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In this issue of FEBS Open Bio, Shen Li et al., in the laboratory of Hector

L. Franco (University of North Carolina), provide a proof-of-principle

solution for correcting all copies of a gene in the widely used MCF7 breast

cancer cell line. The gene for the FOXA1 pioneer transcription factor is

localised on chromosome 14, which is present at least 4–5 times in MCF7

cells. To achieve their goal, the authors used a ‘classical’ version of the

CRISPR/Cas9 system. Both sgRNA and Cas9 components were expressed

from a single vector, which also has a puromycin resistance cassette; this is

an essential module for the chosen strategy, because it ensures expression

of both sgRNA and Cas9 in selected cells. A targeting template in the form

of nonlinearised plasmid was shown to have the best efficiency and was

used to introduce a substitution at position 295 in the gene encoding

FOXA1 to change a codon encoding lysine into a codon encoding glu-

tamine (K295Q). The strategy suggested by Li and co-authors is an impor-

tant development towards genome editing of multiple copy genes in a

polyploid environment like cancer cells. One important application of the

technique could be in creating models to study the role of single nucleotide

polymorphisms in cancer progression and metastasis. Isogenic cancer lines

carrying polymorphic variants of key drug targets could be used to opti-

mise anticancer treatment protocols, laying a foundation for personalised

therapy.

Gene editing refers to a group of methods that allow

the introduction of precise changes in the DNA of a

cell. Most of these methods require a double-strand

break (DSB) in the DNA near the desired change and

a template DNA that spans the break site and includes

the intended modification [1]. The latter is used by a

DNA repair pathway called homology directed repair

(HDR), which uses the template to patch the break

and at the same time introduces the desired modifica-

tion into the gene. Earlier versions of this technology

relied on the presence of endogenous random DNA

breaks and therefore were very inefficient and time-

consuming [2]. The introduction of programmable

nucleases, enzymes that can be designed to recognise

and cleave DNA sequences at specific genome

locations, significantly improved our ability to manipu-

late genomes [3].

The CRISPR-based programmable nucleases are rel-

ative newcomers on the scene, but in a short time they

have conquered the field due to their simplicity in

design and their cost-effectiveness in comparison with

zinc-finger or TALEN-based platforms [4–6]. One pop-

ular version of the system is derived from the bac-

terium Streptococcus pyogenes and consists of two

essential modules: single guide RNA (sgRNA or sim-

ply gRNA) and Cas9 protein [6–8].
Cas9 and guide RNA form a complex, which can

bind to DNA and cleave it, generating a DSB. The

specificity of target DNA recognition is determined by

20 bases positioned at the start of the sgRNA, which
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are complementary to the so-called protospacer, which

are 20 bases that have been selected in the targeted

DNA region (Fig. 1). The other important determi-

nant for successful cleavage at the right site is the pro-

tospacer adjacent motif (PAM) [6]. The latter is

positioned immediately downstream of the protospacer

and consists of three nucleotides, of which the last two

have to be the nucleobase guanine (or G). Therefore,

in order for sgRNA/Cas9 nuclease to target a desired

location in the genome, one only needs to find a GG

doublet in either DNA strand near the target location

and design a sgRNA able to recognise the 20 nucleo-

tides upstream of it (Fig. 1). It is important to keep in

mind that similar sequences could exist in other parts

of the genome. These sequences, called off-targets, can

be recognised and cleaved by sgRNA/Cas9 complex

too, leading to the accumulation of unintended modifi-

cations.

Not all cell types can be readily subjected to HDR-

mediated gene editing due to their differential repair

and proliferative capacities [9]. For example, primary

cells are restricted in their proliferation potential, mak-

ing it hard to obtain sufficient genetically identical

material from a single edited cell. While some cultured

cancer lines can be a good platform for precise gene

manipulations, others are almost impossible to modify

due to defects in their DNA repair machinery. More-

over, many cancer cell lines contain multiple copies of

chromosomes due to genome instability; this makes

genome editing a very challenging process, as more

than two chromosomes may have to be modified to

change all copies of a gene. In order to successfully

perform gene editing in these model systems one

should apply a specific strategy for each case. It is also

should be noted, that in higher eukaryotes, the HDR

pathway is not the predominant choice for DSB repair

[10]; this fact introduces an additional level of com-

plexity when precise genome editing is required.

