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Abstract 

Recombination is a key evolutionary driver in shaping novel viral populations and lineages. When unaccounted for, recombination can 
impact evolutionary estimations or complicate their interpretation. Therefore, identifying signals for recombination in sequencing data 
is a key prerequisite to further analyses. A repertoire of recombination detection methods (RDMs) have been developed over the past two 
decades; however, the prevalence of pandemic-scale viral sequencing data poses a computational challenge for existing methods. Here, 
we assessed eight RDMs: PhiPack (Profile), 3SEQ, GENECONV, recombination detection program (RDP) (OpenRDP), MaxChi (OpenRDP), 
Chimaera (OpenRDP), UCHIME (VSEARCH), and gmos; to determine if any are suitable for the analysis of bulk sequencing data. To test 
the performance and scalability of these methods, we analysed simulated viral sequencing data across a range of sequence diversities, 
recombination frequencies, and sample sizes. Furthermore, we provide a practical example for the analysis and validation of empirical 
data. We find that RDMs need to be scalable, use an analytical approach and resolution that is suitable for the intended research 
application, and are accurate for the properties of a given dataset (e.g. sequence diversity and estimated recombination frequency). 
Analysis of simulated and empirical data revealed that the assessed methods exhibited considerable trade-offs between these criteria. 
Overall, we provide general guidelines for the validation of recombination detection results, the benefits and shortcomings of each 
assessed method, and future considerations for recombination detection methods for the assessment of large-scale viral sequencing 
data.
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1. Introduction
Recombination is the exchange of genetic material between dif-
ferent genomes. It is a fundamental process that occurs in many 
viruses and plays a significant role in their evolution and emer-
gence. The interplay between recombination and mutation can 
increase the genetic diversity of viral populations. This enables 
the rapid acquisition of advantageous genotypes, leading to the 
selection of fitter strains and variants, the expansion of their host 
range, and the development of resistance to antiviral therapies 
and host immune responses (Duffy, Shackelton and Holmes, 2008; 
Pybus and Rambaut, 2009; Simon-Loriere and Holmes, 2011; Xiao 
et al., 2016). The process of recombination has been observed to 
create new lineages of fit viruses in agricultural and public health 
contexts (Wong et al., 2013; Yes̨ilbağ, Alpay and Becher, 2017; Brito 
et al., 2018; Boni et al., 2020; Lytras et al., 2022), highlighting the 
need to consider it in the understanding of viral evolution and the 
spread of diseases.

Failing to account for recombination in sequencing data can 
affect phylogenetic estimates, such as the relationships and 

ancestry of individuals (phylogenetic tree topology; (Arenas and 
Posada, 2010)) and the number of substitutions in lineages (branch 

lengths; (Schierup and Hein, 2000)). It can also impact estimations 
of site-rate variation (Anisimova, Nielsen and Yang, 2003), pop-

ulation structure, and positive selection (Castillo-Ramírez et al., 
2011; Pérez-Losada et al., 2015; Rousselle et al., 2019). Therefore, 

it is important to test for and account for potential recombination 

before conducting evolutionary analyses to avoid misleading esti-
mations and complicating the interpretation of results due to the 

conflicting intragenomic signals in the data.

Recombination detection methods (RDMs) are used to iden-

tify possible recombination breakpoints in sequence alignments. 

Specifically, homoplasy methods can be utilised to test for the 

presence or absence of recombination but do not identify the 
breakpoints. There are various RDMs available, which differ in 
their ability to identify recombination in specific sequences or 
across an entire alignment and the statistical tests and algorithms 
used (Martin, Lemey and Posada, 2011; Pérez-Losada et al., 2015). 
Previous studies have examined the accuracy and false positive 
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Figure 1. Modes of assessed RDMs. The resolution in which recombination is identified differs across methods. (A) Presence/absence of methods 
informs whether recombination is present in a sequence alignment, but provides no information where breakpoints are located. (B) Methods report 
the location of breakpoints across the entire sequence alignment but do not inform the exact sequences in which they occur. (C) Methods that 
compare every potential sequence triplet from the alignment identifies the specific breakpoint location within a putative recombinant and the 
parental sequences where those segments are inherited from. (D) Pairwise methods report regions shared by two sequences where recombination 
may have occurred between them.

(FP) rates of RDMs for detecting simulated recombination events in 
increasingly divergent sequences (Smith and Smith, 1998; Brown 
et al., 2001; Posada and Crandall, 2001; Boni, Posada and Feldman, 
2007). However, the growing use of high-throughput viral sequenc-
ing (Loman et al., 2012; Goodwin, McPherson and McCombie, 
2016; Pérez-Losada et al., 2020) and real-time genomic surveil-
lance (Quick et al., 2016; Hadfield et al., 2018; Seemann et al., 
2020) requires efficient and scalable RDMs, which has not been 
thoroughly evaluated.

In order to accurately determine the confidence of recom-
bination tests, it is common practice to use multiple methods, 
as different approaches have respective benefits and limitations 
(Martin et al., 2015). However, the commonly used RDMs (Lole 
et al., 1999; Kosakovsky Pond et al., 2006; Martin et al., 2021) are 
not suitable for analysing pandemic-scale sequencing data. Here, 
we assess the impact of sequence diversity and recombination fre-
quency on the performance of eight RDMs and identify which ones 
are scalable for analysis of thousands of viral sequences. Through 
the analysis of simulated and empirical data, we provide user 
guidelines and considerations for selecting and using RDMs.

