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Abstract

Expression of E-cadherin, a hallmark of epithelial-mesenchymal transition (EMT), is often lost 

due to promoter DNA methylation in basal-like breast cancer (BLBC), which contributes to the 

metastatic advantage of this disease; however, the underlying mechanism remains unclear. Here 

we identified that Snail interacted with Suv39H1, a major methyltransferase responsible for 

H3K9me3 that intimately links to DNA methylation. We demonstrated that the SNAG domain of 

Snail and the SET domain of Suv39H1 were required for their mutual interactions. We found that 

H3K9me3 and DNA methylation on the E-cadherin promoter were higher in BLBC cell lines. We 

showed that Snail interacted with Suv39H1 and recruited it to the E-cadherin promoter for 

transcriptional repression. Knockdown of Suv39H1 restored E-cadherin expression by blocking 

H3K9me3 and DNA methylation and resulted in the inhibition of cell migration, invasion and 

metastasis of BLBC. Our study not only reveals a critical mechanism underlying the epigenetic 

regulation of EMT, but also paves a way for the development of new treatment strategies against 

this disease.
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INTRODUCTION

Breast cancer is the second leading cause of cancer-related death in women with a yearly toll 

of more than 40,000 deaths in the United States alone (1). Despite exciting progress toward 

understanding breast cancer development and progression, and in the development of novel 

therapeutic strategies, breast cancer–related deaths are primarily due to the "incurable" 

nature of metastasis. Therefore, novel therapeutic strategies are required to prevent and treat 

metastatic breast cancer. A better understanding of the molecular events that contribute to 

tumor invasion and metastasis is crucial to the development of such strategies.

The increased motility and invasiveness of metastatic tumor cells are reminiscent of the 

events that occur at EMT, which is a characteristic of embryonic development, tissue 

remodeling, wound healing and metastasis (2–4). In these EMT processes, epithelial cells 

acquire fibroblast-like properties and exhibit reduced intercellular adhesion and increased 

motility (5–7). EMT also bestows tumor cells with cancer stem cell-like characters, provides 

them with resistance to immunosuppression and confers tumor recurrence (8–11). Two 

distinct phenomena are commonly associated with EMT. First, EMT is provoked by 

extrinsic signals that cells receive from their microenvironment (4, 12), such as signals from 

TGF-β, TNF-α and growth factors (13–15). A second phenomenon associated with EMT is 

that it is a reversible process (4). When breast cancer cells disseminate to distant sites of the 

body, they no longer encounter the signals that they experienced in the primary tumor, and 

they can revert to an epithelial state via a mesenchymal-epithelial transition (MET). The 

phenotypic and cellular plasticity of EMT is determined by a unique gene-expression pattern 

through transcription factor-mediated chromatin modifications, which mainly consist of 

histone modifications and DNA methylation (16, 17). Post-translational modifications at the 

N-termini of histones, including phosphorylation, acetylation, methylation and 

ubiquitination, alter chromatin structure to control DNA accessibility. These modifications 

can function individually or in combination to elicit specific effects based on changes in 

chromatin structure or the recruitment of effector proteins that bind to specific patterns of 

histone marks. Histone lysine methylation, in particular, has emerged as an important 

modification due to its central role in transcriptional regulation. For example, methylated 

lysines 4, 36 and 79 on H3 (denoted H3K4, H3K36 and H3K79) are found in active 

chromatin, whereas methylated H3K9 and H3K27 are generally associated with gene 

repression.

Loss of H3K4 methylation and gain of H3K9 methylation appear most closely associated 

with DNA methylation (18–21), which provides reinforcement as well as establishment of 

gene silencing. DNA methylation is executed by a family of highly related DNA 

methyltransferase enzymes (DNMT1, DNMT3a, and DNMT3b) that transfer a methyl group 

to the cytosine in a CpG dinucleotide which commonly occurs in the promoter region of 

genes (22, 23). Interestingly, promoter DNA methylation is the common cause of loss of E-
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cadherin expression in basal-like breast cancer (BLBC, commonly referred to as triple-

negative breast cancer), a subtype of breast cancer possesses many EMT characteristics and 

characterized by an aggressive, metastasis-prone phenotype that associates with poor clinical 

outcome (24–28). A hallmark of EMT is the loss of E-cadherin expression (6, 29). Snail is 

key transcriptional repressor for downregulating E-cadherin in EMT (5, 6, 29). Although 

Snail is highly expressed in BLBC for repressing E-cadherin expression, the sequential 

event and the molecular mechanism leading to DNA methylation at the E-cadherin promoter 

in BLBC remain not well characterized. In our previous study, we found that Snail 

interacted with LSD1 and recruited LSD1 to the E-cadherin promoter to specifically remove 

H3K4 methylation (30). However, H3K4 demethylation is known to be an initial step in 

gene repression (31), suggesting that an intermediate step is required to bridge H3K4 

demethylation to the DNA methylation on the E-cadherin promoter. Here, we showed that 

Snail interacted with Suv39H1, a key component of methyltransferase responsible for 

H3K9me3. We reported that this functional interaction is critical for H3K9me3 and DNA 

methylation at the E-cadherin promoter in BLBC.

RESULTS

The SNAG domain of Snail interacts with the catalytic domain of Suv39H1

Several transcription factors, such as Snail, Slug, GFI, insulinoma-associated protein IA-1 

(Insm1) and Ovo-like 1 (OVOL1), contain a SNAG (Snail/GFI) domain at the N-terminus, 

which is important for their repressive activity in mammalian cells (32). We previously 

demonstrated that the SNAG domain adopted a conformation similar to that of the histone 

H3 tail for interaction with LSD1 (30), suggesting this domain is critical in recruiting 

chromatin repressive complexes for gene silencing. To further identify the protein complex 

associated with the SNAG domain of Snail, we generated a SNAG domain peptide (amino 

acid 1–17) with Biotin conjugation at the C-terminus and incubated this peptide with HeLa 

nuclear extract proteins. After extensive washing, the final SNAG-peptide protein 

complexes were separated on SDS-PAGE and subjected to top-down mass spectrometry 

analysis. Several known proteins associated with the LSD1 complex, such as LSD1, 

CoREST, HDAC1/2, BHC80, and GAS, were found in the complexes, which validated the 

specificity of this system. Interestingly, Suv39H1, an H3K9 methyltransferasease, was also 

identified as a protein that associated with the SNAG peptide.

