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Elevated expression of LIF
predicts a poor prognosis
and promotes cell migration
and invasion of clear cell
renal cell carcinoma
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Yao Lin1* and Qingshui Wang1,2*

1Central Laboratory at the Second Affiliated Hospital of Fujian Traditional Chinese Medical
University, Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese
Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation
Center, Fujian University of Traditional Chinese Medicine, Fuzhou, China, 2College of Life Sciences,
Fujian Normal University, Fuzhou, China, 3Department of Pathology, Fujian Provincial Hospital,
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Background: Renal cell carcinoma (RCC) is the seventh most common cancer

in humans, of which clear cell renal cell carcinoma (ccRCC) accounts for the

majority. Recently, although there have been significant breakthroughs in the

treatment of ccRCC, the prognosis of targeted therapy is still poor. Leukemia

inhibitory factor (LIF) is a pleiotropic protein, which is overexpressed in many

cancers and plays a carcinogenic role. In this study, we explored the expression

and potential role of LIF in ccRCC.

Methods: The expression levels and prognostic effects of the LIF gene in

ccRCC were detected using TCGA, GEO, ICGC, and ArrayExpress databases.

The function of LIF in ccRCC was investigated using a series of cell function

approaches. LIF-related genes were identified by weighted gene correlation

network analysis (WGCNA). GO and KEGG analyses were performed

subsequently. Cox univariate and LASSO analyses were used to develop risk

signatures based on LIF-related genes, and the prognostic model was validated

in the ICGC and E-MTAB-1980 databases. Then, a nomogram model was

constructed for survival prediction and validation of ccRCC patients. To further

explore the drug sensitivity between LIF-related genes, we also conducted a

drug sensitivity analysis based on the GDSC database.

Results: The mRNA and protein expression levels of LIF were significantly

increased in ccRCC patients. In addition, a high expression of LIF has a poor

prognostic effect in ccRCC patients. LIF knockdown can inhibit the migration
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and invasion of ccRCC cells. By using WGCNA, 97 LIF-related genes in ccRCC

were identified. Next, a prognostic risk prediction model including eight LIF-

related genes (TOB2, MEPCE, LIF, RGS2, RND3, KLF6, RRP12, and SOCS3) was

developed and validated. Survival analysis and ROC curve analysis indicated

that the eight LIF-related-gene predictive model had good performance in

evaluating patients’ prognosis in different subgroups of ccRCC.

Conclusion: Our study revealed that LIF plays a carcinogenic role in ccRCC. In

addition, we firstly integrated multiple LIF-related genes to set up a risk-

predictive model. The model could accurately predict the prognosis of

ccRCC, which offers clinical implications for risk stratification, drug

screening, and therapeutic decision.
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Introduction

Renal cell carcinoma (RCC) is a malignant tumor that is

derived from the lining of the proximal convoluted tubule (1). It

accounts for approximately 90% of all renal malignancies, which

has the highest mortality rate of the genitourinary system tumors

(1). Based on genetic knowledge and histological findings, RCC

is classified into five subtypes: common or conventional RCC

(clear cell RCC); papillary RCC; chromophobe RCC; collecting

duct carcinoma, with medullary carcinoma of the kidney; and

unclassified RCC (2). In contrast to non-clear cell RCC (non-

ccRCC), clear cell renal cell carcinoma (ccRCC) is the most

common pathological subtype of renal cell cancer, which

accounts for 75% of renal cell cancers (3). As ccRCC is not

sensitive to chemotherapy and radiotherapy, surgical resection is

the mainstay treatment at present. However, metastasis is a

common event for ccRCC and 25% to 30% of patients have

distant metastasis at the time of diagnosis (4). Several reports

have demonstrated that the targeted therapies for ccRCC and

non-ccRCC and their prognoses are quite different, and the

prognosis of non-ccRCC is significantly better than that of

ccRCC (5). Thus, further studies are required to clarify the

underlying molecular mechanism of ccRCC progression and

develop more efficient therapeutic targets for ccRCC.

Leukemia inhibitory factor (LIF) is a multifunctional

cytokine belonging to the interleukin-6 superfamily, which was

first reported in a study regarding M1 murine myeloid leukemic

cells (6). LIF was initially defined by its ability to induce

macrophage differentiation in M1 murine myeloid leukemic

cells and inhibit their proliferation (7). Emerging evidence
02
suggested that LIF plays an important and complex role in

human cancers, although LIF has shown tumor-suppressive

function in some types of cancers, including leukemia. LIF has

been found to be overexpressed in more types of cancers in the

past and has played a carcinogenic role. Currently, the detailed

function of LIF in ccRCC has not been reported.

