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A B S T R A C T   

In the context of the recently emerging COVID-19 pandemic, we developed a deep learning model that can be 
used to predict the inhibitory activity of 3CLpro in severe acute respiratory syndrome coronavirus (SARS-CoV) 
for unknown compounds during the virtual screening process. This paper proposes a novel deep learning-based 
method to implement virtual screening with convolutional neural network (CNN) architecture. The descriptors 
represent chemical molecules, and these descriptors are input into the CNN framework to train a model and 
predict active compounds. When compared to other machine learning methods, including random forest, naive 
Bayes, decision tree, and support vector machine, the proposed CNN model’s evaluation of the test set showed an 
accuracy of 0.86, a sensitivity of 0.45, a specificity of 0.96, a precision of 0.73, a recall of 0.45, an F-measure of 
0.55, and a ROC of 0.71. The CNN model screened 17 out of 918 phytochemical compounds; 60 out of 423 from 
the natural product NCI divset IV; 17,831 out of 112,267 from the ZINC natural product database; and 315 out of 
1556 FDA-approved drugs as anti-SARS-CoV agents. Further, to prioritize drug-like compounds, Lipinski’s rule of 
five was applied to screen anti-SARS-CoV compounds (excluding FDA-approved drugs), resulting in 10, 59, and 
14,025 hit molecules. Out of 10 phytochemical compounds, 9 anti-SARS-CoV agents belonged to the flavonoid 
group. In conclusion, the proposed CNN model can prove useful for developing novel target-specific anti-SARS- 
CoV compounds.   

1. Introduction 

The novel severe acute respiratory syndrome coronavirus (SARS- 
CoV) was first identified as an etiologic agent in 8000 individuals, 
causing 800 deaths, in July 2003 [1,2]. The virus is an enveloped and 
positive-sense single-stranded RNA [3]. The symptoms of coronavirus 
can range from cold to fever, lower respiratory tract infections, and 
diarrhea [4]. The virus that causes COVID-19, which is also known as 
SARS-CoV-2, was first identified in Wuhan, China, in December 2019 
[https://www.who.int/docs/default-source/coronaviruse/situation-r 
eports/20200423-sitrep-94-covid-19.pdf] [5]. According to the WHO 
report, all available evidence for COVID-19 suggests that it is caused by a 
virus transmitted between animals and people. Since then, the virus has 
been propagated to other countries by infected people and has become 
an ongoing global health emergency. No known medicines for the 
effective management of the disease have created an urgent need to 
develop novel and effective drugs for treatment. One of the most 
promising protein targets is the 3C-like protease (3CLpro) of SARS-CoV 
[6]. The protease inhibitors in the 3CLpro of SARS-CoV are 

chymotrypsin-like cysteine proteases, which are essential to the coro-
navirus’s proteolytic processing of polyproteins. The protease inhibitors 
are most effective at blocking replication [7–9]. Thus, the 3CLpro 
enzyme is a promising target for developing effective inhibitors against 
SARS-CoV. It is critical to identify a novel candidate for drug develop-
ment to commit to better treatment during the COVID-19 pandemic. 

2. Deep learning for drug discovery 

Deep learning is a subfield of machine learning that uses artificial 
neurons to process data in decision making. Deep learning has been 
applied to numerous fields, such as text mining and image pattern 
recognition. The method is also used in drug discovery to speed up the 
drug development process [10]. In its current state, artificial intelligence 
and computational biology have unlocked significant potential in the 
design of drug candidates [11]. Deep learning also plays an important 
role in the drug discovery process, and it is usually implemented in 
virtual screening, ADMET properties, QSAR models, and/or for lead 
optimization [12–14]. In addition, deep learning applications are 
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increasing in the field of pharmaceutical research [15]. 
To illustrate, a deep learning algorithm was developed to predict 