2. Methods
2.1 Recombination detection methods
RDMs test sequencing data for the presence of recombination. A 
large variety of detection methods have been developed, imple-
menting different algorithms and statistical tests to address dif-
ferent datasets and applications (Martin, Lemey and Posada, 2011; 
Pérez-Losada et al., 2015). The resolution of how recombination is 
reported varies across methods (Fig. 1). Methods such as PhiPack 
(Bruen, Philippe and Bryant, 2006) indicate the presence/absence 
of recombination within an entire alignment, whereas GARD 
(Kosakovsky Pond et al., 2006) identifies recombination break-
point regions across the entire sequence alignment. MaxChi, Chi-
maera (Martin et al., 2015), 3SEQ (Boni, Posada and Feldman, 
2007; Lam, Ratmann and Boni, 2018), and GENECONV (Sawyer, 
1989; Padidam, Sawyer and Fauquet, 1999) identify recombination 
breakpoints within specific sequences and their putative parents. 

The performance and scalability of eight RDMs were
evaluated—PhiPack (Profile), 3SEQ, GENECONV, recombination 
detection program (RDP) (OpenRDP), MaxChi (OpenRDP), Chi-
maera (OpenRDP), UCHIME (VSEARCH) (Rognes et al., 2016), and 
gmos (Domazet-Lošo and Domazet-Lošo, 2016) (Table 1; Fig. 2). We 
prioritised selecting methods that were able to be incorporated 
in a Unix-based pipeline and can process over 1,000 sequences. 
The following section outlines the intended application for each 
selected RDM, the statistical method used, and the parameters 
used throughout this study. Although each RDM was developed 

for specific biological applications, all methods similarly identify 
signals of recombination between input sequences.

PhiPack evaluates sequence alignments for recombination 
using the pairwise homoplasy index, which examines site pairs 
across aligned sequences using the four gametes test. The ‘Profile’ 
function of PhiPack allows recombination hotspots to be searched 
across all sites in a sequence alignment with a sliding window. All 
analyses were conducted with default settings, according to rec-
ommendations based on previous analyses (Bruen, Philippe and 
Bryant, 2006). The window size spanned 1,000 nucleotides and 
moved every twenty-five nucleotides. P-values are reported for 
each window, where P < 0.05 indicates that recombination is likely 
to occur within the window.

3SEQ is a non-parametric algorithm that uses a ranked cluster-
ing statistic to locate significant breakpoint regions. 3SEQ tests all 
combinations of sequence triplets within the alignment to deter-
mine if one sequence is a potential recombinant between the other 
two sequences. The ‘maximum descent’ metric reports the degree 
to which regions cluster to either parent. The more significant, 
or the ‘steeper’ the descent in a region, the more likely that the 
region indicates a breakpoint. 3SEQ was run using default settings 
using the ‘full run’ option, and duplicate sequences were automat-
ically removed. A three-dimensional probability table is required 
for 3SEQ to determine the significance of putative recombination 
events. We generated and used a 700 x 700 x 700 probability table 
for all analyses.

GENECONV identifies possible gene conversion events by look-
ing for similarities, or concordance, between aligned pairwise 
sites. Similar to 3SEQ, only polymorphic sites between the 
sequence pairs are assessed. Putative recombination between two 
sequences is assessed using a basic local alignment search tool 
(BLAST)-like statistic. Aligned regions between two sequences 
that are significantly similar are considered to be recombinant. 
Recombination can be detected between sequences present in the 
dataset (inner) or predicted to be occurring with a sequence absent 
from the dataset (outer). All analyses were conducted with default 
settings with 10,000 permutations.

OpenRDP is an open-source, command-line reimplementation 
of the commonly used RDP suite of programs (https://github.com/
PoonLab/OpenRDP). All methods implemented in OpenRDP—RDP, 
MaxChi, and Chimaera test for recombination in polymorphic 
sites for each possible sequence triplet using a sliding window. 
Peaks in the respective P-values indicate potential recombina-
tion breakpoints. RDP (Martin and Rybicki, 2000) tests whether 
the sites between the two assumed parental sequences are more 
similar to the recombinant sequence (i.e. P1-R and P2-R), than 
that of each other (P1–P2). Significance is tested under a bino-
mial distribution. On the other hand, MaxChi (Smith, 1992) and 
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Table 1. Properties of assessed RDMs. Schematics of the analysis and output resolutions for each method are detailed in Fig. S1.

Method Version used Statistical test Alignment-free Analysis resolution Output resolution

PhiPack (Profile) – Pairwise homoplasy index No Alignment-wide windows Alignment-wide breakpoints
3SEQ v1.7 Mann–Whitney U-test No All possible sequence triplets Per-sequence breakpoints
GENECONV v1.8.1 BLAST-like No All possible sequence pairs Per-sequence breakpoints
RDP (OpenRDP) v0.1.0-rc2 Binomial distribution No All possible sequence triplets Per-sequence breakpoints
MaxChi (OpenRDP) v0.1.0-rc2 X2 distribution No All possible sequence triplets Per-sequence breakpoints
Chimaera (OpenRDP) v0.1.0-rc2 X2 distribution No All possible sequence triplets Per-sequence breakpoints
UCHIME (VSEARCH) v2.14.2 Numerical score accord-

ing to ‘diffs’
Yes All possible sequence triplets Per-sequence only

gmos v1.0 BLAST-like Yes Query-subject sequence pairs Per-sequence breakpoints

Chimaera (Posada and Crandall, 2001) utilise a X2 distribution to 
test whether there is a significant difference in the proportions 
of polymorphic sites. MaxChi discards all monomorphic sites, 
whereas Chimaera additionally discards sites that differ between 
the recombinant and parental sequences. All OpenRDP methods 
were run using default settings on sequence triplets.