In the present study, we investigated the expression of the

LIF gene and its potential role in renal cell carcinoma. In

addition, a predictive model with prognostic significance based

on LIF-related genes was constructed and validated. This study

can lay a foundation for further research on the individualized

treatment of ccRCC.
Materials and methods

Clinical data acquisition and extraction

The mRNA expression of LIF and clinical data for ccRCC

patients were downloaded from The Cancer Genome Atlas

(TCGA) database (https://www.cancer.gov/tcga). For TCGA

dataset, RNA sequencing data (FPKM values) were normalized

into log2 (FPKM + 1). The microarray datasets GSE15641,

GSE46699, GSE53757, and GSE66272 were downloaded from

the Gene Expression Omnibus (GEO) database (https://www.

ncbi.nlm.nih.gov/geo/). The method for extracting microarray

gene expression values is based on our previous research (8).

The gene expression data of ccRCC used for the validation

cohort were obtained from the International Cancer Genome

Consortium (ICGC) (https://icgc.org/) and ArrayExpress
frontiersin.org

https://www.cancer.gov/tcga
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://icgc.org/
https://doi.org/10.3389/fonc.2022.934128
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhong et al. 10.3389/fonc.2022.934128
(https://www.ebi.ac.uk/arrayexpress). The accession number of

ICGC is RECA-EU, including 91 who had follow-up

information. The accession number of ArrayExpress is E-

MTAB-1980, including 106 who had follow-up information.
Patients with ccRCC recruitment

In the research, 30 ccRCC specimens from the patients of

Fujian Provincial Hospital were selected. The study was

performed with the approval of the Ethics Committee of

Fujian Provincial Hospital and complied with the Helsinki

Declaration. The written informed consent was obtained from

all participating ccRCC patients.
RT-PCR

TRIzol was performed to extract total RNA. Then, RNA was

reverse transcribed with mRNA Reverse Transcription Kit (Takara,

Japan). RT-PCR was performed using SYBR Green Kit (Vazyme,

China). The primer sequences were shown as follows: LIF forward

primer 5′-CTTGGCGGCAGGAGTTGT-3′, LIF reverse primer 5′-
TTGTGACATGGGTGGCGTAT-3′; GAPDH forward primer 5′-
GGAAGGACTCATGACCACAGTCC-3′; GAPDH reverse primer

5′-TCGCTGTTGAAGTCAGAGGAGACC-3′. GAPDH was used

as the loading control. Gene expression levels were determined by

the 2-DDCT method.
Validation of protein expression of
the LIF gene

The Human Protein Atlas (THPA) provides cell and tissue

distribution information for 26,000 human proteins. It uses

specific antibodies to identify protein expression in tumor

tissues and normal tissues. In the research, we explored the

protein expression of the LIF gene in ccRCC tissues and

normal tissues.
Weighted gene correlation
network analysis

Weighted gene correlation network analysis (WGCNA) is a

common algorithm used to build gene co-expression networks

(9). The WGCNA R package was employed to execute WGCNA

analysis. A power of b = 6 and a scale-free R (2) = 0.87 were

selected as soft-threshold parameters to ensure a signed scale-

free co-expression gene network. A cluster dendrogram was

created based on the topological overlap matrix with a minimum

cluster size of 20.
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Gene ontology and kyoto encyclopedia
of genes and genomes pathway
enrichment analyses

Gene Ontology (GO) analysis and Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathway enrichment were

calculated by functional enrichment tool DAVID. DAVID

bioinformatics resources provide an integrated biological

database and a repository of analytic tools for systematic

exploration of the biological meaning of gene set DAVID. The

default parameters in the tool were used, and enriched pathways

were ranked according to their enrichment scores. A p-value of

<0.05 was identified as enriched functions.
LASSO analysis

The Least Absolute Shrinkage and Selection Operator

(LASSO) was used to construct an LIF-related-gene risk-

predictive model with the help of “survival” and “glmnet”

packages in R software. LASSO is a common method used in

high-dimensional data regression, which can select prognosis-

related gene pairs of ccRCC by shrinking regression coefficients.

The optimal penalty weight of the Lasso–Cox model was found

in a grid search manner in a 10-fold cross-validation process.

Then, the coefficients of most gene pairs were reduced to zero,

and a small number of gene pairs with non-zero coefficients were

closely correlated with the prognosis of ccRCC.
Cell lines, cell culture, and transfection

The ccRCC cell lines 786-O and ACHN cells were obtained

from the American Type Culture Collection (ATCC, Manassas, VA,

USA). 786-O cells and ACHN cells were respectively cultured in

PRMI 1640 (Gibco by Life Technologies, Grand Island, NY, USA)

and DMEM (Gibco by Life Technologies, Grand Island, NY, USA)

containing 10% fetal bovine serum (FBS, BI, Kibbutz Beit Haemek,

Israel) at 37°C in a humidified incubator with 5% CO2. The

sequences of shRNA1 and shRNA2 targeting LIF were respectively

cloned into pLVX vectors. The following shRNA sequences were

used: LIF shRNA-1, 5′-GGGTAAGGATGTCTTCCAGAA-3′; LIF
shRNA-2, 5′-GGAAGTATAAGCAGATCATCG-3′. The PEI

transfection system (Invitrogen) was used for transfection

according to the manufacturer’s guidelines.
Cell counting kit-8 assay

Cell proliferation was detected by Cell Counting Kit-8

(CCK-8) assay. 786-O cells and ACHN cells were prepared

into cell suspension with a density of 1 × 104 cells/ml,
frontiersin.org

https://www.ebi.ac.uk/arrayexpress
https://doi.org/10.3389/fonc.2022.934128
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhong et al. 10.3389/fonc.2022.934128
respectively. Cell suspension (0.2 ml) was added to four 96-well