drug-induced liver injuries [16]. Gianchandani et al. also proposed 
ensemble deep transfer learning models to diagnose coronavirus in-
fections from radiography images [17]. Singh et al. proposed a densely 
connected convolutional networks-based automated COVID-19 
screening model [18]. Moreover, the deep learning approach has been 
used to discover new antibacterial molecules [19]. Kumari et al. applied 
machine learning algorithms, such as random forest (RF), support vector 
machine (SVM), and decision tree (DT), for the classification of 
anti-tubercular molecules [20]. Chen et al. built a deep learning-based 
model to detect novel coronavirus pneumonia from an image [21]. 
Peng et al. and Hu et al. employed convolutional neural network (CNN) 
models to predict drug-target interactions [22,23]. Finally, Meyer et al. 
applied CNN and RF models to learn drug functions from chemical 
structures [24]. Virtual screening has excellent applications for in-silico 
screening, can accelerate the drug discovery process, and can reduce the 
costs and time associated with experimental work. This study aims to 
develop a deep learning-based model to screen out novel anti-SARS-CoV 
agents against 3CLpro enzymes to treat COVID-19 infections. 

In the present report, we developed and proposed a deep learning 
model to build a CNN model based on a dataset of 3CLpro enzymes from 
SARS-CoV and then applied them to predict anti-SARS-CoV activity in 
unknown compounds. We also compared the proposed model with 
popular machine learning methods, including RF, Naïve Bayes (NB), DT, 
and SVM. Before developing the models, we extracted important 
descriptor vectors for the prediction of bioactivity. The results of the 
validated model showed acceptable values for various internal and 
external validations. The model developed with the deep learning al-
gorithm performed virtual screenings of unknown databases to search 
for novel inhibitors against 3CLpro enzymes to treat COVID-19 
infections. 

3. Materials and methods 

3.1. Data collection and data curation 

We collected publicly available experimental datasets of SARS-CoV 
from the PubChem Bioassay (https://pubchem.ncbi.nlm.nih.gov/ 
bioassay/) shown in Table 1. Here, we took two types of assays for 
our study: a conformational high throughput screening bioassay and a 
dose-response bioassay. The total number of active compounds was 198, 
and the total number of inactive compounds was 446. After that, we 
went through the data curation process and obtained 423 unique 
chemical structures, where 80 compounds were active and 343 com-
pounds were inactive. The activity of the compounds had already been 
classified by experimental bioassays. We then converted two- 
dimensional structures to three-dimensional structures by adding 
hydrogen atoms using CORINA software [25]. 

3.2. Descriptor calculation 

In order to convert chemical molecules into machine language, we 
converted the three-dimensional structure into a one-dimensional vector 
containing sufficient structural information, including 147 binary vec-
tors of pharmacophore fingerprints, 24 weighted burdens, and 8 mo-
lecular properties employed in PowerMV [26]. Pharmacophore 
fingerprints are popular methods for molecular representation. Each 
element of the fingerprint vector indicates the presence or absence of a 
specific feature in a molecule. 

3.3. Dataset division 

We implemented a deep learning-based CNN model in TensorFlow. 
The model was trained on 70% of the random split set and then validated 
on the remaining 30% of the curated dataset. The following hyper-
parameters could vary to optimize the model’s performance: learning 
rate, hidden layers, number of neurons, activation functions dropout, 
and batch normalizations. For virtual screening, the output of the CNN 
model was the probability for a compound to be active. 

3.4. Classification models 

Our study built four different machine learning models such as NB, 
RF, DT, and SVM and compared them with the proposed CNN model. 
Based on the Bayesian theorem, the NB method assumes that each 
predictor is conditionally independent of the other [27]. Breiman 
developed the RF method according to multiple DTs [28]. The DT 
method builds DTs from a labeled training set using each descriptor to 
make a decision by splitting the dataset into smaller subsets [29]. 