If a gene associated with Snail is biologically meaningful in breast cancer, we expect that 

their expression pattern may be similar. To this end, we analyzed Suv39H1 expression in 

two gene expression datasets, which contain 118 and 149 breast tumor samples, respectively 

(33, 34). We noticed that Suv39H1 expression was significantly correlated with the level of 

Snail in both gene expression datasets with Pearson’s correlation coefficients of 0.19 (95% 

confidence interval 0.01 to 0.36) and 0.23 (95% confidence interval 0.07 to 0.38), 

respectively (Fig. 1A). These bio-informatic analyses suggest that the co-expression of these 

two molecules is critical for their function in vivo. To further validate this finding, we 

analyzed the expression of Suv39H1 and Snail via the immunohistochemical staining of 116 

breast tumor samples (Fig. 1B). We found that the expression of Suv39H1 significantly 

correlated with the expression of Snail in breast cancer.
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To validate the interaction of Snail with Suv39H1, we co-expressed Snail-HA and Flag-

Suv39H1 in HEK293 cells and performed a co-immunoprecipitation experiment. After 

immunoprecipitating Suv39H1, we detected the associated Snail, and vice versa (Fig. 1C). 

We also immunoprecipitated endogenous Snail and Suv39H1 from BLBC MDA-MB 231 

and MDA-MB435 cells and detected the presence of endogenous Suv39H1 and Snail, 

respectively (Fig. 1D). Consistent with the interaction and the correlated expression of these 

two molecules in breast cancer, when GFP-Snail was expressed in HEK293 cells, we found 

that Snail was co-localized with endogenous Suv39H1 in the nucleus (Fig. 1E). Taken 

together, our results indicate that Snail interacts with Suv39H1 in vivo and their expression 

is correlated in breast cancer.

We previously showed that the SNAG domain adopted a conformation similar to that of the 

Histone H3 tail for recruiting the chromatin modifying enzyme LSD1 (30). Because 

Suv39H1 was identified as a protein associated with the SNAG peptide of Snail, we 

performed a Co-IP experiment to assess whether the SNAG domain of Snail is required for 

the interaction with Suv39H1. We found that deletion of the SNAG domain significantly 

reduced the interaction of Snail with Suv39H1, indicating that the SNAG domain is required 

for the interaction of Snail with Suv39H1 (Fig. 2A). We noticed that the sequence of the 

SNAG domain is highly similar to that of the N-terminus of histone H3 that surrounds the 

lysine 9 residue, a substrate of Suv39H1 (Fig. 2B). To identify the critical residues within 

the SNAG domain required for interaction with Suv39H1, we performed alanine-scan 

mutagenesis on the SNAG domain of Snail (Fig. 2C). Among the 12 Snail mutants screened, 

we found that mutations at Phe5, Lys9, and Ser11 completely lost their ability to interact 

with Suv39H1. The loss of interaction of these mutants with Suv39H1 was not due to the 

variation of protein stability as about equal amounts of Snail was immunoprecipitated (input 

lysates on Fig. 2C). Together, these results indicate that the SNAG domain, particularly 

several key amino acid residues surrounding lysine 9, was required for the interaction of 

Snail with Suv39H1.

Suv39H1 contains several functional domains, including a N-terminal bromo domain, a 

catalytic region containing a Pre-SET, SET and Post-SET domain that is responsible for its 

enzymatic methyltransferase activity (Top panel, Fig. 2D). To identify the region 

responsible for the interaction with Snail, we generated two deletion mutants of Suv39H1; 

the N-terminal region of Suv39H1 [Suv39H1(A); amino acids 1–131] that contains the 

bromo domain of Suv39H1 and the C-terminal region of Suv39H1 [Suv39H1(B); amino 

acids 132–412] that includes the conservative Pre-SET, SET and Post-SET domains (Top 

panel, Fig. 2D). When these two deletion mutants of Suv39H1 were co-expressed with Snail 

in HEK293 cells, we found that Suv39H1(B) was able to interact with Snail, indicating that 

the catalytic region of Suv39H1 was responsible for its interaction with Snail (Fig. 2D). We 

also co-expressed d2-GFP or SNAG-d2-GFP with Suv39H1(B) in HEK293 cells. 

Immunoprecipitation of SNAG-d2-GFP, but not d2-GFP, maintained the association of 

Suv39H1(B), indicating that the SNAG domain is sufficient for Snail to interact with the 

catalytic domain of Suv39H1 (Fig. 2E).

Methylation of H3K9 in humans relies mostly on members of the Suv39 family, namely 

Suv39H1, Suv39H2, GLP, G9a, SETDB1 and SETDB2 (35, 36); all of these enzymes have 
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a highly conserved catalytic region containing Pro-SET, SET and Post-SET domains. 