plates (2 × 103 cells/well) and cultured in a 5% CO2 incubator at

37°C. The culture was repeated for 24, 48, and 72 h. Ten

microliters of CCK-8 solution was added in 1 h before

measuring the absorbance. After incubation, the absorbance

was measured at 450 nm with a microplate reader.
Scratch assay

The transfected 786-O cells and ACHN cells were inoculated on

six-well plates (1 × 106 cells/well), respectively. The cells were serum-

starved for this assay to avoid the effects of cell viability. When cell

convergence reached ~90%, a scratch was made in the monolayer

with the tip of a 10-µl pipette perpendicular to the bottom of the

hole, which was then washed with PBS twice to remove unattached

cells. Images were taken at 0 and 24 h, of which 0 h was recorded as

the starting point. The cells were photographed for evaluation of

wound closure under an inverted microscope. ImageJ software was

used to process the image and calculate the migration area. The

following formula was used: Change rate of scratch area (%) = (0 h

scratch area-24 h scratch area)/0 h scratch area.
Transwell assay

Cell migration assay was performed using an 8-mm cell culture

insert (Falcon). Cell invasion was examined using polycarbonate

membrane Transwell inserts (Costar; Corning Inc.). After 48 h of

transfection, cells were added to the upper chamber (2 × 104 cells/

well) with 200 µl serum-free medium. The upper chamber was

incubated for 24 h in a 24-well plate chamber with 200 µl

complete medium containing 10% FBS. After the cells at the top

of the upper cavity were wiped with a cotton swab, the

transplanted cells at the bottom of the cavity were stained in

0.1% crystal violet solution at room temperature for 10 min. The

migrated and invading cells were photographed under an inverted

microscope and counted in four random fields.
Single-cell analysis

CancerSEA depicts single-cell functional status maps that

contain 14 functional states obtained from 41,900 individual

cells (http://biocc.hrbmu.edu.cn/CancerSEA/) (10). In the study,

CancerSEA was used to evaluate the potential roles of LIF genes

in ccRCC.
DepMap

The Cancer Dependency Map (https://depmap.org/portal/)

developed CERES to estimate gene-dependency levels on the
Frontiers in Oncology 04
survival of cells (11, 12). Dependency scores for the LIF gene in

ccRCC cells were calculated using CERES.
Drug sensitivity evaluation

GSCALite is a website used for drug sensitivity analysis

(http://bioinfo.life.hust.edu.cn/web/GSCALite/). In the study, we

used the GSCALite database to evaluate the drug sensitivity of

LIF-related genes to identify potential molecular compounds for

targeted therapy.
Statistical analysis

The statistical analysis was evaluated by t-test in this study.

Paired samples used the paired t-test, and unpaired samples used

the unpaired t-test. Correlations between LIF expression and

clinicopathological characteristics were performed by the chi-

squared test. The Kaplan–Meier method was used for overall

survival (OS), and the log-rank test was used for comparison of

survival curves. Cox regression analysis was performed for

univariate and multivariate survival analyses. All p values

smaller than 0.05 were considered to be significantly different

from each control.
Results

High expression of LIF was correlated
with poor prognosis of ccRCC

In order to evaluate the mRNA expression of LIF mRNA in

ccRCC, paired renal carcinoma and paracancer tissues obtained

from TCGA and GEO databases, including GSE15641,

GSE46699, GSE53757, and GSE66272, were selected for

analysis. GSE15641 consisted of 23 pairs of adjacent normal

kidney tissue and ccRCC tissue. GSE46699 consisted of 63 pairs

of adjacent normal kidney tissue and ccRCC tissue. GSE53757

consisted of 72 pairs of adjacent normal kidney tissue and

ccRCC tissue. GSE66272 consisted of 27 pairs of adjacent

normal kidney tissue and ccRCC tissue. As shown in

Figures 1A,B, mRNA levels in ccRCC tissues were significantly

upregulated compared with normal kidney tissues (GSE15641,

p < 0.001; GSE46699, p < 0.05; GSE53757, p < 0.001; GSE66272,

p < 0.05; TCGA, p < 0.001). In TCGA database, 263 and 264

patients were in LIF low and LIF high expression groups,

respectively. The results showed that the LIF high expression

group had remarkably more patients with stage T III and IV (p =

0.001) and stage IIIandIV (p = 0.046) than the LIF low

expression group (Table 1). Meanwhile, we measured LIF

mRNA levels in 30 clinical ccRCC samples using quantitative

RT-PCR. The results showed that the expressions of LIF in
frontiersin.org
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ccRCC tissues were significantly higher than those in adjacent

tissues (p < 0.001; Figure 1C).