3.5. CNN model development 

We used labeled data to train the model with learning techniques 
called supervised learning techniques. There are different supervised 
learning approaches for deep learning, including deep neural networks, 
CNN, recurrent neural networks, long short-term memory, and gated 
recurrent units. CNN has several advantages over other neural networks 
and is effective at learning, extracting abstractions from two- 

Table 1 
List of pubchem bioassays of 3CLPro of SARS-CoV.  

S. 
No. 

BioAssay 
AID 

Total No. of 
Compounds 

Active 
Compounds 

Inactive 
Compounds 

BioAssay Type 

1 1879 380 136 244 Confirmational 
HTS assay 

2 1890 101 44 57 Dose response 
assay 

3 488958 14 9 5 Dose response 
assay 

4 488967 32 15 17 Late stage assay 
5 488984 103 10 93 Late stage assay 
6 488999 4 3 1 Dose response 

assay 
7 493245 6 3 3 Late stage assay 
8 588771 10 5 5 Dose response 

assay 
9 588772 28 14 14 Late stage assay 
10 588786 10 3 7 Dose response 

assay  

Fig. 1. CNN architecture of our proposed model.  
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dimensional features, and max-pooling. CNN can produce highly opti-
mized weights. Therefore, among the multitude of available classifica-
tion methods, we employed CNN because it is highly robust and widely 
successful in areas outside of drug prediction. Fukushima first proposed 
this CNN structure in 1988 [30]. 

3.6. Architecture of CNN 

As shown in Fig. 1, this study used the CNN architecture of the 
proposed model. It consisted of three types of layers: convolutional, 
pooling, and fully connected (FC) layers. 

3.7. Convolutional layers 

As the first layer, the convolutional layer is designed to learn the 
feature map of the input data. It consists of three convolutional layers 
that work as feature extractors. As shown in Fig. 1, the convolutional 
layers are composed of several convolution kernels; the kernel sizes of 
the first, second, and third convolutional layers are 32, 64, and 128, 
respectively. 

3.8. Pooling layers 

The second layer is the pooling layer, and it is used to lower the 
convolutional burden by reducing the number of connections between 
convolutional layers. Max-pooling is most widely used in CNN archi-
tecture to select the most prominent regions of the feature map covered 
by the filter [31]. 

3.9. FC layer 

The last layer is an FC layer that has a full connection to the neurons 
[32,33]. The classification layers are FC layers with 655,616 hidden 
nodes that use sigmoid as their activation function for classification. The 

sigmoid function is a nonlinear activation function that each neuron in a 
multilayer neural network uses to predict the probability as an output in 
the range of 0 and 1. The sigmoid produces a sigmoid curve [34]. The 
sigmoid function is defined as follows: 

S(x) = 1
/(1 + e− x)

where x is the input. 

3.10. Dropout 

Dropout was first introduced by Hindton et al. [35] when they 
applied it to FC layers. Dropout has since proven to be significantly 
effective in reducing overfitting. During the training phase, dropout is 
used as regulation to prevent overfitting and enhance training speed. 
The dropout neurons have no contribution to the forward or back-
propagation during the training phase. The dropouts are set to 0.5 in all 
layers for classification. 

3.11. Rectified linear units (ReLUs) 

A ReLU is one of the most non-saturated activation functions [36]. 
When compared to the sigmoid function, the training time for a ReLU is 
reduced by fastening the convergence of stochastic gradient descent 
(SGD). The ReLU activation function is defined as follows:  

ai,j,k = max(zi,j,k, 0)                                                                                

where z i,j,k is the input of the activation function at the location (i, j) on 
the k-th channel. 

ReLU is a piecewise linear function that prunes the negative part to 
zero and retains the positive part. CNN is the most popular neural 
network and is an effective solution in classification and recognition 
problems for large datasets [37]. Goh et al. described the CNN model for 
the prediction of chemical properties in compounds [38]. 