Although the crystal structure of Suv39H1 is not available, the 3D structures of Suv39H2, 

GLP and G9a have been determined recently (37); these Suv39 family H3K9 

methyltransferases have a similar ternary structure within their catalytic region. In particular, 

the 3D structure of GLP associated with histone H3 peptide revealed a detailed mechanism 

of interaction (37). A highly conserved tyrosine residue in the SET domain of GLP forms a 

hydrogen-bond with the ε-amine nitrogen of the H3K9 peptide (37). Based on the template 

structure of the GLP-histone H3 peptide complex, we built a 3D model of Suv39H1 with the 

SNAG domain of Snail by comparative protein structure modeling. We found that the 

SNAG domain of Snail adopted a conformation superimposed by the histone H3 tail at the 

catalytic cavity of Suv39H1 (Fig. 3A). Strikingly, Lys9 of the SNAG domain of Snail 

participated in similar critical contacts with the conserved tyrosine residue of Suv39H1 as 

compared to those of the histone H3 tail. Consistent with these analyses, a Snail mutant 

[Snail(3A)-F5/K9/S11] with mutation of the critical residues important to the interaction 

with Suv39H1 completely lost the ability to induce EMT in two model cell lines, HMLE and 

MCF10A cells (Fig. 3B & 3C) (38–40). Together, our results indicate that (1) expression of 

Suv39H1 correlates with Snail in breast cancer; (2) the SNAG domain of Snail and the 

catalytic domain of Suv39H1 are required for their interaction; and (3) mutation of the 

critical residues in Snail required to interact with Suv39H1 abolishes EMT induction.

Increased association of Suv39H1 and the corresponding H3K9me3 on the E-cadherin 
promoter occur in EMT and are commonly found in BLBC cell lines

The majority of the BLBC cells are “locked” in the mesenchymal state by DNA methylation 

at the E-cadherin promoter, thus making it difficult to study the initial and dynamic event of 

chromatin modification leading to E-cadherin promoter DNA methylation in this disease 

(41). To test whether Suv39H1 is involved in the dynamic process of EMT induction, we 

began by investigating the association of Suv39H1 and the corresponding H3K9me3 at the 

E-cadherin promoter during EMT induced by Snail expression or TGF-β in HMLE and 

MCF10A cells. As expected, expression of Snail or TGF-β treatment (5 ng/ml), which 

resulted in the induction of Snail, induced EMT in these two model cell lines as 

characterized by the acquisition of fibroblastic mesenchymal morphology (Fig. 4A), 

downregulation of the epithelial markers E-cadherin, and upregulation of mesenchymal 

markers vimentin and N-cadherin (Fig. 4B and 4C). This EMT event also resulted in a slight 

upregulation of Suv39H1 (Fig. 4B). We noticed that H3K9me3 was significantly increased 

at the E-cadherin promoter in two cell lines tested (Fig. 4D), and this increased H3K9me3 

was accompanied with decreased H3K9 acetylation of the E-cadherin promoter in these cells 

(Fig. 4D). The elevated H3K9me3 on the E-cadherin promoter is likely due to Suv39H1 

because the association of Suv39H1 on the E-cadherin promoter was significantly increased 

in both cell lines (Fig. 4D). Consistent with the critical role of H3K9me3 in mediating DNA 

promoter methylation, we noticed that the E-cadherin promoter was DNA methylated in 

EMT induced by Snail expression and TGF-β in both cell lines (Fig. 4E). Together, these 

results suggest that the cooperative association of Suv39H1 and the corresponding 

upregulation of H3K9me3 at the E-cadherin promoter play a critical role in silencing the 

expression of E-cadherin.
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BLBC associates with a poor clinical outcome as it contains many EMT characteristics and 

has a significantly reduced level of E-cadherin expression (26, 27, 42). Having observed that 

the Snail-Suv39H1 complex is involved in E-cadherin silencing in two model cell lines, we 

hypothesized that this complex may also be responsible for the loss of E-cadherin expression 

in BLBC. To test this idea, we compared the expression of Snail, Suv39H1, and EMT 

markers in five luminal and six BLBC cell lines (43, 44). Consistent with previous reports, 

six of these BLBC cell lines lost E-cadherin expression and gained the expression of Snail, 

N-cadherin and vimentin (Fig. 5A). We noticed that the expression of Suv39H1 was 

elevated in BLBC cell lines when comparing that from luminal cell lines (Fig. 5A). In 

addition, when we performed ChIP analysis on the E-cadherin promoter, we detected a 

dramatic elevation of H3K9me3 at the E-cadherin promoter in most of the BLBC cell lines 

(Fig. 5A and 5B). Furthermore, H3K9 acetylation at the E-cadherin promoter was lower in 

BLBC cell lines than that in luminal breast cancer cell lines (Fig. 5A and 5B). The elevation 

of H3K9me3 at the E-cadherin promoter is likely due to the association of the Snail-

Suv39H1 complex because the occupancy of Snail and Suv39H1 at the E-cadherin promoter 

was also significantly higher in BLBC cell lines in comparison to that of luminal breast 

cancer cell lines (Fig. 5A and 5B). We also assessed E-cadherin promoter DNA methylation 

in both subtypes using methylation-specific PCR (MSP). Again, all BLBC cell lines showed 

DNA methylation at the E-cadherin promoter, whereas no methylation at the E-cadherin 

promoter was observed in all luminal breast cancer cell lines (bottom two panels, Fig. 5A). 

Together, these observations clearly indicate that Suv39H1 is involved in H3K9me3 and 

DNA methylation on the E-cadherin promoter in EMT and breast cancer.

Knockdown of Suv39H1 expression inhibits H3K9me3 and DNA methylation on the E-
cadherin promoter and suppresses cell migration and invasion

To further validate that the Snail-Suv39H1 complex is associated with the E-cadherin 

promoter and mediates the transcriptional repression of the E-cadherin gene in BLBC, we 

knocked down the expression of Snail and Suv39H1 in MDA-MB231 and MDA-MB157 

cells. We found that knockdown of Snail or Suv39H1 expression reduced the level of 

H3K9me3 and increased H3K9 acetylation at the E-cadherin promoter (Fig. 6A; quantitative 

real-time PCR results are presented on the bottom panel). We also immunoprecipitated the 

Snail complex and performed Suv39H1 enzymatic assays. The Snail complex contained 

H3K9me3 methyltransferase activity in vitro and this enzymatic activity could be 

suppressed by a specific Suv39H1 inhibitor Chaetocin (45) (Fig. 6B). These results further 

support the findings that Snail interacts with Suv39H1 and is required to recruit Suv39H1 to 

the E-cadherin promoter for H3K9me3. Conversely, when Snail and Suv39H1 were co-

expressed with the E-cadherin promoter luciferase reporter in MCF7 and HeLa cells, we 

found that expression of either one of them suppressed E-cadherin promoter luciferase 

activity; expression of both of these molecules further enhanced this suppression (Fig. 6C). 