UCHIME (VSEARCH) is an alignment-free method developed 
to detect recombination in raw sequencing reads resulting from 
recombination during the sequencing or amplification processes. 
UCHIME (VSEARCH) assesses the likelihood for a query sequence 
to be a recombinant between two parental sequences by counting 
the number of sites that match either putative parental sequence 
(‘diffs’). All ‘diffs’ are then scored to determine if the query 
sequence is a recombinant between the two. All analyses were 
executed with default settings using the de novo mode as imple-
mented in VSEARCH (Rognes et al., 2016). A required dereplication 
step was conducted to count the frequency of unique sequence 
genotypes. Using the de novo mode, UCHIME (VSEARCH) only con-
siders sequences as recombinants if the parental sequences are at 
least twice as abundant in the dataset.

gmos is an alignment-free method developed to identify 
recombination, or mosaicism, amongst prokaryotic sequences. 
gmos calculates the likelihood that local alignments between all 
query and subject sequences are recombinant with a BLAST-
like algorithm. Two sequence files are required as input—a query 
file consisting of sequences to be tested against a file of sub-
ject sequences. Default settings were used for all analyses. To 
detect recombination between all sequence pairs in a dataset, 
we specified the identical, fasta file as both query and subject 
sequences.

2.2 Simulations
To assess the performance and scalability of the RDMs (Fig. 2), sim-
ulations were conducted using SANTA-SIM (Jariani et al., 2019). 
We modified SANTA-SIM to report the location of simulated 
recombination breakpoints (https://github.com/koadman/santa-
sim). Viral sequences were simulated ‘forwards-in-time’ across 
discrete and non-overlapping generations and replicated accord-
ing to various parameters. At each generation, the evolution and 
replication of sequences were determined by the mutation rate 
(m), recombination rate (r), and dual-infection probability (d). The 
mutation rate determined the probability of a point mutation 
occurring per site per generation. The recombination rate deter-
mined the probability of recombination occurring between two 
sequences per site per generation. The dual-infection probabil-
ity determined the likelihood that one cell is co-infected with two 
viruses for recombination to occur.

All simulations utilised the complete hepatitis C virus (HCV) 
envelope-encoding gene regions from de-identified patient #37 

from the study by Ho et al. (2017). For each replicate, one sequence 
from this alignment was randomly selected to form the start-
ing population. All sequences (n = 100) in the starting population 
were identical. All sequences and intra-sequence regions were 
set to evolve neutrally, and hence, no selection occurred and all 
sequences had an equal chance of being inherited in the next gen-
eration (Jariani et al., 2019). We ensured that all methods were 
assessed on their ability to detect recombination events without 
subsequent mutations. These mutations can weaken the recom-
bination signal and bias the evaluation of methods (Chan, Beiko 
and Ragan, 2006). Therefore, sequences were evolved for ninety-
nine discrete generations with mutation only (no recombination), 
followed by a final generation of recombination alone (no muta-
tion). It is important to note that this does not emulate empirical 
viral evolution, but to ensure that method performance was not 
impacted by recurrent mutations.

The performance of RDMs was assessed across a range of 
mutation rates m = {0,1e − 5,1e − 4,0.001,0.01,0.1} and recombina-
tion rates r = {0,1e − 3,5e − 3,1e − 2,5e − 2,1e − 1}; d (dual-infection 
probability) = {0 and 1}. These parameter ranges were selected 
to encompass the observed rates of viral evolution (Drake and 
Holland, 1999; Sanjuán et al., 2010; Hedge, Lycett and Rambaut, 
2013) and were extended beyond these observed rates to test the 
computational limits of the RDMs. Five replicates were conducted 
for each unique combination of these parameters (m,r,d). The 
sequence diversity and number of recombinations were reported 
for simulated populations. We calculated the pairwise sequence 
diversity for each population using seqinr::dist.alignment (Charif 
and Lobry, 2007). 

2.3 Performance evaluation
To evaluate the performance of the methods, all recombination 
detection outputs from processed simulated data were classified 
according to a confusion matrix. Method outputs were classified 
as one of four cases—true positive, FP, true negative (TN), or false 
negative (FN). For PhiPack (Profile), the expected and observed 
cases were determined for each window. The expected case was 
whether recombination was simulated within the sliding window. 
The observed case was whether that window tested significant for 
recombination (P ≤ 0.05). For the sequence-based methods (3SEQ, 
GENECONV, UCHIME (VSEARCH), and gmos), the expected and 
observed cases were determined for each sequence.

The normalised Matthews Correlation Coefficient (nMCC), 
power, and precision were calculated across simulation param-
eters according to the cases (Table S1). nMCC was chosen 
over F-score as it is more suited for highly unbalanced cases 
(Figs. S3–4; (Chicco and Jurman, 2020)). When division by zero 
occurred when calculating the power or precision, conditions 
were scored 1. For nMCC, cases with missing conditions were 
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Figure 2. Workflow of simulated and empirical analyses conducted to assess the performance and scalability of eight RDMs.

treated according to the guidelines provided by Chicco and
Jurman (2020).