Fig. 2. The illustration of the overall CNN model pipeline for Virtual Screening.  
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This study aimed to predict novel drug candidates for COVID-19. We 
used Python 3.6 for modelling and evaluation. In addition, TensorFlow 
(https://www.tensorflow.org/), a deep learning library, and Keras 
(https://keras.io/) were used as architecture for training the CNN 
model. An illustration of the pipeline is shown in Fig. 2. In general, a 
backpropagation method is used to optimize the weights between the 
hidden layers of a CNN, which requires an extreme iteration step to 
predict output more accurately. Our goal was to develop and train a 
model so that it can effectively generalize training data, enabling us to 
measure how well our predicted class matches the actual class. Before 
the development of a final model, a trial and error method is required. As 
such, we used a combination of all hyperparameters, including hidden 
layers, layer type (dense layer), activation function ReLU, output layer 
function (sigmoid), model optimizer SGD, and epochs, to optimize the 
model. We used binary cross-entropy as our loss function. Accuracy was 
used to evaluate the performance of the model. The number of hidden 
layers was directly proportional to the training time and the increased 
speed of training. Because training can take several days or weeks to 
achieve the best performance, we consider training speed to be a valu-
able property in a cost-effective computing environment that uses 
Google Collaboratory without GPU. 

The calculated descriptors, with 282*179 dimensions for chemical 
compounds, function as input vectors to feed into CNN and identify 
active compounds. Here, 179 is the fixed size of the descriptors, and 282 
is the hidden state’s dimension at each step. Our proposed CNN model 
consists of three convolutional layers, with max-pooling layers and 
batch normalization, followed by one fully connected layer and dropout 
to avoid overfitting problems and improve the performance of 
prediction. 

3.12. Model validation 

In order to evaluate the model’s performance, various metrics were 
used for the classification model. The accuracy, sensitivity, specificity, 
precision, recall, F-measure, ROC, loss, and gain were calculated in 
SKlearn. Rather than hold onto the last epoch for each target, the best 
epoch for each target was saved to further screen for unknown mole-
cules. Accuracy, precision, and ROC were applied to assess the proposed 
model’s performance. 

The confusion matrix is a specific table that allows for the visuali-
zation of the model’s performance [39]. While each column of the ma-
trix represents the instances in a predicted class, each row represents the 
actual class’s instances. This makes it easy to see if the system is 
confusing two classes. A binary classification scheme consists of four 
sections: true positives (TPs) and true negatives (TNs) represent the 
correctly predicted active and inactive compounds, respectively; false 
positives (FPs) indicate that inactive compounds have incorrectly been 
classified as active compounds; and false negatives (FNs) show that 
active compounds have incorrectly been classified as inactive 
compounds. 

3.13. Virtual screening and activity prediction of unknown compound 
databases 

The deployment of the unknown dataset on the predictive model is a 
critical step in identifying novel potential 3CLpro enzyme inhibitors 
against COVID-19. The developed CNN model was used to virtually 
screen the phytochemical dataset. It was extracted from a medicinal 
plant database that contained alkaloid (108), aromatic (81), flavonoid 
(327), saponin (51), tannin (1), and terpenoid (350) compounds; 423 
natural products from the NCI divset IV; 112,267 natural compounds 
from the ZINC database; and 1556 FDA-approved drugs. Subsequently, 
Lipinski’s rule of five (RO5) was applied during screening to prioritize 
drug-like compounds. RO5 predicts poor absorption when molecules 
have more than 5 hydrogen bond donors or more than 10 hydrogen bond 
acceptors, and when the molecular mass is more than 500 Da, the 

octanol-water partition coefficient (Log P) is greater than 5, or the 
rotatable bonds are more than 10 [40]. Finally, the remaining com-
pounds had their anti-COVID-19 activity predicted with the proposed 
CNN model. 

