, EPPE6300000.604) with SYBR Green PCR

Master Mix (Roche, 04707516001). For this purpose, four primer sets were designed to flank

the CpG islands on the promoter region and an intragenic site of Fgf8. ChIP signal was mea-

sured using the percent input method as described above. Non-specific primers flanking the

3’UTR of Fgf8, a CpG poor region, were also used in the MeDIP (S1 Fig).

Tet1 siRNA treatment

siRNA experiments were conducted using Accell SMARTpool siRNA, which targets 4 portions

of the Tet1mRNA transcript (CUAUUUGUCUAUUAUGUGUG, UCGUUGGGUCUAAAGGCUU,

UCGCUAAACUAACUAUAAAUGUAU, UUAUAGUUUUAAAUACUUA). A non-targeting siRNA

pool was used as a negative control (UGGUUUACAUGUCGACUAA, UGGUUUACAUGUUUUCU
GA,UGGUUUACAUGUUUUCCUA, UGGUUUACAUGUUGUGUGA). All siRNAs were resuspended

in 5x siRNA buffer diluted in RNase free water. GT1-7 hypothalamic neurons were seeded in

24-well plates in DMEM and FBS with 1% penicillin/streptomycin. Growth medium was

removed and replaced with Accell delivery media (Dharmacon, B-005000-100) with 1 μM

Tet1 siRNA (Dharmacon, E-06861-00-0020) or non-targeting control (Dharmacon, D-001910-

20-20). After 3 days, cells were collected for RNA as described previously.

5mC and 5hmC dot blot

Dot blot experiments were used to determine genome-wide changes in DNA. Total DNA was

isolated as previously described. 150ng and 75ng of DNA were diluted in 20x SSC, heated at

95˚C, cooled on ice, and blotted on a nitrocellulose membrane soaked in 10x SSC. The mem-

brane was UV crosslinked for 10 minutes on a Benchtop UV Transilluminator (UVP, M-20V).

Following, the membrane was blocked in 5% dry milk and 2% normal sheep serum for 1 hour,

before an overnight incubation (1:5000) with 5hmC or 5mC (Active Motif, 39791, 61255) in

blocking solution. The membrane was washed three times in TBS-Tween and incubated in

peroxidase anti-rabbit IgG (1:2000)(Vector Laboratories, PI-1000) for one hour, and imaged

using Clarity Western ECL substrate (BioRad, 1705061). Images were processed and quanti-

fied using ImageJ studio.

Statistical analysis

Data were analyzed using Student t-tests or one-way analysis of variance (ANOVA) with treat-

ment and/or DIV between subject variables. Holm-Sidak method tests were used for post-hoc
analysis. Group numbers (n) are given in the figure legends. Differences were considered sig-

nificant if p< 0.05.

Results

Identification of CpG islands on the Fgf8 promoter

To identify CpG islands along the length of the Fgf8 promoter, we analyzed 5000 basepairs

along the 5’UTR and an intragenic site localized between exons 1 and 2 using MethPrimer

[30]. Here, we found 4 major CpG islands, with 3 located in the 5’ UTR and 1 located intra-

genically (Fig 1C).
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Inhibition of DNMT activity increases Fgf8 expression in the embryonic

mouse OP

Our previous studies in GT1-7 neurons revealed that inhibition of DNMT activity using AZA,

upregulated Fgf8 expression. Here, we found that AZA treatment (1 μM) in E10.5 OP explants

cultured 3 DIV increased Fgf8mRNA expression (p = 0.02; Fig 2A). Contrary to what was

found previously in the GT1-7 cell line, the increase in OP GnRHmRNA expression was not

significant (p = 0.1; Fig 2A) [28]. Dot blot analysis of overall 5mC levels in GT1-7 cells showed

a decrease with increasing AZA concentration (Fig 2B). Propidium iodine staining in GT1-7

neurons showed no significant changes in cell death when treated with 1 μM AZA 3 DIV

(p = 0.5), (S2 Fig).