These data indicate a cooperative role for Suv39H1 and Snail in the suppression of E-

cadherin expression and induction of EMT.

We also established stable transfectants with knockdown of Suv39H1 expression in MDA-

MB231 and MDA-MB157 cells. We achieved about 80–90% knockdown efficiency of 

endogenous Suv39H1 using two independent shRNAs (Fig. 7A). Knockdown of Suv39H1 
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expression in both clones caused a significant restoration of E-cadherin expression and a 

dramatic downregulation of N-cadherin expression in MDA-MB231 and MDA-MB157 cells 

(Fig. 7A). In line with this result, knockdown of Suv39H1 expression upregulated E-

cadherin mRNA as measured by quantitative real-time PCR in both cell lines (Fig. 7B). 

Consistent with the upregulation of E-cadherin mRNA and protein, de-methylated E-

cadherin promoter was significantly increased, whereas DNA methylation on the E-cadherin 

promoter was decreased in cells with knockdown of Suv39H1 expression (Fig. 7C). 

Although we did not observe notable changes in cell growth or proliferation in vitro as 

measured by cell count and the MTT assay, respectively (data not shown), knockdown of 

Suv39H1 expression greatly inhibited the migratory ability and invasiveness (Fig. 7D & 7E) 

of MDA-MB231 and MDA-MB157 cells. We also extended our findings in a xenograft 

metastasis model in which MDA-MB231 cells were used to generate pulmonary metastases. 

We found that knockdown of Suv39H1 expression significantly suppressed lung metastases 

(Fig. 8A). Together, these results support our finding that Suv39H1 is a critical factor 

controlling the silencing of E-cadherin at EMT and BLBC.

DISCUSSION

In this study, we show that Snail interacts with Suv39H1 and their interaction is critical for 

H3K9me3 and DNA methylation on the E-cadherin promoter in BLBC. Our study has 

provided several new insights into the chromatin modification in EMT and breast cancer 

metastasis. First, our study has identified an important mechanism underlying the sequential 

epigenetic modification on the E-cadherin promoter and reinforces the notion that EMT is an 

epigenetically regulated event. Chromatin is broadly divided in two defined states: 

euchromatin and heterochromatin. Euchromatin generally contains H3K4me2/3 while 

heterochromatin is enriched with H3K9me2/3 marks. Interestingly, H3K9me2/3-enriched 

histones are devoid of H3K4me2/3 and histones depleted of H3K4me2/3 have elevated 

H3K9me2/3, which is because H3K9 methyltransferases (including G9A/GLP and 

Suv39H1) fail to bind and methylate H3K4me2/3 substrates (18, 36). In our previous study, 

we found that Snail interacted with LSD1 and recruited LSD1 to the E-cadherin promoter to 

specifically remove methylation from H3K4me2, which is known to be an initial and critical 

step in gene repression in drosophila (31). Thus, demethylation of H3K4 by LSD1 provides 

a condition that favors Snail-mediated association of Suv39H1 on the E-cadherin promoter 

and facilitates the corresponding H3K9me3. Our study suggested that the sequential 

interaction of Snail with Suv39H1 is the second step leading to the reinforcement of gene 

repression and the consequent DNA methylation on the E-cadherin promoter (Fig. 8B). The 

individual interactions of Snail with LSD1 and Suv39H1 are both through its SNAG 

domain, which is required for recruiting these two molecules to the E-cadherin promoter. 

Forneris et al showed that the histone H3 tail adopted different configurations to interact 

with various individual chromatin modifying enzymes (46), highlighting a remarkable 

structural plasticity of the H3 tail in chromatin modification. We showed that the sequence 

of the SNAG domain is similar to that of the histone H3 tail and it can interact with LSD1 

and Suv39H1, respectively. The mechanism that governs the differential binding of the 

SNAG domain with LSD1 and Suv39H1, separately, to achieve a synergistic modification 

event on the E-cadherin promoter remains an interesting area to explore in future.
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Second, our study indicates that the interaction of Snail with Suv39H1 plays a critical role in 

E-cadherin promoter DNA methylation. DNA is globally hypomethylated in repeat-rich 

intergenic regions in cancer cells, but a subset of tumor suppressor genes, such as p16, RB1, 

GSTP1 and E-cadherin, gain aberrantly hypermethylation at the CpG islands of their 

promoters. For example, the E-cadherin promoter is commonly methylated in BLBC cells 

(Fig. 5). The existence of epigenetic interactions between histone modifications and DNA 

methylation leading to transcriptional silencing is well established; however, the precise 

sequence of events is not clear. H3K9 methylation plays a critical role leading to promoter 

DNA methylation in gene repression and heterochromatin formation. The lysine ε-amine 

group of H3K9 can be mono-, di-, or trimethylated, and each degree of modification 

contributes an additional hierarchy in methyllysine-mediated signaling (47). In mammals, 

heterochromatic regions are highly trimethylated on H3K9, whereas silent euchromatin 

regions are enriched for mono- and dimethylated H3K9 (47). SETDB1, which is essential 

for early embryonic development (48), performs mono- or dimethylation of H3K9, whereas 

G9a and GLP are mainly responsible for dimethylation of H3K9 in euchromatin (49, 50). 