4. Results and discussion 

In this investigation, we developed a deep learning-based CNN 
model to predict the activity of compounds for the inhibition of 3CLpro 
enzymes in SARS-CoV infections and built a machine learning classifier 
for comparative analysis. Before the modelling, we collected bioactive 
molecules from 10 different experimental bioassays and then curated 
them by removing duplicate compounds, salts, and metal ions. This led 
us to obtain 423 unique chemical structures for model development. We 
computed simple, meaningful, and easily interpretable two-dimensional 
descriptors to develop an easily reproducible model that can be used for 
the prediction and screening of unknown dataset compounds. The model 
was designed with 179 descriptors. The descriptors for the molecules 
describe the structural and functional requirements of the 3CLpro 
enzyme. Our proposed CNN architecture used three convolution layers: 
max-pooling, one FC layer with ReLU, and the sigmoid activation 
function for binary classification. The results showed good predictive 
ability based on both internal and external validation techniques. The 

Fig. 3. Accuracy of training and validation set are plotted against the number 
of training epoch on our CNN model. 

Fig. 4. The loss value of the training and testset are plotted against the number 
of epoch on our proposed CNN model. 
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CNN framework and six hyperparameters such as learning rate, hidden 
layers, the number of neurons, activation functions, dropout, and batch 
normalizations were investigated for quality and performance measures. 
The varied curves for the accuracy and loss function of our pre-training 
model on a dataset are illustrated in Figs. 3 and 4, respectively. 

5. Loss function of the model 

For the optimization algorithm, the loss function was used to eval-
uate a candidate solution. Fig. 4 presents the two distinct loss curves of a 
model for the training set and test set of anti-SARS-CoV bioassays named 
“Train” and “Test,” respectively. The training loss curve presents a sharp 
drop at first, then fluctuates with an increment of epochs, and finally 

drops slowly. The training loss curves show a faster convergence speed 
during 2–10 epochs, achieving robust and excellent performance with 
training. The test set for the loss curves also shows faster convergence at 
the start and then slowly converges with an increment of epochs. 
Therefore, a model can take less training time to predict the activity of 
molecules. 

6. Comparative analysis 

The best model was chosen by comparing the performance of the 

Table 2 
The statistical results of machine learning models of the 3CLPro of SARS-CoV testset.  

Classifiers TP TN FP FN Accuracy Specificity Sensitivity Precision Recall F 
Measure 

ROC 

NB 21 25 78 3 0.36 0.24 0.87 0.21 0.87 0.33 0.55 
RF 7 100 3 17 0.84 0.96 0.29 0.70 0.29 0.41 0.62 
DT 11 92 11 13 0.81 0.89 0.45 0.50 0.45 0.47 0.66 
SVM 9 96 7 15 0.82 0.93 0.37 0.56 0.37 0.44 0.65 
CNN 11 99 4 13 0.86 0.96 0.45 0.73 0.45 0.55 0.71 

NB: Gaussian Naïve Bayes; RF: Random Forest; DT: Decision Tree; SVM: Support Vector Machine; TP: True Positive; TN: True Negative; FP: False Positive; FN: False 
Negative; ROC: Receiver Operating Characteristic. 

Fig. 5. Bar chart is showing accuracy, precision, and recall for the different 
models where the CNN model shows maximum accuracy (0.86) and maximum 
precision (0.73) while NB shows maximum recall (0.87) of the 3CLPro of SARS- 
CoV testset. 

Fig. 6. Bar chart is showing specificity and sensitivity of for the different 
models where the CNN model and RF show a maximum specificity (0.96) and 
NB shows a maximum sensitivity (0.87) of the 3CLPro of SARS-CoV testset. 