Tet and DNMT expression in the OP

To determine the transcriptional activity of DNA methylation modifiers in the embryonic OP,

we analyzed their mRNA levels in E10.5 and E13.5 OPs. We showed that Tet1, Tet2, and Tet3
mRNA was increased in E13.5 OPs compared to E10.5 OPs (p = 0.001, p = 0.0002, p = 0.0006

respectively; Fig 3A). Dnmt3amRNA increased 10-fold (p = 0.006), while Dnmt3bmRNA lev-

els significantly decreased (p = 0.03; Fig 3B). No significant changes were detected for Dnmt1
orHdac1mRNA expression (p = 0.5, p = 0.9). We further found that Tet1, Tet2, and Tet3
mRNA expression was also higher in developmentally mature GT1-7 compared to migratory,

immature GN11 neurons (p = 0.000003, p = 0.0007, p = 0.00002; Fig 3C). Moreover, 5hmC

DNA dot blot experiments showed that 5hmC levels are significantly higher in E13.5 com-

pared to E10.5 OPs (p = 0.01; Fig 3D).

DNMT3b interacts with the Fgf8 locus

Our AZA treatment findings suggested that Fgf8 expression was under the control of repres-

sive DNA methylation in both the GT1-7 cell line and E10.5 OP. To explore this further, we

tested the ability of DNMT proteins to associate with the Fgf8 locus. While DNMT3a and

DNMT1 were not bound to the Fg8 locus at E9.5 or E13.5, DNMT3b was significantly

enriched at E9.5 on CpG 2 (p = 0.03), CpG 3 (p = 0.03) and CpG 4 (p = 0.03), which are closest

Fig 2. AZA induced Fgf8 expression in the OP. A) RT-qPCR for Fgf8, GnRH andHDAC1mRNA in vehicle (n = 6) vs 1 μM

AZA-treated E10.5 mouse OP explants (n = 6) for 3 DIV B) Two representative 5mC dot blots in GT1-7 neurons treated with

AZA (Vehicle, 0.01, 0.1, or 1 μM) for 3 days. Note that 5mC is virtually absent at the 1 μM concentration only. � indicates

p< 0.05; Student’s t-test.

https://doi.org/10.1371/journal.pone.0220530.g002
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to the Fgf8 TSS. In contrast, DNMT3b was not significantly enriched on CpG 1 (p = 0.06) and

a non-specific region (p = 0.8) (Fig 4).

5hmC accumulation on the Fgf8 promoter is driven in a time-dependent

fashion

Here, we analyzed 5mC and 5hmC occupation along the Fgf8 promoter region in developing

OPs. Because our previous results indicated rapid changes in the expression levels of epigenetic

modifiers (i.e., increased Tet and Dnmt3a and reduced Dnmt3bmRNA levels), we hypothe-

sized that these enzymes may play a prominent role in regulating Fgf8 transcription. We per-

formed MeDIP using OPs from E9.5, E10.5 and E13.5 embryos. We found that 5hmC was

enriched at 2 of the 3 CpG islands found along the promoter region of Fgf8 (Fig 5). Individual

Student’s t-tests comparing 5hmC levels within CpG 1 or CpG 3 found that 5hmC was highly

enrichment at all ages (E9.5, E10.5, E13.5) when compared to IgG (p = 0.002, p = 0.03,

p = 0.03; p = 0.0001, p = 0.03, p = 0.04; Fig 5). These results are in line with E8.5 frontonasal

prominence tissue (i.e., pre-placodal) MeDIP data detecting significant 5mC and 5hmC

Fig 3. TET or DNMT expression in the OP. A) Tet 1, 2, 3 or B) Dnmt1, 3a, 3b, and HDAC1mRNA expression in E10.5 or E13.5 mouse OP (n = 4). C) Tet 1, 2, 3mRNA

expression in GN11 and GT1-7 GnRH neurons (n = 4). D) 5hmC dot blot quantification of E10.5 (n = 4) versus E13.5 (n = 4) in 75 ng of OP genomic DNA and original

dot blot image. � indicates p< 0.05; Student’s t-test.