2.4 Scalability
We assessed the scalability of all eight RDMs by recording the 
central processing unit (CPU)  time required to analyse simulated
datasets with variable sample sizes n = 1,000,5,000,10,000,
50,000. Datasets were simulated across a range of mutation rates 
m = 0,1e − 5,1e − 4,0.001,0.01,0.1 and with and without recombina-
tion r = 0,0.1;d = 1. Five replicates were conducted for each unique 
combination of these parameters, and all simulated populations 
were assessed by each RDM. Analyses were restricted to 24 CPU 
hours each. All individual analyses were run using a single-core 
on a 2.2 GHz Intel Xeon Gold 6240R CPU with 16 GB random-
access memory (RAM). All analyses were conducted on the UTS 
eResearch High-Performance Computer Cluster.

2.5 Empirical data
In addition to the simulation analyses, we analysed three empiri-
cal datasets using all eight RDMs. The datasets include sequence 
alignments for positive-sense single-stranded RNA (+ssRNA) 
viruses. These include the envelope-encoding regions for the 
HCV (n = 5479), the open reading frames ORF1a and ORF1b of 
Betacoronavirus-1 (Beta-CoV-1; n = 23), and the whole genome of 
Bovine viral diarrhea virus-1 (BVDV-1; n = 34). The ORF1ab for 
Beta-CoV-1 was selected as the 3’ can present challenges with 

alignment. We retrieved the Beta-CoV-1 and BVDV-1 sequences 
from  National Center for Biotechnology Information (NCBI) Gen-
Bank and aligned them with MAFFT v7 using default settings 
(Katoh, Rozewicki and Yamada, 2019). We used the HCV dataset 
described earlier (from Ho et al. (2017)) from the simulation anal-
yses. Datasets ranged in their sampling approach, sample size, 
and pairwise sequence distances to test a variety of applica-
tions (Table 2). We calculated the pairwise sequence distances 
with seqinr::dist.alignment.

We constructed separate phylogenies using the whole genome 
and recombination-free regions for Beta-CoV-1 and BVDV-1 using 
IQ-TREE v2.1.2 (Minh et al., 2020) with 1,000 ultrafast boot-
strap replicates (Hoang et al., 2018) and 1,000 replicates for the 
Shimodaira–Hasegawa (SH)-like approximate likelihood ratio test 
(Guindon et al., 2010). Putative recombination-free regions were 
determined according to the location of detected recombina-
tion breakpoints across all methods. We compared the topolo-
gies between adjacent recombination-free trees to validate the 
recombination tests using phytools::cophylo (Revell, 2012).

3. Results and Discussion
3.1 The sequence diversity and recombination 
frequency of simulated datasets
We assessed the performance of the eight RDMs with simulated 
data across a range of sequence diversities and recombination
frequencies. The pairwise sequence distance increased with 
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Table 2. Alignment properties of empirical datasets and the num-
ber of recombinant sequences detected by each method. Number 
in brackets indicates the number recombinants identified by gmos 
that were not between identical sequences and included in analy-
ses. OpenRDP methods were not run on HCV due to computational 
limits.

HCV Beta-Cov-1 BVDV-1

Sampling Within-host Between-host Between-host
Number of 

sequences
5479 23 34

Alignment 
length

1680 17,088 11,767

Mean pairwise 
distance

0.146 0.186 0.386

Max pairwise 
distance

0.194 0.194 0.482

3SEQ 1 5 25
GENECONV 2001 3 13
RDP (OpenRDP) – 23 33
MaxChi 

(OpenRDP)
– 0 33

Chimaera 
(OpenRDP)

– 23 33

gmos 5479 (0) 23 (10) 34 (16)
UCHIME 

(VSEARCH)
0 0 0

higher mutation rates across simulated populations (Fig. 3A). A 
wide range of sequence diversity was simulated, with populations 
(sequence alignments) that consisted of all identical sequences 
(m = 0) to highly divergent populations with the largest pairwise 
distance of 0.89 (m = 0.1). This extends the pairwise sequence 
distance assessed in previous benchmarking studies of approxi-
mately 0.45 (Smith and Smith, 1998; Posada and Crandall, 2001; 
Brown et al., 2001; Boni, Posada and Feldman, 2007), allowing for 
novel insights at higher sequence diversities of methods that have 
been assessed prior (PhiPack, 3SEQ, GENECONV, RDP, MaxChi, and 
Chimaera). 

3.2 Assessment of RDMs
Our analysis of simulated and empirical data shows that RDMs 
vary in their ability to handle sequencing data with different 
sequence diversities and recombination frequency. Notably, there 
is an inverse relationship between the power and precision of all 
methods (Figs. 4 and 5). This is due to the simulation scheme, 
where only a small proportion of recombinant sequences are 
simulated per population Fig. 3. For example, methods 3SEQ, 
GENECONV, RDP, MaxChi, Chimaera, and UCHIME generally 
detected more recombination as sequences become more diverse. 
As there are few recombinants, these were FP detections which 
decreased the precision.

While none of the assessed methods are perfectly suited for 
analysing large-scale viral sequencing data, we provide insights 
into the trade-offs between scalability, the analytical approach, 
and dataset-specific performance of the methods, Table 3.