Fig. 7. The ROC plot depicts significant AUC curve values for NB, RF, DT, SVM 
(a), and CNN model (b) of the 3CLPro of SARS-CoV testset. 
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models using various statistical parameters. The statistical results based 
on the test set are reported in Table 2. The accuracy of the models 
enabled the evaluation of the overall efficiency of the model presented 
in Fig. 5. The sensitivity is also known as the TP rate and is the pro-
portion of the truly positive parts of the dataset. This means that 
sensitivity measures the correctly identified active molecules. By com-
parison, specificity represents the TN rate and measures the proportion 
of the dataset that is truly negative. Put differently, this means that 
specificity measures the correctly identified inactive molecules (Fig. 6). 
The classifier model comparisons revealed that the CNN model achieved 
0.86 accuracy, 0.45 sensitivity, 0.96 specificity, 0.73 precision, 0.45 
recall, 0.55 F-measure, and 0.71 ROC. The second-best model was RF, 
which showed an accuracy of 0.84 with a specificity of 0.96 and a 
sensitivity of 0.29. While the SVM model achieved an accuracy of 0.82 
with a specificity of 0.93 and a sensitivity of 0.37, the DT model ob-
tained an accuracy of 0.81 with a specificity of 0.89 and a sensitivity of 
0.45. The NB model showed the lowest accuracy of 0.36 with a speci-
ficity of 0.24 and the highest sensitivity of 0.87 (Table 2). The sensitivity 
of the CNN model (0.45) was lower than the sensitivity of the NB model 
(0.87). This means that the CNN model’s prediction of active molecules 
is genuinely true. 

In addition, the ROC was measured to prove the model’s robustness. 
This revealed that the model can be widely used for quick performance 
assessments of virtual screening approaches. As illustrated in Fig. 7b, the 
CNN model’s AUC curve was 0.71, establishing it as the best model. This 
was followed by the AUC curves of the DT and SVM models at 0.66 and 
0.65, respectively, and the RF and NB models at 0.62 and 0.55, 
respectively (Fig. 7a and b). The confusion matrix of the CNN model 
enabled visualization of the percentage of classified compounds. This 
revealed a TP of 0.46, an FN of 0.54, a TN of 0.96, and an FP of 0.039 
(Fig. 8). Hence, the comparative analysis indicated that CNN was the 
best model, followed by the RF, SVM, NB, and DT models. Based on the 
above performance, the CNN model was selected as the best among the 
evaluated models. Therefore, the results suggest that this model can be 
effective for screening large databases. 

7. Deployment of the CNN model for the prediction and virtual 
screening of activity 

The proposed CNN model was used to predict the compounds’ ac-
tivities on various datasets (i.e., the phytochemical database, natural 
products from the NCI divset IV, natural compounds from the ZINC 

database, and FDA-approved drugs). We screened molecules based on a 
trained model. Only 17 out of 918 phytochemical compounds, 60 out of 
423 natural products from the NCI divset IV, 17,831 out of 112,267 
natural compounds from the ZINC database, and 315 compounds out of 
1556 FDA-approved drugs were predicted as anti-SARS-CoV agents. 
Further, to prioritize drug-like compounds, we applied Lipinski’s RO5 
on all the screened anti-SARS-CoV compounds except the FDA-approved 
drugs. This resulted in 10, 59, and 14,025 hit molecules, respectively. 
Out of the 10 phytochemical compounds shown in Table 3, 9 of the hit 
molecules belonged to the flavonoid group. 

8. Conclusion 

This work developed a deep learning-based CNN model that was 
extremely effective and efficient in its approach to virtual screening. We 
developed the CNN model to predict anti-SARS-CoV drug candidates 
and compare them with other classification methods, including RF, NB, 
DT, and SVM modelling. The model was trained on 282 compounds and 
predicted an external validation test set of 141 compounds with an ac-
curacy of 0.86, a sensitivity of 0.45, a specificity of 0.96, a precision of 
0.73, a recall of 0.45, an F-measure of 0.55, and a ROC of 0.71. The CNN 
model screened 17 out of 918 phytochemical compounds; 60 out of 423 
natural products from the NCI divest IV; 17,831 out of 1,12,267 natural 
compounds from the ZINC natural product database; and 315 out of 
1556 FDA-approved drugs as anti-SARS-CoV agents. Further, to priori-
tize drug-like compounds, Lipinski’s RO5 was applied to all the screened 
anti-SARS-CoV compounds except the FDA-approved drugs, resulting in 
10, 59, and 14,025 hit molecules. Of the 10 phytochemical compounds, 
9 anti-SARS-CoV agents belonged to the flavonoid group. To conclude, 
the proposed CNN model can prove useful for predicting novel target- 
specific anti-SARS-CoV compounds. The deep learning model can also 
see widespread use in chemical and drug informatics studies that cover 
anti-COVID-19 prediction. 