https://doi.org/10.1371/journal.pone.0220530.g003
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enrichement on CpG 1 (p = 0.01; p = 0.002), and CpG 3(p = 0.0006; p = 0.0006) (S3 Fig). Inter-

estingly, this observation coincided with the embryonic time period where OP Fgf8mRNA

expression is high. One-way ANOVAs showed a significant decrease in 5hmC with time

within CpG 1 (p = 0.002) and CpG 3 (p = 0.0001). In contrast, no significant enrichment of

5hmC was detected on CpG 2 or CpG 4 (p = 0.1, p = 0.2, p = 0.1; p = 0.2, p = 0.5, p = 0.7), and

5mC was not enriched at any of the 4 CpG sites (p = 0.7, p = 0.1, p = 0.6; p = 0.7, p = 1, p = 0.3;

p = 0.2, p = 0.2, p = 0.9; p = 0.4, p = 0.8, p = 0.5, listed as age groups within primer sets, CpG

1–4, respectively.) (Fig 5). These results were verified using 2 different antibodies against 5mC

and 5hmC.

TET1 interacts with CpG 1 and CpG 3

Because we found significant enrichment of 5hmC on CpG 1 and CpG 2, we hypothesized that

TET proteins are responsible for the conversion of 5mC to 5hmC on the Fgf8 promoter. Spe-

cifically, we focused on TET1, since it is associated with gene promoters while TET2 is associ-

ated with gene bodies and near actively expressed exons [42]. Moreover, TET1 seems to play a

role in the neuroendocrine system, as recent studies found that TET1-KO mice have impaired

fertility, and TET1 expression responds to lutenizing hormone in gonadotropin cell lines

[47,48]. Therefore, we performed ChIP to determine if TET1 co-localizes with 5hmC rich

regions on the Fgf8 promoter. Our results showed that at E9.5, TET1 localized to CpG 1 and 3,

previously identified to be 5hmC enriched (p = 0.01, p = 0.004), and was absent on CpG 2

(p = 0.7) (Fig 6A). At E13.5, TET1 was signifigantly enriched only on CpG 1 (p = 0.03) and 3

(p = 0.04) (Fig 6B).

Fig 4. DNMT3b binds to the Fgf8 promoter early in OP development. DNMT3b ChIP-RT-qPCR of 6 pooled E9.5 mouse OPs

on the Fgf8 promoter (n = 4). � indicates p< 0.05. Student’s t-test.

https://doi.org/10.1371/journal.pone.0220530.g004
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Fig 5. 5hmC accumulation on the Fgf8 promoter is driven in a time-dependent fashion. MeDIP RT-qPCR in 3–5

pooled mouse OPs at E9.5 (n = 4), E10.5 (n = 4), E13.5 (n = 4) along the Fgf8 promoter. CpG islands are indicated in

numbers 1–4. � indicates p< 0.05 compared to IgG; Student’s t-test. �� indicates p< 0.05 5hmC enrichment on CpG 1

and 3 between E9.5 and E10.5 or E13.5; One-way ANOVA followed by Holm-Sidak post hoc.

https://doi.org/10.1371/journal.pone.0220530.g005

Fig 6. Epigenetic switch on the Fgf8 promoter in the E9.5 and E13.5 OP. A) At E9.5 (n = 4), TET1 was enriched at CpG 1 and 3. B) At E13.5 (n = 4), TET1 was enriched

at CpG 1 and 3, while EZH2 was enriched at all 3 CpG sites. � indicates p< 0.05; Student’s t-test.

https://doi.org/10.1371/journal.pone.0220530.g006
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Histone modifications regulate timing of Fgf8 transcription