Next, we examined the protein expression for LIF using

immunohistochemistry images from the Human Protein Atlas

database. In specimens from normal human kidney tissue,

immunohistochemical examination revealed that LIF protein

was weakly expressed in the glomeruli and moderately in the

tubules (Figure 2A), while LIF protein was strongly expressed in

ccRCC tissues (Figure 2B). Collectively, these results implicated

that the mRNA and protein expression levels of LIF in ccRCC

tissues were higher than those in normal tissues.

Based on Kaplan–Meier survival analysis, we evaluated the

overall survival (OS) of ccRCC patients to explore the clinical

significance of LIF. The results demonstrated that a high LIF

expression correlated with poor prognosis in ccRCC patients

based on TCGA and E-MTAB-1980 databases (Figure 3).

Univariate and multivariate analyses were performed to

determine the predictors for OS. In univariate analysis, high

expression levels of LIF, stage IIIandIV, stage T3and4, stage

M1and4, stage N0, and age >60 were revealed to be associated

with a poor OS rate of patients with ccRCC. Furthermore, to

evaluate the independent impact of the LIF expression level

on OS, a multivariate Cox’s regression model was performed.

The results demonstrated that a high LIF expression level was a

poor independent prognostic factor for OS in patients with

ccRCC. In addition, stage M1and4, stage III and IV, and age

>60 revealed independent prognostic value in the multivariate

analysis (Table 2).
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Knockdown of LIF suppressed migration
and invasion of ccRCC cells

In order to further investigate the functions of LIF in ccRCC,

CancerSEA was used to determine whether LIF was related to

the carcinogenic process in ccRCC, and it was found that the

functional phenotype of LIF was positively related to angiogenesis,

differentiation, quiescence, metastasis, inflammation, and cell

cycle (Figure 4A). DepMap is a website used to identify genes

critical for the survival and proliferation of tumor cells. A negative

score for CERES indicates that the knockout gene inhibits tumor

cell survival and proliferation, while a positive score indicates that

the knockout gene promotes survival and proliferation. A CERES

score <-1 was defined as an essential gene for tumor cell survival.

From the DepMap website, we obtained the CERES scores of nine

ccRCC cell lines. The CERES scores of LIF in nine ccRCC cell lines

ranged between -0.296 and 0.1, and the mean CERES score was

-0.149 (Figure 4B). These results indicated that LIF might

influence ccRCC cell metastasis but has no effect on proliferation.

Using RT-PCR, we found that the expression of LIF mRNA

was significantly higher in 786-O and ACHN ccRCC cell lines

than in the HEK-293 normal renal cell line (Supplementary

Figure 1). Then, 786-O cells and ACHN cells were transfected

with LIF-shRNA1 and LIF-shRNA2 to knock down

LIF expression ( Figures 4C, D). Compared with the

corresponding negative control, CCK8 assay indicated that the

effect of LIF knockout on the proliferation of 786-O cells and

ACHN cells was not significant (Figures 4E, F). Cell migration
TABLE 1 Characteristics of ccRCC patients and their LIF expression level.

Characteristics Low level of LIF (N = 263) High level of LIF (N = 264) Total (N = 527) p value

Age 0.76

>60 130 (24.67%) 135 (25.62%) 265 (50.28%)

≤60 133 (25.24%) 129 (24.48%) 262 (49.72%)

Gender 0.45

Male 166 (31.50%) 176 (33.40%) 342 (64.90%)

Female 97 (18.41%) 88 (16.70%) 185 (35.10%)

Pathologic M 0.06

M1and4 45 (8.57%) 63 (12.00%) 108 (20.57%)

M0 218 (41.52%) 199 (37.90%) 417 (79.43%)

Pathologic N 0.24

N1and4 138 (26.19%) 153 (29.03%) 291 (55.22%)

N0 125 (23.72%) 111 (21.06%) 236 (44.78%)

Pathologic T 0.03

T1and2 81 (15.37%) 107 (20.30%) 188 (35.67%)

T3and4 182 (34.54%) 157 (29.79%) 339 (64.33%)

Stage 0.03

Stage I and II 88 (16.79%) 115 (21.95%) 203 (38.74%)

Stage III and IV 172 (32.82%) 149 (28.44%) 321 (61.26%)
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A B

FIGURE 2

The protein expression of LIF in ccRCC. The LIF protein expression in normal tissues (A) and ccRCC tissues (B) was analyzed through the
Human Protein Atlas database.
A B

C

FIGURE 1

The mRNA expression of LIF in ccRCC. (A) The mRNA expression of LIF for normal tissues and ccRCC tissues in GSE15641, GSE46699, GSE5375,
and GSE6627. (B) The mRNA expression of LIF for ccRCC patients in TCGA database. (C) The mRNA expression of LIF for ccRCC patients in 30
ccRCC patients.
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assay showed that LIF knockdown significantly arrested the

migration of 786-O cells and ACHN cells (Figure 4G, H).