Suv39H1 is responsible for the trimethylation of H3K9, which contributes mainly to the 

establishment of silenced heterochromatin (51, 52). At the enzymatic level, Suv39H1 prefers 

mono- or dimethylated H3K9 as a primary substrate (51, 52), which suggests a cooperation 

with an H3K9 mono- or dimethylase. Consistent with this, Suv39H1, G9a, GLP, and 

SETDB1 form a big complex to regulate H3K9 methylation both in euchromatin and 

heterochromatin, and the protein stability of one individual H3K9 methyltransferase affects 

the stability of the other two methyltransferases in cells, suggesting that the integrity of the 

H3K9 methyltransferases is interdependent (53). All of these H3K9 methyltransferases 

contain a conserved SET domain and sequence alignment of the SET domain of these HMTs 

indicates that the enzymatic domains of Suv39H1 and G9a/GLP are highly homologous 

(54).

Although H3K9me2 (mediated by G9a or GLP) and H3K9me3 (mediated by Suv39H1) 

commonly link to de novo gene silencing by promoting promoter DNA methylation, their 

mechanisms of action are different. G9a interacts with Dnmt directly and recruits it to target 

gene promoters for DNA methylation, whereas Suv39H1 creates a H3K9me3 binding and 

docking site for the adaptor molecule HP1, which in turn recruits DNMT and HDAC to 

catalyze DNA methylation and histone de-acetylation, respectively (55). In our study, we 

found that increased H3K9me3 is accompanied with the de-acetylation of H3K9 and 

increased DNA methylation on the E-cadherin promoter. Knockdown of Suv39H1 reduces 

H3K9me3 and increases H3K9 acetylation and thus results in the de-methylation and 

activation of E-cadherin expression. This result suggests that the recruitment of Suv39H1 by 

Snail is critical for E-cadherin promoter DNA methylation (Fig. 8B).

Third, our study suggests that Suv39H1 is a potential therapeutic target for treating and 

preventing breast cancer metastasis. The availability of multiple genetic approaches has 

offered an unprecedented opportunity for systematic, genome-wide discovery of genetic 

mutations involved in tumorigenesis. In addition to the identification of the well-studied 

oncogenes and tumor suppressor genes, such as Ras, PI3K/Akt, PTEN, and mTOR, 

mutations in chromatin modifying enzymes/regulators that lead to altered gene expression 
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and tumorigenesis have recently been identified. For example, mutations have been found in 

MEN1, DAXX and ATRX in pancreatic neuroendocrine tumors (56). In addition, nearly 

half of all clear cell ovarian tumors contain mutations in the ARID1A gene (57, 58), which 

encodes the BAF250 subunit of the human SWI-SNFα chromatin-remodeling complex. 

Furthermore, overexpression of EZH2, an enzyme responsible for H3K27me3 has been 

found in prostate, breast and various tumor types (59). In this study, we found that the level 

of Suv39H1 is elevated in BLBC. Snail interacts with Suv39H1 and recruits it to the E-

cadherin promoter for gene silencing. Thus, blocking the interaction and function of the 

Snail-Suv39H1 complex may represent a new approach for treating and preventing 

metastatic breast cancer.

In summary, we demonstrated that the SNAG domain of Snail and the SET domain of 

Suv39H1 were responsible for their mutual interactions. We also elucidated that Suv39H1 

was recruited by Snail to the E-cadherin promoter for transcriptional repression. Knockdown 

of Suv39H1 expression restored E-cadherin expression by blocking Suv39H1-mediated 

chromatin modification and inhibited cell migration, invasion and metastasis of BLBC. Our 

study not only reveals a critical mechanism underlying the epigenetic regulation of EMT, 

but also offers a novel treatment strategy against the metastatic breast cancer.

MATERIALS AND METHODS

Plasmids, siRNA, and Antibodies

Suv39H1 shRNA expression plasmids were purchased from MISSION shRNA at Sigma-

Aldrich (St Louis, MO). Smartpool siRNA against human Suv39H1 (siRNA-1) and Snail 

(siRNA-1) were from Dharmacon (Chicago, IL). Human Suv39H1was amplified from a 

HeLa cDNA library and subcloned into pcDNA3-Flag. Deletion mutants of Snail and 

Suv39H1 were constructed as described previously (30, 60). The expression plasmid for 

human Snail was described previously (15, 30). All sequences were verified by automated 

DNA sequencing.

Antibodies HA, Flag, and actin were purchased from Sigma-Aldrich (St. Louis, MO). 

Antibodies for E-cadherin and β-actin were from BD Transduction (San Jose, CA). N-

cadherin and Suv39H1 antibodies were from Upstate (Charlottesville, VA) and Abcam 

Laboratories (Carlsbad, CA), respectively.

Cell Culture

MCF10A, HMLE and SUM1315 cells were grown in special medium following 

manufacturer’s instruction. All other cancer cell lines were grown in Dulbecco's modified 

Eagle's medium (DMEM)/F12 supplemented with 10% fetal bovine serum (FBS) except 

breast cancer cell lines T47D and ZR75 were grown in RPMI1640 plus 10% FBS. For 

establishing stable transfectants with knockdown of Suv39H1 expression, the breast cancer 

MDA-MB157 and MDA-MB231 cell lines were transfected with Suv39H1 shRNA; stable 

clones were selected with puromycin (1 µg/ml) for 4 wks.
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Immunostaining, Immunoprecipitation, and Immunoblotting

Experiments were performed as described previously (61). For immunofluorescent staining, 

cells were grown on chamber slides, fixed with 4% paraformaldehyde, and incubated with 

primary antibodies. Secondary antibodies used were Texas red-conjugated goat anti-mouse, 

FITC-conjugated goat anti-rabbit, or Alexa Fluor 350 goat anti-rabbit (Molecular Probe, 

Carlsbad, CA). Immunoprecipitation and immunoblotting were performed as described 

previously (15).