Because TETs have been shown to functionally associate with PRC2 members and bivalent

promoters, of which Fgf8 is known to be part of [49–51], we hypothesized that PRC2-depen-

dent histone modifications also contribute to Fgf8mRNA transcription. Indeed, our results

demonstrate that at E9.5, Fgf8 harbors both H3K4me3 and H3K27me3 near the TSS

(p = 0.004, p = 0.004; Fig 7A), while at E13.5 only H3K27me3 is present (p = 0.002). H3K4me3

was not detected at E13.5 (p = 0.6); Fig 7B). We also tested whether PRC2 protein, EZH2, was

recruited to the Fgf8 promoter, and found that EZH2, which is responsible of H3K27 trimethy-

lation, was enriched at CpG 1, 2, and 3 on the Fgf8 promoter (p = 0.02, p = 0.008, p = 0.009; Fig

6B), which was not the case for E9.5 OPs (p = 0.1, p = 0.7, p = 0.1; Fig 6A).

TET1 regulates Fgf8 and Fgfr1 transcription

To determine the regulatory potential of TET1 on Fgf8mRNA expression, we used Tet1
siRNA to reduce Tet1 expression in GT1-7 neurons, which we previously showed to have

higher levels of Tet1 than GN11 neurons (Fig 3C). Accell Tet1 siRNA experiments demon-

strated a ~80% reduction in Tet1mRNA (p = 0.0002; Fig 8A) transcript compared to non-tar-

geting control siRNA, and did not affect Tet2 or Tet3mRNA (p = 0.05, p = 0.2). Accell Tet1
siRNA-treated GT1-7 neurons showed a significant reduction in Fgf8 and Fgfr1mRNA

(p = 0.04, p = 0.02; Fig 8B). While GnRH mRNA trended down, it was not signifigant (p = 0.1).

Discussion

Timing of gene expression during development is critical for proper onset of neuronal systems

and embryonic patterning. In the present study, we show that Fgf8 transcription is temporally

regulated via TET1 during development of the GnRH system in the embryonic mouse OP. We

also found that TET1 continued to interact with specific CpG-rich regions on the Fgf8 pro-

moter after emergence of GnRH neurons. Interestingly, we found that these TET1-interacting

Fgf8 promoter regions also recruited EZH2, which likely lead to the observed increased H3K27

trimethylation. Taken together, these sequential epigenetic events suggest that TET1 maintains

the Fgf8 promoter in a hypomethylated state, while subsequent recruitment of members of the

PRC2 complex promote the repressive actions of H3K27me3 on Fgf8 transcription. These

Fig 7. Fgf8 histone modifications during GnRH neuron ontogenesis. A) ChIP for H3K4me3/H3K27me3 of 3–5 pooled E9.5 (n = 4) and B) 3–5 pooled E13.5 OP (n = 4)

on CpG 3. E9.5 OPs are enriched for H3K4me3 and H3K27me3, whereas only H3K27me3 was detected in E13.5. � indicates p< 0.05; Student’s t-test.

https://doi.org/10.1371/journal.pone.0220530.g007
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results underscore the importance of epigenetic-dependent timing of Fgf8 expression during

GnRH neuron emergence, and that disruptions in the epigenome not only disrupt Fgf8 signal-

ing but may also play a critical role that results in KS pathogenesis.

CpG dinucleotide methylation is largely determined by the activity of DNMTs. While

DNMT1 was not significantly upregulated during OP development, DNMT3a was upregulated

ten-fold, while DNMT3b was downregulated in the E13.5 OPs as compared to E10.5 OPs.