3.2.1 PhiPack (Profile)
PhiPack (Profile) scored the highest average nMCC (≥ 0.75; Fig. 4A) 
when analysing similar sequences with minimal recombination 
(m = {2e − 5,1e − 4},r ≤ 0.005). This may suggest that homoplasy 
methods could be suited for analysis of sequences with a pair-
wise distance of as little as 0.04 (Fig. 3a), extending a previously 
reported range for homoplasy methods of 0. 1–0.22 (Smith and 

Smith, 1998). Further analyses are needed to assess whether this 
limit is affected by fewer or more taxa. PhiPack (Profile) had low 
power between m = {1e − 5,1e − 4}, congruent with observations 
that the pairwise homoplasy index (PHI) test is conservative within 
this range (Bruen, Philippe and Bryant, 2006).

When more recombination was present in the data (r ≥ 0.05), 
the nMCC was highest when sequences were divergent (m = {1e −
3,1e − 2}). The precision of PhiPack (Profile), defined as the rate of 
correctly identified breakpoints (Table S2), was unaffectd across 
recombination rates, and the average precision was highest (≥
0.75) between m = {1e − 5 − 1e − 4} and gradually declined as the 
mutation rate increased.

PhiPack (Profile) was the third most scalable method and did 
not complete any analyses within 24 h when n = 50,000 (Fig. 6). 

3.2.2 3SEQ and GENECONV
3SEQ and GENECONV required a minimum pairwise distance of 
approximately 0.2 (m ≈ 0.001) to detect recombination (Figs. 3A 
and 5). Recombination was detected most frequently at m = 0.01, 
with a few detections at m = {0.001,0.1} (Fig. S4). At m = 0.1, less 
recombination was detected as the recombination signal was 
weakened due to the high divergence between sequences. High 
precision was maintained between m = {0,1e − 5,1e − 04} as no 
recombination was detected.

3SEQ and GENECONV performed well at r = {0,0.001} as no 
recombination was simulated nor detected. At r = 0.005, recom-
bination was detected by both methods, with the nMCC highest at 
m = 0.001. GENECONV generally scored higher nMCC than 3SEQ 
at r = {0.005,0.01,0.05};m = {0.01,0.1}. At r = {0.005,0.01}, 3SEQ 
is more powerful at higher mutation rates (m = {0.01,0.1}), but 
GENECONV has higher precision.

We find that the average nMCC and power of 3SEQ and 
GENECONV declined with more simulated recombination in the 
sequence alignments (Fig. 5). This conflicts with previous bench-
marks where detection methods increased in power with increas-
ing recombination (Posada and Crandall, 2001; Boni, Posada and 
Feldman, 2007). This disparity could be due to the differences 
in the simulation process. Here, the recombination rate (r) and 
dual-infection probability (d) parameters control both the number 
of sequences that undergo recombination, as well as the num-
ber of recombination events in those sequences (Figs. 3B, C). This 
resulted in fragmented sequences (Fig. S2) that could be more 
difficult for programs to identify correctly due to a weakened 
recombination signal.

Given sufficient diversity in the dataset, both 3SEQ and 
GENECONV were likely to identify recombination when it was 
present, but identification of the exact sequences was poor. 
In total, 86.26 per cent of sequences identified as recombi-
nant by both methods were FPs (Fig. S4). 3SEQ has been 
shown to have a low FP rate and be able to recover most 
recombination events given sufficient diversity (polymorphic 
sites) in a dataset (Boni, Posada and Feldman, 2007). Inter-
estingly, 99.74 per cent of sequences identified as FPs by 
3SEQ had recombinant parents (Table S2), suggesting that 
3SEQ could identify recombination in the putative parental 
sequences (Table S2). However, further evaluation with known 
parental-recombinant triplets is required to confirm this. A sim-
ilar trend is observed in the analysis of the empirical BVDV-
1 data, where 3SEQ repeatedly identified JN644055_ChinaXin-
Jiang_2011 and JN704144_China_3156 as the parental sequences 
for putative recombinants (Fig. S6). 3SEQ and GENECONV were 
the least scalable methods and scaled poorly when analysing 
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Figure 3. Pairwise distance and breakpoint frequency distributions of simulated sequences. (A) Pairwise sequence distances across mutation rates. 
Dashed lines indicate the median pairwise distance per mutation rate. (B) Number of breakpoints simulated per sequence across recombination rates. 
(C) Number of recombinant sequences per population across recombination rates.

divergent sequences, as more informative sites are analysed
(Fig. 6).

3.2.3 RDP, MaxChi, and Chimaera (OpenRDP)
The performance of all three OpenRDP methods was impacted 
considerably by sequence divergence, whereas the recombination 
frequency had a negligible effect. In particular, detection amongst 
divergent sequences was poor. Recombination was detected in 
nearly all sequences (Supplementary Fig. X), resulting in high 
power and low precision (m ≥ 0.001; Fig. 5). In more similar 
sequences (m ≤ 1e − 4), the performance was comparable to 3SEQ 
and GENECONV. At m = 0.001, MaxChi detected less recombina-
tion and resulted in fewer FPs than RDP and Chimaera (Supp. 
Fig X). This was reflected in the empirical analyses where MaxChi 
did not detect any recombination in BCoV-1, where the sequence 
diversity corresponds to approximately m = 1e − 4 in the simu-
lated data (Fig. S5). Ample recombination events were detected in 
BVDV-1 where the sequence diversity is approximate to m ≈ 1e − 3
data.