Additionally, the Transwell assay indicated that LIF

knockdown inhibited the invasion abilities of 786-O cells and

ACHN cells (Figures 4I, J). In summary, LIF promotes the

migration and invasion abilities of ccRCC cells.
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Identification of key modules and co-
expression-related genes of LIF

To identify highly associated genes with LIF in ccRCC

patients, we constructed a gene co-expression network using

the “WGCNA” R package. Database from TCGA was used to
TABLE 2 Univariate and multivariate Cox proportional hazard model for OS in ccRCC patients based on TCGA database.

Variables Univariate Multivariate

HR (95% CI) p HR (95% CI) p

Age

≤60 Reference <0.001 Reference <0.01

>60 1.75 (1.27-2.44) 1.56 (1.12-2.17)

Gender

Male Reference >0.05

Female 0.95 (0.68-1.32)

Pathologic M

M0 Reference <0.001 Reference <0.001

M1and4 4.07 (2.94-5.62) 2.21 (1.50-3.25)

Pathologic N

N0 Reference <0.05 Reference >0.05

N1and4 0.81 (0.59-1.11) 0.77 (0.56-1.07)

Pathologic T

T1and2 Reference <0.001 Reference >0.05

T3and4 3.62 (2.62-5.00) 1.01 (0.52-1.96)

Stage

Stage I and II Reference <0.001 Reference <0.01

Stage III and IV 4.33 (3.08-6.08) 2.95 (1.40-6.23)

LIF expression

Low Reference Reference

High 2.06 (1.50-2.84) <0.001 1.86 (1.34-2.58) <0.01
frontiers
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FIGURE 3

The OS of LIF for ccRCC patients. Overall analysis for the prognostic value of LIF expression for OS in ccRCC patients by Kaplan–Meier analysis
based on TCGA (A) and E-MTAB-1980 (B). The Kaplan–Meier method was used to draw survival curves.
in.org

https://doi.org/10.3389/fonc.2022.934128
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhong et al. 10.3389/fonc.2022.934128
A B

C

G H

I J

D E F

FIGURE 4

The role of LIF in ccRCC cells (A) Data from CancerSEA demonstrated that LIF mRNA expression was positively correlated with angiogenesis,
differentiation, quiescence, metastasis, inflammation, and cell cycle. (B) Gene effect scores of LIF in ccRCC cells from RNAi and CRISPR/Cas9
screens. (C, D) The LIF expression changes was confirmed by real-time PCR in the 786-O (C) and ACHN (D) cells after transfecting LIF-shRNAs.
(E, F) The proliferation ability of 786-O (E) and ACHN (F) cells were measured after transfecting LIF-shRNAs. (GandH) The migration ability of
786-O (G) and ACHN (H) cells was measured after transfecting LIF-shRNAs. (IandJ) The invasion ability of 786-O (I) and ACHN (J) cells was
measured after transfecting LIF-shRNAs. *p < 0.05; **p < 0.01.
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build WGCNA. We calculated the network topology for soft-

thresholding powers from 1 to 30 to choose the best threshold. A

power of b = 6 and minimum module size = 20 were set as per

the standard scale-free networks (Figures 5A, B). Dynamic Tree

Cut represents the original module, while Merged Dynamic

means the final module. Dynamic Tree Cut yielded a total of

38 modules with different colors identified. Among them, the

violet module is the gene co-expressed with LIF, which contains

97 genes (Figure 5C).

To clearly determine biological processes and cellular

pathways dependent on the Violet module, we used the

DAVID functional classification tool to analyze Gene

Ontology (GO) and KEGG pathways (Figures 5D,E). The

terms of biological processes (BP) were positive regulation of

nucleobase, containing compound metabolic process, positive

regulation of biosynthetic process, cell population proliferation,

apoptotic process, cell cycle, regulation of cell differentiation,

regulation of cell death, positive regulation of transcription by

RNA polymerase II, and negative regulation of transcription by

RNA polymerase II. The terms of KEGG pathway terms were

MAPK signaling pathway, TNF signaling pathway, human T-

cell leukemia virus 1 infection, hepatitis B, Kaposi sarcoma-

associated herpesvirus infection, osteoclast differentiation,

oxytocin signaling pathway, Jak-STAT signaling pathway,

colorectal cancer, IL-17 signaling pathway, and C-type lectin

receptor signaling pathway.
Prognosis model of LIF-related-gene
construction and validation

We next performed a univariate Cox survival analysis on

these 97 LIF-related genes. Furthermore, the results indicated

that nine LIF-related genes were associated with the prognosis of

ccRCC patients. The high levels of six LIF-related genes (LIF,

RGS2, RND3, RRP12, SOCS3, and PIM3) were significantly

correlated with shorter OS for ccRCC patients, whereas the

remaining three LIF-related genes (TOB2, MEPCE, and KLF6)

were significantly associated with longer OS for ccRCC patients

(Figure 6A). The results of the expression analysis showed that

the expressions of KLF6, RND3, and SOCS3 in ccRCC tissues

were significantly higher compared with those in adjacent

normal tissues, whereas the expressions of RGS2 and TOB2

were significantly reduced in ccRCC tissues. However, the

expressions of PIM1 and MEPCE were not significantly

different between ccRCC tissues and adjacent normal tissues

(Supplementary Figure 2). It has already been demonstrated that

multiple genes can better predict patient prognosis. Thus, we ran

the LASSO-Cox regression model and calculated the regression

coefficient based on the aforementioned nine LIF-related genes.