Additionally, we found enrichment of 5mC on the Fgf8 promoter at CpG 1 and CpG 3 in E8.5

frontonasal promininces (S3 Fig), indicating a role for DNMTs. Previous studies have shown

DNMT3a is detected primarily in post-mitotic olfactory receptor neurons, while DNMT3b

expression was restricted to proliferating progenitor neurons, underlining the possibility that

GnRH progenitors or their neural progenitors may, in part, rely on epigenetic machinery as a

mechanism for neuronal differentiation [52]. In support, we found that DNMT3b was bound

near the TSS and at an intragenic site of the Fgf8 promoter at E10.5, but devoid of enrichment

at E13.5. When E10.5 OP explants were treated with AZA, Fgf8 transcription increased, indi-

cating at E10.5, Fgf8 transcription is under the repressive effects of DNMTs, presumably by

DNMT3b at the gene body. This assumption is based on our observations that only DNMT3b

was found to interact with CpG 3 and CpG 4, which are proximally located near the Fgf8’s TSS

and 5’ exon/gene body. Moreover, localization of DNMT3b at the intragenic CpG 4 region on

the actively transcribed Fgf8 locus may further suggest CpG 4 is involved with mRNA process-

ing, such as elongation, splicing, or recruitment of other DNA binding proteins [53–56].

Timing of gene expression during embryonic brain development is imperative during fate

specification of neuronal populations, of which Fgf8 is critically important. During develop-

ment of the OP, we found higher expression in Tet1-3mRNA at E13.5. Furthermore, dot blot

analysis showed higher levels of genome-wide hydroxymethylation at E13.5. In the OP, we

found a clear relationship between the abundance of Fgf8mRNA transcripts and 5hmC levels

on CpG 1 and 3 of the Fgf8 promoter. These two 5hmC-rich regions were also co-occupied by

TET1, demonstrating that TET1 is likely responsible for converting 5mC to 5hmC. These

results indicate that TET1 discretely controls the timing of Fgf8 expression during develop-

ment of GnRH neurons to ensure proper FGF8 signaling. Interestingly, we also found high

5hmC levels on the Fgf8 promoter in midbrain-hindbrain tissue at E10.5 (S4 Fig), which may

Fig 8. Tet1 siRNA knockdown in GT1-7 neurons. A) Tet1 siRNA (n = 4) did not affect other TET or DNMT mRNA expression, and reduced Tet1mRNA expression

compared to non-targeting controls (n = 4). B) Tet1 knockdown reduced Fgf8, Fgfr1, and Fgf2mRNA (n = 4). � indicates p< 0.05; Student’s t-test.

https://doi.org/10.1371/journal.pone.0220530.g008
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suggest that TET-dependent demethylation is a general mechanism for Fgf8 transcription in

neuronal populations.

TET-catalyzed demethylation also affects nearby nucleosome compaction by modifying

histone methylation status [57–60]. Aside from catalyzing the conversion from 5mC to 5hmC,

TET1 can also maintain histone bivalency [50,61–63], which we hypothesized contributes to

timing of Fgf8 expression. We therefore measured H3K4 and H3K27 trimethylation levels in

the developing OP. We found that at E9.5, the Fgf8 TSS is associated with H3K4me3 and

H3K27me3. In contrast, at E13.5, the Fgf8 TSS exclusively harbors H3K27me3, suggesting that

H3K27me3 has a repressive role on Fgf8 transcription. Based on previous studies, we infer that

this histone switch in H3K4 and H3K27 trimethylation promotes nucleosome compaction,

and is therefore responsible for the time-dependent downregulation of Fgf8 transcription in

the embryonic mouse OP [51,64,65].

Our ChIP studies support that TET1 interaction with the Fgf8 promoter is rather stable and

showed continuous interaction with the Fgf8 promoter. We also found that EZH2, which is

highly expressed in the E9.5 and also in the E13.5 OP (S5 Fig), was enriched on the E13.5, but

not on the E9.5 Fgf8 promoter, suggesting that TET1 may help recruit the PRC2 complex to

trimethylate H3K27 at these Fgf8 promoter regions. Indeed, previous studies have found that

TET1 protein can directly interact with EZH2 [64,66]. Taken together these data suggest that

TET1 is not only responsible for DNA demethylation, but may also be responsible for subse-

quent HK27-specific trimethylation through the recruitment of EZH2, as suggested in earlier

studies in mouse embryonic stem cells [64,65]. It is also possible that TET1 is replaced by