To improve the precision of the OpenRDP method (there-
fore reducing the FP detections), a post-processing step on the 
inferred P-values is recommended. Previously suggested tech-
niques include selecting P-value peaks to delineate breakpoints 
or using a hidden Markov model like BURT (Martin et al., 2015). 
Utilising the boundaries output from another RDM that directly 
compares sites across sequences, such as GENECONV, has pre-
viously been recommended (Smith, 1992; Posada and Crandall, 
2001); however, we advise against this as it can overlook the 
data-specific performance of RDMs (Section 4.4).

Although these approaches will improve the accuracy of the 
methods, it will further limit the capacity of the OpenRDP meth-
ods to analyse moderately sized data sets. RDP, MaxChi, and 
Chimaera scaled poorly with an increasing number of sequences 

and polymorphic sites. All three methods were unable to complete 
analyses of 1,000 sequences above m = 1e − 5 within 24 h (Fig. 6). 
However, ongoing testing and development of the OpenRDP 
package aims to improve both the accuracy and speed of the
methods.

3.2.4 UCHIME (VSEARCH) and gmos
UCHIME (VSEARCH) and gmos are both alignment-free meth-
ods. Interestingly, they were the most scalable methods but both 
encountered analytical issues. UCHIME (VSEARCH) was the fastest 
assessed method, completing all analyses within the allocated 
24-h restriction (Fig. 6). The longest analysis elapsed 15m 55s 
(CPU time) at the largest sample size (n = 50,000). gmos was the 
next fastest method after UCHIME (VSEARCH). Similar to PhiPack 
(Profile), gmos did not complete any analyses within 24 h when 
n = 50,000. Furthermore, the time and resources required for 
sequence assembly and alignment were not considered in this 
study, but are expected to provide a further speed advantage in 
comparison to methods that require aligned sequences.

UCHIME (VSEARCH) did not detect any recombination in any 
simulated or empirical dataset. As a result, UCHIME (VSEARCH) 
scored low power and a high average precision in the simula-
tion analyses (Fig. 5). However, the precision would decrease if 
a higher proportion of recombinant sequences were present in 
an alignment. UCHIME (VSEARCH) was originally developed to 
identify chimeric sequences during amplification and was run 
using default settings. Given the promising scalability of UCHIME 
(VSEARCH), further work should aim on identifying the optimal 
parameters (particularly the abundance skew) suited for recombi-
nation detection of assembled (viral) sequences, rather than raw 
reads.

gmos considered all identical subject and query sequences as 
recombinant, and a thorough assessment could not be conducted 
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Figure 4. Performance of PhiPack (Profile) across mutation rates and recombination rates (r). Scores for the (A) nMCC, (B) power, and (C) precision are 
presented. Each point represents individual replicate scores, and lines and diamonds represent the mean score across the mutation and 
recombination rates.
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Figure 5. Performance of the sequence-based methods (3SEQ, GENECONV, RDP (OpenRDP), MaxChi (OpenRDP), Chimaera (OpenRDP) and UCHIME 
(VSEARCH)) across mutation rates and recombination rates (r). Scores for the (A) nMCC, (B) power, and (C) precision are presented. Each point 
represents individual replicate scores and lines and diamonds represent the mean score across the mutation and recombination rates.
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with simulated data. For empirical analyses, only recombina-
tion results between unique sequences were considered. gmos 
may not be suited for analysis of datasets with an abundance of 
unique sequences, such as for within-host or dense sampling and 
better suited for analysis of distinct subject-query sequences as 
intended. 

3.3 Empirical analyses
We analysed three empirical datasets of HCV, Beta-CoV-1, and 
BVDV-1 (Table 2) using all eight RDMs. 3SEQ, and GENECONV 
detected recombination in sequences above a pairwise sequence 
distance of 0.1, whereas gmos detected recombination with a dis-
tance below 0.1 (Fig. S5). Phylogenetically, 3SEQ and GENECONV 
detections were between paraphyletic sequences and gmos detec-
tions were common between monophyletic sequences (Fig. S6).

The specific performance of each method is reflected in the 
vastly different locations of inferred breakpoints. This highlights 
the need to consider the dataset-specific performance of RDMs 
when interpreting their results. To illustrate this, we assess the 
results for each empirical dataset according to the simulation 
analyses.

3.3.1 HCV
GENECONV identified 2,001 sequences as recombinant (Table 2). 
The sequence diversity range detected (Fig. S5) corresponded 
approximately with m = 1e − 04 in the simulation analyses (Fig. 3A), 
where precision is high across all recombination rates, although 
some recombination may be missed (Fig. 5). Interestingly, all the 
inferred breakpoints spanned the 5’ end of the E1 gene region 
(between positions 110 and 175) and the 3’ end of the E1 gene 
region and hypervariable region within E2 (HVR1; positions 546-
621). The E1 and E2 regions are known to be under strong 
purifying selection, and in turn reduce the sequence diversity 
(Raghwani et al., 2019). On the other hand, the HVR1 region 
undergoes strong positive selection, allowing for the rapid acc-
quisition of new, diverse variants. Here, GENECONV is likely 
identifying the regions to be more significantly more similar 
than the highly diverse HVR1 (Sawyer, 1989). 3SEQ detected one 
putative recombination event. There may be insufficient variation 
in serially sampled sequencing for an adequate parental signal.