In this issue of FEBS Open Bio, Shen Li et al., in

the laboratory of Hector L. Franco (University of

North Carolina), provide a proof-of-principle solution

for correcting all copies of a gene in the widely used

MCF7 breast cancer cell line [11]. The gene for the

FOXA1 pioneer transcription factor is localised on

chromosome 14, which is present at least 4–5 times in

MCF7 cells. To achieve their goal, the authors used a

‘classical’ version of the CRISPR/Cas9 system. Both

sgRNA and Cas9 components were expressed from a

single vector, which also has a puromycin resistance

cassette [12]; this is an essential module for the chosen

strategy, because it ensures expression of both sgRNA

and Cas9 in selected cells. A targeting template in the

form of nonlinearised plasmid was shown to have the

best efficiency and was used to introduce a substitution

at position 295 in the gene encoding FOXA1 to

change a codon encoding lysine into a codon encoding

glutamine (K295Q). The resulting modification of the

FOXA1 protein, known to be able to displace histone

sgRNA

Cas9

DSB
Fig. 1. Interaction of sgRNA/Cas9 complex with target DNA. The specificity of the interaction between sgRNA/Cas9 complex and genomic

DNA is determined by complementarity between the terminal 20 nucleotides of sgRNA (green) and the opposite strand of protospacer

motif (light blue) within genomic DNA. The protospacer adjacent motif (PAM, red in the diagram) is another essential requirement. It should

contain an NGG triplet, which is identified by the S. pyogenes CRISPR/Cas9 system. The binding of sgRNA/Cas9 to target DNA induces

activation of Cas9 (shown as a blue ¾ circle) nuclease activity, leading to generation of a double-strand break (DSB).
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H1, is of special interest as it could potentially create a

more relaxed state of chromatin – a complex of DNA

and specific proteins (histones) able to pack DNA into

regular compact fibres [13]. The authors considered

that not all copies are likely to be repaired simultane-

ously. Some copies might remain intact or contain

undesired insertion and deletion mutations (indels),

which can be introduced by other types of DNA repair

where DSBs occur. Therefore, they selected additional

sgRNAs in adjacent regions and introduced silent

mutations in the repair template, which should prevent

repeated cleavage after the first modification has taken

place.

Using various techniques, the authors confirmed

successful editing of this and several other positions in

independent experiments. The range of achieved effi-

ciencies was between 28% and 100% per cent after

only a single round of transfection. Interestingly, all

alleles contained either correctly introduced modifica-

tions or contained indels, which means that the strat-

egy used by the authors allows 100% targeting

(successful cleavage) by the Cas9/gRNA complex. This

result is due to the selection procedure, which secures

the presence of active nuclease in the timeframe of

editing. The use of a selection marker, which is present

on the Cas9/gRNA expression vector rather than on

the template vector, assures ‘clean’ single step editing

because it does not require an additional cassette

removal step, unlike other gene editing strategies,

which use a selection marker within the targeting vec-

tor itself [14] However, a potential adverse effect of

the approach chosen by Li and co-authors could be

random integration of gRNA/Cas9 expression vector

in undesirable genome locations. Several other aspects

of the strategy could be optimised in the future, such

as the lifetime of the active nuclease within the cell, as

a longer presence will increase the probability of off-

target activity. In addition, the number of silent modi-

fications needed to prevent repeated cleavage by the

gRNA/Cas9 complex should be kept to a minimum.

These modifications might affect codon usage bias, the

phenomenon of unequal representation of synonymous

codons within genes or genomes, and influence the

level of expression of not only the targeted gene, but

other genes as well, especially when the gene is highly

expressed [15].

The strategy suggested by Li and co-authors is an

important development towards genome editing of

multiple copy genes in a polyploid environment like

cancer cells. One important application of the tech-

nique could be in creating models to study the role of

single nucleotide polymorphisms in cancer progression

and metastasis [16,17]. Isogenic cancer lines carrying

polymorphic variants of key drug targets could be

used to optimise anticancer treatment protocols, laying

a foundation for personalised therapy.
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