Summary 

We have developed a deep learning model that may be used to 
predict the inhibitory activity of 3CLpro of SARS coronavirus for un-
known compounds in the virtual screening with the convolutional 
neural network (CNN) architecture and compared with other classifi-
cation methods such as RF, NB, DT, and SVM. We extracted the exper-
imental datasets of SARS-CoV from the various PubChem Bioassay. The 

Fig. 8. Heatmap of confusion matrix of CNN model showing the proportion of each predicted class (x-axis) for molecules in each true class (y-axis); 0 represents 
inactive molecules, and 1 represents active molecules. 
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total no. of active compounds is 198, and inactive compounds are 446. 
After that, we have gone through the data curation process and finally 
got 423 unique chemical structures, where 80 compounds were active, 
and 343 compounds were inactive. The descriptors represent chemical 
molecules, and these descriptors are input into the CNN framework to 
train a model and predict active compounds. When compared to other 
machine learning methods, including RF, NB, DT, and SVM, the pro-
posed CNN model’s evaluation of the testset showed an accuracy of 0.86, 
a sensitivity of 0.45, a specificity of 0.96, a precision of 0.73, a recall of 
0.45, an F-measure of 0.55, and a ROC of 0.71. The CNN model screened 
17 out of 918 phytochemical compounds, 60 out of 423 from the natural 
product NCI divset IV, 17,831 out of 1,12,267 from the ZINC natural 
product database, and 315 out of 1556 FDA-approved drugs as anti- 
SARS-CoV agents. Further, to prioritize drug-like compounds, Lip-
inski’s RO5 was applied to screened anti-SARS-CoV compounds 
(excluding FDA-approved drugs), resulting in 10, 59, and 14,025 hit 
molecules. Out of 10 phytochemical compounds, 9 anti-SARS-CoV 
agents belonged to the flavonoid group. The proposed CNN model 
may see widespread use in chemical and drug informatics studies 
covering subject anti-COVID-19 prediction. 

Declaration of competing interest 

None Declared. 

Acknowledgements 

Centres of Excellence in bioinformatics supported by Department of 
Biotechnology of Government of India and the Department of Bioin-
formatics, Indian Council of Medical Research, New Delhi, India. 

Abbreviations 

3CLpro 3C-like protease 
CNN Convolutional Neural Network 
RO5 Lipinsky’s rules 
ReLU Rectified Linear Unit 
SARS-CoV Severe Acute Respiratory Syndrome Coronavirus 

References 

[1] N.S. Zhong, B.J. Zheng, Y.M. Li, Poon, Z.H. Xie, K.H. Chan, P.H. Li, S.Y. Tan, 
Q. Chang, J.P. Xie, X.Q. Liu, J. Xu, D.X. Li, K.Y. Yuen, Peiris, Y. Guan, 
Epidemiology and cause of severe acute respiratory syndrome (SARS) in 

Table 3 
The screening of active anti-SARS-CoV phytochemical compounds.  

S. No. Chemical ID Chemical Structure 

1 NPACT00111 

2 NPACT00171 

3 NPACT00182 

4 NPACT00196 

5 NPACT00282 

6 NPACT00335 

7 NPACT00423 

8 NPACT00713 

9 NPACT00716  

Table 3 (continued ) 

S. No. Chemical ID Chemical Structure 

10 NPACT01038 

M. Kumari and N. Subbarao                                                                                                                                                                                                                 

http://refhub.elsevier.com/S0010-4825(21)00111-6/sref1
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref1
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref1


Computers in Biology and Medicine 132 (2021) 104317

8

Guangdong, People’s Republic of China, in February, 2003, Lancet 362 (2003) 
1353–1358. 