3.3.2 Betacoronavirus-1
The pairwise distances of Beta-CoV-1 sequences were between 
0.02 and 0.2 (Fig. S5), corresponding to m = {1e − 5,1e − 4} in the 
simulation analyses (Fig. 3). Within this range, recombination 
detected by PhiPack (Profile), 3SEQ, and GENECONV is likely to be 
correct, but lack the power to recover all recombination break-
points (Figs. 4 and 5). Furthermore, the phylogenies delimited 
by breakpoints identified by 3SEQ and GENECONV all produced 
incongruent topologies (t1 − t2, t4 − t5, t5 − t6 signal topologies; 
Fig. S6). On the contrary, comparison of trees t2 and t3, delimited 
by a breakpoint identified by gmos, had identical topologies.

3.3.3 BVDV-1
In comparison to Beta-CoV-1, PhiPack (Profile) detected a higher 
proportion of recombinant windows in BVDV-1 (Fig. 7). This aligns 
with the simulated data (m ≈ 1e − 3; Fig. 3A), where PhiPack (Pro-
file) is powerful across divergent sequences; however, it is uncer-
tain if the detected windows are correct as the precision varies 
across recombination rates (Fig. 4). According to simulated analy-
ses, 3SEQ and GENECONV detections may be incorrect due to the 
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Figure 6. Scalability of the RDMs. The CPU time (log-scaled) required to process simulated populations with a varying number of sequences (n) across 
mutation rate is presented. Points represent the CPU time required to process individual replicates and lines, and diamonds represent the mean time 
per sample size (n) and mutation rate. Failed analyses (i.e. 3SEQ and GENECONV at m = 0) and analyses that were not completed within 24 h were 
omitted.

decreased precision when analysing divergent sequences (pair-
wise sequence distance 0.4; Fig. 5). However, topologies were 
incongruent between trees delimited by breakpoints identified 
3SEQ and GENECONV (t2 − t3, t3 − t4; Fig. S8).

Strikingly, 80 per cent of sequences identified as recombinant 
by 3SEQ had both parental sequences as JN644055 and JN704144. 
Analysis of non-recombinant regions delimited by the break-
points identified by 3SEQ revealed that sequences JN644055 and 
JN704144 clustered in different clades (Fig. S8), suggesting that 
recombination has occurred in the NS4B or NS5A region in this 
lineage. 

3.3.4 Detecting recombination in highly similar sequences
Detecting recombination between highly similar sequences has 
been a persistent challenge, as existing methods lack the required 
power (Posada and Crandall, 2001; Martin, Lemey and Posada, 
2011; Pérez-Losada et al., 2020; Richard et al., 2020). Although 
it is impossible for sequence-based methods to identify recom-
bination between identical sequences, it is crucial to note the 
erroneous behaviour of some methods. When all sequences in 
an alignment were identical, PhiPack (Profile) considered all win-
dows as recombinant (Fig. S3); 3SEQ and GENECONV were unable 
to run due to a lack of polymorphic sites (Fig. S4). gmos deemed 
all identical pairs of subject and query sequences as recombinants 
and was not evaluated further for simulated data.

New methods have been developed for the analysis of viral 
sequencing data with low diversity by incorporating genealogical 
information (Van Insberghe et al., 2020; Ignatieva, Hein and 
Jenkins, 2021; Varabyou et al., 2021; Turakhia et al., 2022). 
However, these methods may only be effective for the analy-
sis of densely sampled sequences where homoplasy is unlikely 
to be present in the data. Recombination between highly sim-
ilar regions may continue to elude genomic approaches and is 
important to continue incorporating known biological informa-
tion to inform recombination analyses. For example, considering 
in vivo studies (Giorgi et al., 2021; Ignatieva, Hein and Jenkins, 
2021) and drawing upon epidemiological information such as the 
plausibility for co-infection (Ingle, Howden and Duchene, 2021;
Lytras et al., 2022).

3.3.5 Impact of selection on recombination detection
Recombination analysis of HCV revealed a high number of recom-
binant sequences detected, with breakpoints spanning regions of 
contrasting per-site diversity mediated by opposing selective pres-
sures. In general, the location of recombination breakpoints in 
empirical populations is non-random and concentrated in similar 
positions. Such examples include the HCV HVR1 region (Raghwani 
et al., 2019) and Spike region in coronaviruses (Klerk et al., 2022).

The impact of selective pressures was not explored in our 
simulation scheme, and the random distribution of simulated 
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Figure 7. Breakpoint detection of empirical datasets by the eight RDMs. Vertical bars indicate the detected breakpoint locations for each method with 
significance P < 0.05. Opaque regions indicate a high frequency of breakpoints. UCHIME did not identify any recombination breakpoints. The three 
OpenRDP methods (RDP, MaxChi, Chimaera) were not run on HCV due to computational limitations. MaxChi did not detect any recombination in 
BCoV-1.

breakpoints may have limited the power of the methods that 
rely on a strong recombination signal between neighbouring sites. 
Potentially, this could be causing the misidentification of 3SEQ 
parentals as the recombinant.

Purifying selection is known to restrict the diversity of the 
genetic regions it acts upon and can bias broader evolutionary 
estimations based on the genetic distance (Ewing and Jensen, 
2016; Wertheim and Kosakovsky Pond, 2011). Simulation schemes 
that account for selection and its impact of per-site variability are 
therefore important areas of future research.