Immunohistochemistry (IHC)

IHC staining was performed as we described previously (62). The immunoreactivity of these 

antibodies was scored according to the staining intensity (0 to 3+), and fraction of positive 

staining (0, <25%, 25–50% and >50%). The mean fraction of positive tumor cells was 

determined in at least nine areas at ×10 or ×20 magnifications. For staining intensity, a score 

of 0 was defined as undetectable staining in <10% of tumor cells, a score of 1+ was defined 

as faint staining in >10% of tumor cells, a score of 2+ was defined as weak to moderate 

staining in >10% of tumor cells, and a score of 3+ was defined as intense staining in >10% 

of tumor cells. For the percentage of positively stained tumor cells: 0, no staining; 1+, <25% 

cells stained; 2+, 20–49% cells stained; and 3+, >50% cells stained. For analysis, Snail and 

Suv39H1 expressions were further classified as low (intensity score 1+ and percentage score 

1+) or high (both scores at 2+ and 3+). The slides were read independently by two 

investigators without prior knowledge. If differences between observers occurred, both 

investigators used a multiheaded microscope to reexamine the slides.

DNA Methylation Analysis

Genomic DNA (~0.75 µg) was treated with sodium bisulfite using the EpiTect system 

(Qiagen) by following the manufacturer’s protocol. Bisulfite-converted DNAs (~50 ng) 

were used as templates for PCR amplification of the CpG islands in the CDH1 promoter. 

Methylation-specific PCR (MSP) was performed on bisulfate-modified DNA as described 

by Herman et al (63).

Quantitative Real-Time PCR

Total RNA was isolated using the RNeasy Mini kit (Qiagen) according to the 

manufacturer’s instructions. Specific quantitative real-time PCR experiments were 

performed using SYBR Green Power Master Mix following manufacturer’s protocol 

(Applied Biosystems).

Invasion Assay

Invasion assays were performed in Boyden chambers with coated Matrigel as instructed by 

the manufacturer (BD Biosciences, San Jose, CA). The invasive cancer cells were stained 

with DAPI and visualized with a fluorescence microscope. All experiments were performed 

at least twice in triplicate. Statistical analysis was performed using the Student's t-test; a p 

value of <0.05 was considered significant.
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Luciferase Reporter Assay

Cells were grown to 50% confluence in 6-well dishes and then co-transfected with reporter 

gene constructs and, to control for transfection efficiency, pTK-RL (Promega) using Fugene 

6 (Roche, Indianapolis, IN). Cell extracts were prepared 40 h after transfection, and 

luciferase activity was measured using the Dual-Luciferase Reporter Assay System 

(Promega, Madison, WI). All experiments were performed three times in triplicate.

Chromatin Immunoprecipitation (ChIP)

ChIP assays were performed as described previously (30). Briefly, cells were cross-linked 

with disuccimidyl glutarate (Pierce, Rockford, IL) and formaldehyde at room temperature. 

Cells were subjected to lysis with L1 buffer (50 mM Tris, 2 mM EDTA, 0.1% IGEPAL, 

10% glycerol, 1 mM dithiothreitol, 1 mM phenylmethylsulfonyl fluoride (PMSF) and 

protease inhibitor mixture, pH 8.0) on ice. After centrifugation, the nuclear pellet was 

resuspended in ChIP lysis buffer (1% SDS, 10 mM EDTA, 50 mM Tris and protease 

inhibitor mixture, pH 8.0). The cell lysate was subjected to sonication and then incubated 

with 4 µg of antibody overnight, followed by incubation with a 50% slurry of protein A-

agarose/salmon sperm DNA (Upstate Biotechnology, Lake placid, NY) for 3 h at 4°C. 

Bound DNA-protein complexes were eluted and cross-links were reversed after a series of 

washes. Purified DNA was resuspended in TE buffer (10 mM Tris-HCl and 1 mM EDTA, 

pH 8.0) for PCR. The primers for the E-cadherin promoter were: 5′-

ACTCCAGGCTAGAGGGTCACC-3′ and 5′-

CCGCAAGCTCACAGGTGCTTTGCAGTTCC-3′.

Suv39H1 Methyltransferase Assay

HEK293T cells were co-transfected with constructs encoding Suv39H1 and Snail. After 

immunoprecipitation of Snail or Suv39H1, the complexes were analyzed for H3K9 

methyltransferase activity using the H3K9 Methyltransferase Assay Kit (Epigentek, 

Brooklyn, NY, USA) following the manufacturer’s protocols. The enzymatic activities of 

Suv39H1 were detected with a microplate reader at 450 nm and fluorescent plate reader at 

450 nm, respectively.

Bio-informatic analysis

Publicly available microarray with patients’ clinical data from two studies, Chin et al (http://

www.ebi.ac.uk/arrayexpress/experiments/E-TABM-158) and Mullins et al (GSE6130) (33, 

34), were utilized for the analysis. For each data set, expression values of Suv39H1 and 

Snail were standardized to zero mean and unit variance. Pearson’s correlation coefficient 

was calculated to quantify the correlation between expression patterns of the two genes. 

Mann-Whitney U test was used to study whether Suv39H1 expression is associated with 

triple negative status. The same test was also used for the data set of Mullins et al to study 

the association between Suv39H1 expression and breast tumor intrinsic subtype, which was 

assigned by the PAM50 classifier.

Dong et al. Page 11

Oncogene. Author manuscript; available in PMC 2013 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.ebi.ac.uk/arrayexpress/experiments/E-TABM-158
http://www.ebi.ac.uk/arrayexpress/experiments/E-TABM-158


Protein model structure

A three-dimensional (3D) model of the Suv39H1-Snail complex was built by comparative 

protein structure modeling using the program MODELLER 9v3 (64). The input consisted of 

the template structure and the alignment of the target sequence with this structure. The 

output was a 3D model of the target including all non-hydrogen atoms. This model was 

derived by minimizing violations of distance and dihedral angle restraints extracted from the 

template structure while maintaining favorable interactions. The template structure was the 

homolog (53% sequence identity) GLP-Histone H3 peptide complex structure (Protein Data 

Bank, 2RFI). The figure was prepared with PyMol (65).