EZH2 during periods of high Fgf8 transcription, which will repress Fgf8 transcription by

depositing H3K27me3, thereby contributing to the transient nature of Fgf8 expression in the

developing mouse OP. Alternatively, recent biochemical studies indicate a feedback mecha-

nism by which de novo RNA transcripts (including Fgf8 transcripts) contribute to EZH2

recruitment by interacting with the RNA binding domain of EZH2 [67]. In this mechanism,

mRNA production is inhibited by recruiting other PRC2 core proteins to gene promoters [68–

70]. Currently, more studies are needed to pinpoint which of these mechanisms is the most

likely pathway that contributes to transcription of Fgf8 in the embryonic mouse OP.

Previous studies in GT1-7 neurons indicated that direct TET function, specifically TET2, is

required for GnRHmRNA transcription and affected histone methylation status on the GnRH
promoter [71]. Here, our Tet1 siRNA experiments demonstrated that TET1 is required for reg-

ulating Fgf8 transcription, a molecular event that we previously showed to be required for the

emergence of the GnRH neuronal system in mice [3,72]. Therefore, we conclude that TET1

binding to the Fgf8 promoter in OP progenitor cells is not only critical for inducing Fgf8 tran-

scription but may also be required for the emergence of GnRH neurons. Additionally,

genome-wide hydroxymethylation of DNA and RNA, mediated through TET enzyme activity

is perhaps of equal importance during development of GnRH neurons. In support, our studies

also showed that TET1 controls Fgf2 and Fgfr1 transcription in GT1-7 neurons. This possibil-

ity is not without merit given that earlier studies early showed GnRH neuronal development is

a multi-genic process. Overall, our studies provide further evidence that upstream epigenomic

regulators are involved in GnRH neuron differentiation and the onset of KS.

In conclusion, the present study provides evidence that Fgf8 is transcriptionally regulated

by TET1. We show that TET1 maintains a Fgf8’s hypomethylated state, which decreases with

embryonic age. Moreover, TET1 together with EZH2 likely maintains a dynamic bivalent his-

tone state of the chromatin proximal to the Fgf8 locus that contributes to the transient nature

of embryonic Fgf8 expression. These and other studies largely point to Fgf8 activation through

dynamic chromatin arrangement and specific methylation events (Fig 9). Furthermore, DNA

demethylation and the conversion of 5mC to 5hmC, play an integral role in Fgf8 transcription
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during development of the GnRH system. Overall, disruptions in the pre-hypothalamic epi-

genome could have major consequences on the Fgf8 signaling system and GnRH neurodeve-

lopment, resulting in congenital hypogonadotropic hypogonadism disorders, such as KS.
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S1 Fig. Negative MeDIP qPCR in 3–5 pooled mouse OPs at E9.5 on the 3’UTR Fgf8. Nega-

tive control region in comparison to E9.5 CpG1 site (n = 4). � indicates p< 0.05; Student’s

t-test.

(TIF)

S2 Fig. Propidium iodine staining in GT1-7 cells treated with AZA for 3 days in vitro
(n = 3); One-way ANOVA.

(TIF)

S3 Fig. Significant levels of 5mC on the Fgf8 promoter at E8.5. MeDIP qPCR in 8–10 pooled

mouse frontonasal prominences at E8.5 along the promoter of Fgf8 CpG 1 and CpG 3 (n = 4).
� indicates p< 0.05; Student’s t-test.

(TIF)

S4 Fig. Fgf8 promoter landscape in the E10.5 Midbrain-Hindbrain. MeDIP qPCR in 3–5

pooled mouse midbrain-hindbrains at E10.5 along the promoter of Fgf8 CpG islands indicated

in numbers 1–3 (n = 4). � indicates p< 0.05; Student’s t-test.

(TIF)

S5 Fig. EZH2 is highly expressed in the developing OP. A). EZH2mRNA expression in the

E9.5 versus E13.5 OP; � indicates p< 0.05; Student’s t-test.

(TIF)
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