3.4 Practical guidelines for using RDMs in a 
pandemic-scale era
Using multiple RDMs has been the predominant approach in 
determining the confidence of inferred recombination breakpoints 
(Martin et al., 2015). However, this approach can overlook the 
dataset-specific performance and suitability of methods. There-
fore, we propose a guideline for selecting and validating RDMs 
according to the three key properties of methods: (1) the scala-
bility, (2) analytical approach, and (3) expected performance for a 
given dataset. A summary of the performance and scalability of 
each method is presented in Table 3.

First, the size of the dataset should be considered. For exam-
ple, UCHIME (VSEARCH), gmos and PhiPack (Profile) are more 
suited for analysis of a dataset consisting of 10, 000–50,000 

sequences (Fig. 6). Users can alternatively select a reduced 
number of representative sequences for analysis with less scal-
able methods. For example, in densely sampled viruses such 

as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2), sequences can be selected according to the known parental 

sequences (Lytras et al., 2022; Tamura et al., 2023). However, 
downsampling may not be feasible for methods such as UCHIME 
(VSEARCH), which rely on sequence abundance data.

Second, the analytical approach of the method should be 

appropriate for the intended research question or application. 

A window-based method like PhiPack (Profile) is sufficient to 
identify alignment-wide breakpoints, such as for partitioning 

an alignment to analyze recombination-free regions. Sequence-

based methods (3SEQ, GENECONV, UCHIME (VSEARCH), and 

gmos) are necessary when breakpoints need to be identified in 

exact sequences, such as when recombinant lineages need to be 
inferred. The method-specific limitations discussed earlier should 

also be considered.

Lastly, the sequence diversity and expected recombination fre-

quency of the dataset should be determined (by drawing upon 

in vivo studies) to inform the validity of recombination detec-

tion outputs. For example, 3SEQ and GENECONV results are 
expected to be more accurate than PhiPack (Profile) results for 

sequences with a pairwise distance of 0.4 and two recombina-
tion breakpoints (Figs. 3, 4 and 5). Additionally, knowing the 
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diversity of the dataset can account for FNs as methods may be 
restricted to analysis of sequence diversity ranges (Figs. 4 and 5,
Fig. S5).

These guidelines may apply for analysis of non-viral sequenc-
ing data as well. The parameters for the simulated datasets were 
not specific to +ssRNA viral evolution, encompassing a wide range 
of mutation and recombination rates that may fall within the 
expected ranges of other organisms.

3.5 Future work
Further work in evaluating the performance of these eight meth-
ods should focus on the accuracy of the methods such as the 
impact of sequencing error (Turakhia et al., 2020), the accuracy 
of breakpoint detection, and the power to recover recombination 
with recurrent mutation (Chan, Beiko and Ragan, 2006). Fur-
thermore, there remains a plethora of RDMs that have not been 
benchmarked (Table S5).

Future studies should particularly focus on benchmarking 
recently developed methods intended to be scalable and are pow-
erful at lower sequence diversities (Van Insberghe et al., 2020; 
Ignatieva, Hein and Jenkins, 2021; Varabyou et al., 2021; Turakhia 
et al., 2022). However, comparison of methods may continue to 
be challenging due to the fundamental differences between them 
(Martin, Lemey and Posada, 2011).

Traditional RDMs that require aligned sequences can be com-
putationally expensive and time-consuming, limiting their utility 
for large-scale analyses. Alignment-free approaches provide a 
scalable option for recombination detection. Therefore, we sug-
gest future development of RDMs to implement alignment-free 
approaches. Further research could focus on identifying the opti-
mal parameters for UCHIME (VSEARCH) and exploring modifica-
tions to gmos, or implement ‘shustrings’, which enable it to work 
for pairwise sequence comparisons.

Additionally, we recommend an updated review or resource 
of current RDMs to assist with the selection of a suitable tool. 
Previous reports, such as that by Martin et al. (2011) and the web-
site http://bioinf.man.ac.uk/robertson/recombination/programs.
shtml, do not include newly developed methods and retain meth-
ods that are no longer available. We also note an underestima-
tion between the reported speed of methods and the maximum 
number of sequences that can be analysed.

It is important to note that the recombination frequency for 
most viruses is assumed to be severely underestimated, partic-
ularly in understudied viral families. Future biological studies 
focusing on characterising the complex evolutionary drivers of 
viral evolution will further assist in informing the selection and 
application of appropriate bioinformatic tools.

4. Conclusion
The prevalence of pandemic-scale viral sequencing data poses 
a computational challenge for existing RDMs. Ideally, methods 
need to be scalable and have appropriate statistical and analytical 
approaches depending on the dataset and research question. Eval-
uation of five RDMs using simulated and empirical data revealed 
critical trade-offs between these criteria, finding that none of the 
assessed methods are suited for the analysis of large-scale viral 
sequencing data. The performance impact of recombination fre-
quency, and especially sequence diversity, varies depending on the 
RDM. Therefore, we emphasise the importance of understanding 
the particular scenarios where each method is accurate for, in 
place of accepting putative recombination events according to the 
number of methods that jointly identify it. Accordingly, guidelines 

for selecting and validating methods are provided through appli-
cation to real viral data, a broad simulation space which extends 
the sequence diversity range than previously explored, and the 
first unified evaluation of these methods at scale. Continued work 
to improve how recombination detection is conducted involves 
the development of scalable methods. Alignment-free approaches 
provide a promising approach for analysis of large viral sequenc-
ing data that are understudied, or cannot be effectively downsam-
pled. On the other hand, there remains a repertoire of methods 
that have yet to be assessed.
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