Cross-validation was applied to overcome the overfitting effect,

and the optimal l value of 0.0085 was selected (Figure 6B). An

ensemble of eight genes remained with their individual LASSO
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coefficients, and the distribution of LASSO coefficients of the

gene signature is shown in Figure 6C. Risk score = (0.1112 *

RRP12) + (0.0138 * RND3) + (0.0114 * LIF) + (0.0054 * RGS2) +

(0.0023 * SOCS3) + (-0.0059 * KLF6) + (-0.0276 * TOB2) +

(-0.0374 * MEPCE). Each ccRCC patient was divided into high-

risk and low-risk groups according to the risk score. The

Kaplan–Meier curve analysis result showed that the high-risk

group correlated with the poor prognosis of ccRCC patients

(Figure 6). The distribution of risk score, survival time, and the

LIF-related gene level of ccRCC patients in TCGA database are

shown in Figure 6E. The ROC analysis demonstrated that the

LIF-related risk score had a powerful ability to predict OS in

ccRCC patients (1 year (AUC = 0.75), 3 years (AUC = 0.72), 5

years (AUC = 0.72); (Figure 6). To further assess the robustness

of the risk score model, we stratified the ccRCC population based

on age, gender, stage, and TMN. After stratification of age ≤60

(Figure 7A), age >60 (Figure 7B), gender = male (Figure 7C),

gender = female (Figure 7D), stage = 1and2 (Figure 7E), stage =

3and4 (Figure 7F), stage T = 1and2 (Figure 7G), stage T = 3and4

(Figure 7H), stage M = 0 (Figure 7I), stage M = 1and4

(Figure 7J), stage N = 0 (Figure 7K), and stage N = 1and4

(Figure 7L), respectively, the risk score based on the eight-

mRNA signature was an independent prognostic indicator,

and patients with high risk scores had a poorer prognosis.

These results further confirmed the relatively good

stratification ability of the prognostic model.

To further verify the validity and stability of the prognostic

model, we respectively downloaded 101 and 91 samples with

complete clinical information from the E-MTAB-1980-ccRCC

database and the ICGC database. Each patient was brought into

the previous prognostic model to calculate the risk score.

Patients were divided into high-risk and low-risk groups.

Kaplan–Meier curve analysis showed that ccRCC patients with

low-risk scores had a better OS than those in the high-risk-score

group (Figure 8), indicating good accuracy.
Construction of a clinical prognostic
prediction model

Finally, a nomogram was constructed by incorporating four

prognostic indicators from the database, including age, sex,

stage, and risk score, into the final model. In the nomogram,

the probability of survival at 1, 3, and 5 years in this particular

population was as shown in Figure 9A. The ROC curve was used

to verify the diagnostic effect, and AUC was found to be greater

than 0.7 regardless if it is 1 year (AUC, 0.86; 95% CI, 0.91–0.82),

3 years (AUC, 0.82; 95% CI, 0.87–0.77), and 5 years (AUC, 0.79;

95% CI, 0.85–0.74) (Figure 9B), suggesting that this nomogram

was reliable and robust. Calibration plots showed excellent

calibration of the nomogram (c-index 0.79) (Figure 9C). We

hold the opinion that the nomogram may have good accuracy

for survival prediction in ccRCC patients.
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A B

C

D E

FIGURE 5

Identification of co-expression module genes associated with LIF using the WGCNA. (A) Relationship between scale-free topology model fit and
soft thresholds (powers). (B) Relationship between the mean connectivity and various soft thresholds. (C) Dendrogram of modules identified by
WGCNA. (DandE) GO-BP (D) and KEGG pathway (E) network for the target genes in green model.
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FIGURE 6

Identification and screening of the prognosis-related genes. (A) Univariate Cox regression analysis was used to assess the genes that related to
prognosis. (B) Partial likelihood deviance of OS for the LASSO coefficient profiles. (C) LASSO coefficient profiles of the TOB2, MEPCE, LIF, RGS2,
RND3, KLF6, RRP12, and SOCS3 expression for OS. (D) Kaplan–Meier curves to compare overall survival of low-risk and high-risk groups.
(E) The distribution of risk score, survival status, and mRNA expression levels of ccRCC patients in TCGA database. (F) ROC curves compare the
prognostic accuracy of the classifier in ccRCC patients using AUCs at 1, 3, and 5 years to assess prognostic accuracy.
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The relationship of LIF-related genes and
drug sensitivity