Experimental Lung Metastasis Model

Female ICR-SCID mice (6–8 wks old) were purchased from Taconic (Germantown, NY) 

and maintained and treated under specific pathogen-free conditions. Mice were injected with 

MDA-MB-231-luc-D3H1 (1×106 cells/mouse) cells and their corresponding stable clones 

with knockdown of Suv39H1 expression via tail vein (6 mice/group). Mice were imaged 

from dorsal and ventral views once per week. All mice (6/6) injected with MDA-MB231 

cells developed the expected lung metastatic lesions with luciferase signals beginning to 

appear at week 5. Visible lung metastatic nodules were examined macroscopically or 

detected in paraffin-embedded sections stained with hematoxylin and eosin. Data were 

analyzed using the Student's t-test; a p value <0.05 was considered significant.

Statistical Analysis

The experiments were repeated at least two times. Results are expressed as mean ± SD or 

SEM as indicated. An independent Student’s t-test was performed to analyze the luciferase 

assay; a two-tailed Student’s t-test was used to compare the intergroup. p < 0.05 was 

considered statistically significant.
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BLBC Basal-like Breast Cancer

ChIP Chromatin Immunoprecipitation

EMT Epithelial-mesenchymal Transition

LSD1 Lysine-specific Demethylase 1

MET Mesenchymal-epithelial Transition

Suv39H1 Suppressor of Variegation 3–9 Homolog 1
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Figure 1. 
Suv39H1 interacts with Snail and correlates with its expression in breast cancer. (A) A 

statistically significant correlation in gene expression between Suv39H1 and Snail was 

found in two datasets from Chin et al and Mullins et al (33, 34) with Pearson’s correlation 

coefficients of 0.19 (95% confidence interval 0.01 to 0.36) and 0.23 (95% confidence 

interval 0.07 to 0.38), respectively. (B) The 116 surgical specimens of breast cancer were 

immuno-stained using antibodies against Snail, Suv39H1, and the control serum (data not 

shown). Statistical analysis is shown in the left panel and representative stainings from the 

same tumor samples are shown in the right panel (Scale bar = 100 µm). (C) HEK293 cells 

were transiently co-expressed with Flag-tagged Suv39H1 and HA-tagged Snail. Cell extracts 

were immunoprecipitated separately with IgG or specific antibodies against Flag or HA, and 

the associated Suv39H1 and Snail were examined by Western blotting, respectively. (D) 

Endogenous Snail and Suv39H1 were immunoprecipitated from MDA-MB435 and MDA-

MB231 cells and bound endogenous Snail and Suv39H1 were examined by Western 

blotting, respectively. (E) GFP-tagged Snail was expressed in HEK293 cells. After fixation, 

the cellular localization of Snail (green) and Suv39H1 (red) was examined by 

immunofluorescent staining. Scale bar = 10 µm.
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Figure 2. 
The SNAG domain of Snail and the SET domain of Suv39H1 are required for their mutual 

interactions. (A) Flag-tagged Suv39H1 and HA-tagged wild type or SNAG-deleted Snail 

were co-expressed in HEK293 cells. After immunoprecipitation, bound Snail or Suv39H1 

was examined by Western blotting. (B) Schematic diagram showing the functional domains 

of Snail and sequence alignment of the SNAG domain of Snail with histone H3. The 

consensus sequence is highlighted in yellow and the critical interacting residues are marked 

with red cycle on top. (C) WT or mutant Snail was co-expressed with Suv39H1 in HEK293 

cells. After immunoprecipitating Suv39H1, bound Snail was examined by Western blotting. 

Input lysates are shown in the bottom panel. (D) Schematic diagram showing the structure of 

Suv39H1 and the two different deletion constructs used in this study (top panel). HEK293 

cells were transiently co-expressed with plasmids encoding Flag-tagged full-length or 

deletion mutants of Suv39H1 and HA-tagged Snail. Extracts were immunoprecipitated with 

IgG or specific antibodies against Flag or HA, and bound Suv39H1 or Snail was examined 

by Western blotting. (E) d2-GFP or SNAG-d2-GFP was co-expressed with the catalytic 

domain of Suv39H1 (B) in HEK293 cells. After immunoprecipitation of d2-GFP or 

Suv39H1, bound Suv39H1 and GFP were examined by Western blotting, respectively.
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Figure 3. 
Interaction of Snail with Suv39H1 is required for EMT induction. (A) A model structure of 

Suv39H1-Snail complex. The homolog (53% sequence identity) structure of GLP-Histone 

H3 peptide complex (PDB access code 2RFI) was used for the construction of this model 

(see Materials and Methods for details). The Snail and histone 3 peptides are shown in 

brown and green, respectively. A magnified view of the binding pocket is shown in the inset 

where the Suv39H1-Snail complex (brown) is superposed onto the GLP-histone H3 peptide 

complex structure (green). This ball-and-stick model highlights the position of the substrate 

lysine residue of Snail/H3 and the catalytic residue (Tyr273) of Suv39H1. In the GLP-

histone H3 peptide complex structure, the lysine residue is modified as a form of N-dimethyl 

lysine to mimic the reaction product. (B) Wild-type and mutant Snail-3A (in which 

F5/K9/S11 were mutated to alanine) expressed in HMLE and MCF10A cells, the induction 

of EMT were analyzed by morphological changes and immunofluorescent staining of the 

expression of E-cadherin and vimentin. (C) Protein lysate from (B) were also examined for 

the expression of E-cadherin, vimentin and Snail by Western blotting.
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Figure 4. 
H3K9me3 is involved in Snail and TGF-β induced EMT. (A) HMLE and MCF10A cells 

were infected with retrovirus Snail or treated with TGF-β1 (5 ng/ml), respectively. Cell 

morphological changes associated with EMT are shown in the phase contrast images, Scale 

bar = 20 µm. (B) Expression of E-cadherin, N-cadherin, vimentin, Snail and Suv39H1 in the 

cells above was analyzed by Western blotting. Actin served as a loading control. (C) HMLE 

cells were treated as indicated in (A), expression of E-cadherin, Vimentin and Snail in these 

cells was analyzed by immunofluorescent staining. Nuclei were visualized with DAPI 

staining (blue). Scale bar = 10 µm. (D) HMLE and MCF10A cells were treated as in (A), 

association of Snail and Suv39H1 and the corresponding H3K9me3 and H3K9Ac at the E-

cadherin promoter in these cell lines were analyzed by the CHIP assay as described in the 