The relationship between LIF-related genes and drug

sensitivity was explored based on the data from the Cancer

Therapeutics Response Portal (CTRP) database by using the

GSCA website. High LIF, SOCS3, RND3, and KLF6 expressions

were associated with higher drug resistance to PX-12, apicidin,

mitomycin, BI-2536, and vorinostat, etc. (Figure 10).
Discussion

LIF is a multifunctional cytokine that affects cell growth by

inhibiting differentiation (13, 14). LIF is involved in a number of

key processes in cancer growth and progression, including

immune tolerance (15), chemotherapy (16) and radiation (17)

resistance, maintenance of cancer stem cell-like phenotypes, and

EMT (18). Targeting LIF has been actively investigated as a novel

strategy for cancer therapy (19). Many studies have proved that

LIF plays an important role in breast cancer (20), pancreatic

cancer (21), gastric cancer (22), and ovarian cancer (23). For
Frontiers in Oncology 12
instance, LIF promotes the proliferation, invasion, and

metastasis of breast cancer. This promotion occurs through

the activation of AKT, which activates the downstream mTOR

signaling pathway (24). At the same time, LIF was reversed to

promote tumor formation and metastasis (25). However, the

role of LIF in ccRCC has not been studied.

In this study, we observed the mRNA and protein of LIF to

be highly expressed in ccRCC, and a high expression of LIF was

associated with poor prognosis in ccRCC patients. Functional

experiments revealed that LIF knockdown did not affect ccRCC

cell growth, and suppressed migration and invasion of ccRCC

cells was observed. It indicates that the malignant potential of

LIF in ccRCC is reflected in promoting tumor migration.

Next, we analyzed the genes highly associated with LIF in

ccRCC patients by WGCNA and found that these 97 LIF-related

genes were enriched in MAPK signaling pathway, JAK/STAT

signaling pathway, and so on. Recent studies have shown that

LIF can selectively activate a variety of signaling pathways,

including JAK/STAT (26), PI3K/Akt (27), MAPK (28), and

mTOR (24), depending on cell type and tissue-specific

modalities. The JAK/STAT pathway was originally defined as a

signal transduction pathway downstream of the cytokine
A B C D

E F G H

I J K L

FIGURE 7

Kaplan–Maier survival curves of overall survival of ccRCC patients according to risk score model in different subgroups. (A, B) Prognosis analysis
of the ccRCC patients with age ≤60 (A) and age >60 (B) subgroup. (C, D) Prognosis analysis of the ccRCC patients with gender = male (C) and
gender = female (D) subgroup. (E, F) Prognosis analysis of the ccRCC patients with stage = 1and2 (E) and stage = 3and4 (F) subgroup.
(G, H) Prognosis analysis of the ccRCC patients with T = 1and2 (G) and T = 3and4 (H) subgroup. (I, J) Prognosis analysis of the ccRCC patients
with M = 0 (I) and M = 1and4 (J) subgroup. (K, L) Prognosis analysis of the ccRCC patients with N = 0 (K) and N = 1and4 (L) subgroup. The
Kaplan–Meier method was used to draw survival curves.
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FIGURE 8

Validation of the prognosis risk model The prognosis risk model was validated using E-MTAB-1980-ccRCC (A) and ICGC (B) databases.
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receptor, which is involved in many important biological

processes such as cell proliferation, differentiation, apoptosis,

and immune regulation (29). The JAK family consists of four

members: JAK1, JAK2, JAK3, and TYK2 (30). Experiments

using overexpressed components initially showed that LIF

receptors bind to at least three members of the JAK family

(JAK1, JAK2, and TYK2). Activation kinetics of JAK1 was found

to be significantly faster after LIF exposure compared to JAK2

and TYK2, again suggesting that it was the kinase initially

targeted by LIF (31). Activation of JAK1 catalyzed

phosphorylation of tyrosine residues on the receptor, and

these phosphorylated tyrosine sites and surrounding amino

acid sequences formed docking sites to which STAT proteins

containing the SH2 domain were recruited. STAT3 was

considered to be the most important signal sensor after LIF

stimulation and mediates most cellular effects (32). STAT3

docks to phosphorylated tyrosines in both the gp130 and

LIFRb chains of the LIF receptor at YxxM motifs (33). JAK1

catalyzes phosphorylation of STAT3 protein bound to the

receptor, and the activated STAT protein enters the nucleus in

the form of dimer to bind to target genes and regulate

gene transcription.

The MAPK signaling pathway is a basic pathway in

mammalian cells, which is closely related to physiological

activities such as cell proliferation, differentiation, apoptosis,

and angiogenesis. Studies have shown that an abnormal

activation of certain proteins in the MAPK pathway is an

important cause of many cancers. MAPK is an evolutionarily

conserved group of silk/threonine protein kinases that, similar to

STAT activation, are activated by activated LIF receptors (34).

Two chains of the LIF receptor, GP130 and LIFR, both contain

phosphorylation sites that recruit SHP2 (35). Activated SHP2
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induces Ras/Raf signaling pathways, which in turn activate

MAPK and eventually transcriptional activators such as ELK

to transmit signals from the cell membrane to the nucleus (36).