Materials and Methods section. (E) HMLE and MCF10A were treated as above, EMT-

mediated E-cadherin promoter methylation was examined by methylation-specific PCR 

(MSP).
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Figure 5. 
Suv39H1-related repressive marks are enriched at the E-cadherin promoter in BLBC cell 

lines. (A) Cell extracts were prepared from five luminal and six basal-like subtypes of 

human breast cancer cell lines, and expressions of Snail, Suv39H1 and other EMT markers 

were analyzed by Western blotting (top panels). The association of Snail, Suv39H1 and the 

levels of H3K9me3 and H3K9 acetylation at the E-cadherin promoter in various cell lines 

was analyzed with the ChIP assay (middle panels). Methylation of the E-cadherin promoter 

in various breast cell lines was examined by MSP (bottom two panels). (B) Quantitative 

real-time PCR was performed to analyze CHIP samples from (A). Results from three 

independent experiments are presented (mean ± SD from three separate experiments).
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Figure 6. 
Suv39H1 is recruited to the E-cadherin promoter for epigenetic silencing of E-cadherin 

expression. (A) Snail, Suv39H1 or non-target control (NTC) siRNA was expressed in MDA-

MB157 and MDA-MB231 cells, and H3K9me3 and H3K9 acetylation at the E-cadherin 

promoter was analyzed by the ChIP assay (top panel). Quantitative real-time PCR was also 

performed to analyze ChIP samples above and results are presented in the bottom panels 

(mean ± SD from three separate experiments). *, # and § P < 0.01 for MDA-MB231 or 

MDA-MB157 cells transfected with NTC compared with cells with knockdown of Snail, 

Suv39H1 or both expression. (B) An in vitro Suv39H1 methylation assay was carried out as 

described in the Materials and Methods section. Statistical analysis of the methyltransferase 

activity, from three independent experiments, is shown in the bar graph. *P < 0.05 for 

treatment with or without Chaetocin in immunoprecipitation sample using Snail antibody. 

#P < 0.01 for treatment with or without Chaetocin in immunoprecipitation sample using 

Suv39H1 antibody. (C) Snail, Suv39H1 or both were co-expressed with the E-cadherin 

promoter luciferase construct in MCF7 and HeLa cells. After 48 h, luciferase activities were 

normalized and determined (mean ± SD in three separate experiments). *, # and § P < 0.01 
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for MCF7 or Hela cells transfected with vector compared with corresponding cells with 

Snail, Suv39H1 or both expression.
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Figure 7. 
Knockdown of Suv39H1 derepresses E-cadherin expression and inhibits cell migration and 

invasion. (A) MDA-MB231 and MDA-MB157 cells stably expressing control vector or 

Suv39H1 shRNA were examined for the expression of Suv39H1, E-cadherin and N-

cadherin by Western blotting. Actin served as a loading control. (B) Endogenous mRNA of 

E-cadherin from the cells above was examined by real-time PCR. (C) E-cadherin promoter 

methylation from cells with knockdown of Suv39H1 expression was examined by MSP. 

Samples from MSP analyses were also analyzed by quantitative real-time PCR and the ratio 

of un-methylated vs methylated DNA was plotted (mean ± SD from three separate 

experiments) (bottom panel). (D) The migratory ability of MDA-MB231 and MDA-MB157 

cells and their corresponding stable transfectants with knockdown of Suv39H1 expression 

was analyzed by wound healing assay. After 48 h, a scratch (“wound”) was induced in a cell 

layer and cell culture was continued. Wound closures were photographed at 0 and 24 hr. 

Statistical analysis for the cell migration is shown on the bar graph (mean ± SD from three 

independent experiments). (E) MDA-MB231 and MDA-MB157 cells and their 

corresponding stable transfectants with knockdown of Suv39H1 expression was analyzed 

with a modified Boyden Chamber invasion assay as described in the Materials and Methods. 
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The percentage of invasive cells is shown in the bar graph (mean ± SD in three separate 

experiments). For panels (C) to (E), * and # P < 0.01 for MDA-MB231 or MDA-MB157 

cells transfected with control vector compared with corresponding two independent clones 

with knockdown of Suv39H1 expression.
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Figure 8. 
Knockdown of Suv39H1 inhibits metastasis of MDA-MB231 cells. (A) MDA-MB231 cells 

with stably expressing control vector or Suv39H1 shRNA were injected into the tail vein of 

ICR-SCID mice. After 9 wks, the development of lung metastases was recorded using 

luciferase bioluminescence imaging and quantified by measuring photon flux. Values are the 

mean of six animals ± SEM. Three representative mice from each group are shown. Mice 

were also sacrificed; lung metastatic nodules were examined macroscopically or detected in 

paraffin-embedded sections stained with hematoxylin and eosin. For lung metastases, * and 

# P < 0.01 for MDA-MB231 cells transfected with control vector compared with 

corresponding two independent stable clones with knockdown of Suv39H1 expression. (B) 

A proposed model to illustrate the interaction of Snail with LSD1, Suv39H1 and Dnmts 

leading to E-cadherin promoter methylation and EMT induction. The SNAG domain of 

Snail assembles a histone H3-like structure to interact with and recruit LSD1 and Suv39H1 

to the E-cadherin promoter for sequential H3K4 demethylation and H3K9 methylation, 

respectively. Suv39H1-mediated H3K9me3 provides a docking site for the HP1-Dnmt1 

complex, which results in DNA methylation at the E-cadherin promoter.
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