Even if the MAPK signaling is induced by LIF, it obeys STAT3

and PI3K signaling in this system (28).

Using Cox univariate analysis and Lasso regression, we

constructed a prognostic risk model including eight LIF-

related genes (RRP12, RND3, LIF, RGS2, SOCS3, KLF6 TOB2,

and MEPCE). To assess the reliability of the risk prognostic

model, we conducted external validation and subgroup analysis.

The AUC values of the ROC curves of the 1-, 3-, and 5-year

survival of the model were all greater than 0.7, which indicated

that the signature composed of eight LIF-related genes had good

performance in predicting the prognosis of ccRCC.

To date, only SOCS3 has been reported to be regulated by

LIF. SOCS3 is an inducible negative feedback inhibitor of

cytokine signaling and widely reported to be regulated by LIF.

RRP12 is an RNA-binding protein mainly involved in the

extranuclear transport of the 40S and 60S subunit precursors of

ribosomes. RRP12 regulates yeast cell cycle and DNA damage

response (37). In osteosarcoma cells, RRP12 can enhance cell

resistance to chemotherapy drugs, and p53 expression was

significantly upregulated after interfering RRP12 expression

(38). RRP12 knockout can inhibit the proliferation, invasion,

and metastasis of HCC (39) and GC cells.

RND3/RhoE is an atypical member of the Rho-Gtpase

family (40) and is involved in functions normally regulated by

rho-GTPase as well as many basic cellular processes. The

regulation of Rnd3 varies in different cancers. RND3 is under-

expressed in gastric cancer (41), hepatocellular carcinoma (42),

and prostate cancer (43), while it is overexpressed in pancreatic

cancer (44) and non-small cell lung cancer (45).
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There have been many reports on the regulation of RGS2

in tumors, and the abnormal expression of RGS2 can be seen

in a variety of tumors, such as colon cancer (46), ovarian

cancer (47), and prostate cancer (48). RGS2 inhibits the

growth of melanoma cells by inhibiting MAPK and AKT.

RGS2 inhibits melanoma cell growth by inhibiting MAPK and

AKT, but this effect depends on the genetic structure of the

overall cell (49).

KLF6, a gene that encodes a zinc finger DNA-binding

transcription factor, is one of the strongest superenhancers in

ccRCC cells (50). In addition, KLF6 has both growth-suppressive

and supportive functions in different cancers. For instance,

overexpression of KLF6-SV1 in prostate cancer cell lines leads

to increased proliferation (51).

The human Tob proteins (Tob1 and Tob2) are encoded by

paralogous genes belonging to the mammalian BTG/Tob family

of anti-proliferative factors that regulate cell growth in a variety
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of cell types (52, 53). In human primary HCCs, inhibition of

Tob2 reproduces mir-362-3p overexpression, thereby increasing

cell proliferation and anchorage-independent soft agar growth

(54). In adipose tissue, Tob2 negatively regulates adipogenesis by

inhibiting PPARg2 expression (55).

7SK RNP was associated with high elongation of RNA

polymerase II. The basic structure of 7SK RNP includes

LARP7, MEPCE, and 7SK RNA. 7SK RNA has a special 5-

terminal phosphate monomethyl cap catalyzed by a

phosphomethylation capping enzyme (MePCE) (56), which is

also a stationary component of 7SK RNP. In addition, MEPCE is

also involved in miRNA targeting and regulation. MEPCE, for

example, has been identified as the targeting and negative

regulation of Mir-338, which is associated with the migration

and invasion of HCC cells (57).

Additionally, we performed a drug sensitivity analysis on

LIF-related genes and found that LIF, RND3, SOCS3, and KLF6
A B

C

FIGURE 9

Nomogram risk prediction and validation of ccRCC patients based on risk score. (A) Nomogram for predicting 1-, 3-, and 5-year events that
combine clinical data with age, gender, stage, and risk score. The line segment corresponding to each variable is marked with a scale, which
represents the value range of the variable, and the length of the line segment reflects the contribution of the factor to the outcome event. The
point in the figure represents the individual score corresponding to each variable under different values, and the total score of the
corresponding individual scores after all variables was taken. (B) ROC curve was used to verify the diagnosis with AUC at 1, 3, and 5 years.
(C) The validation plots for predicting overall survival.
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have closely related sensitivity to numerous drugs. These

findings provide a new reference for drug treatment of ccRCC.

However, our study had limits that should be acknowledged.

We conducted and validated the LIF-related prognostic risk

mode by utilizing general databases, and the outcomes require

in-depth confirmation by prospective research. In future work,

studies to clarify the specific mechanisms of LIF in ccRCC

are warranted.
Conclusion

In summary, high expression of LIF is an important factor

for poor prognosis of ccRCC patients. Inhibition of LIF can

suppress the migration of ccRCC cells. The risk score model

including LIF-related genes can be used to predict the prognosis

of ccRCC patients, leading to improved monitoring of the

present patient population.
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