[2] J. Ziebuhr, Molecular biology of severe acute respiratory syndrome coronavirus, 
Curr. Opin. Microbiol. 7 (2004) 412–419. 

[3] A. Zumla, J.F.W. Chan, E.I. Chan, D.S.C. Hui, K.Y. Yuen, Coronaviruses -drug 
discovery and therapeutic options, Nat. Rev. Drug Discov. 15 (2016) 327–347. 

[4] S.H. Myint, Human coronavirus infections, in: S.G. Siddell (Ed.), The 
Coronaviridae. The Viruses, Springer, Boston, MA, 1995, pp. 389–401. 

[5] S. Khan, G. Nabi, G. Han, R. Siddique, S. Lian, H. Shi, N. Bashir, A. Ali, M. 
A. Shereen, Novel coronavirus: how things are in Wuhan, Clin. Microbiol. Infect. 26 
(2020) 399–400. 

[6] C.W. Lin, F.J. Tsai, C.H. Tsai, C.C. Lai, L. Wan, T.Y. Ho, C.C. Hsieh, P.D. Chao, Anti- 
SARS coronavirus 3C-like protease effects of Isatis indigotica root and plant- 
derived phenolic compounds, Antivir. Res. 68 (2005) 36–42. 

[7] S. Chen, L.L. Chen, H.B. Luo, T. Sun, J. Chen, F. Ye, J.H. Cai, J.K. Shen, X. Shen, H. 
L. Jiang, Enzymatic activity characterization of SARS coronavirus 3C-like protease 
by fluorescence resonance energy transfer technique, Acta Pharmacol. Sin. 26 
(2005) 99–106. 

[8] R. Ramajayam, K.P. Tan, H.G. Liu, P.H. Liang, Synthesis and evaluation of 
pyrazolone compounds as SARS-coronavirus 3C-like protease inhibitors, Bioorg. 
Med. Chem. 18 (2010) 7849–7854. 

[9] V. Kumar, K. Roy, Development of a simple, interpretable and easily transferable 
QSAR model for quick screening antiviral databases in search of novel 3C-like 
protease (3CLpro) enzyme inhibitors against SARS-CoV diseases, SAR QSAR 
Environ. Res. 31 (2020) 511–526. 

[10] P. Hop, B. Allgood, J. Yu, Geometric deep learning autonomously learns chemical 
features that outperform those engineered by domain experts, Mol. Pharm. 15 
(2018) 4371–4377. 

[11] F. Ghasemi, A. Mehridehnavi, A. Perez-Garrido, H. Perez-Sanchez, Neural network 
and deep-learning algorithms used in QSAR studies: merits and drawbacks, Drug 
Discov. Today 23 (2018) 1784–1790. 

[12] K.A. Carpenter, D.S. Cohen, J.T. Jarrell, X. Huang, Deep learning and virtual drug 
screening, Future Med. Chem. 10 (2018) 2557–2567. 

[13] S. Hu, P. Chen, P. Gu, B. Wang, A deep learning-based chemical system for QSAR 
prediction, IEEE J Biomed Health Inform 24 (2020) 3020–3028. 

[14] J. Ma, R.P. Sheridan, A. Liaw, G.E. Dahl, V. Svetnik, Deep neural nets as a method 
for quantitative structure-activity relationships, J. Chem. Inf. Model. 55 (2015) 
263–274. 

[15] S. Ekins, The next era: deep learning in pharmaceutical research, Pharm. Res. (N. 
Y.) 33 (2016) 2594–2603. 

[16] Y. Xu, Z. Dai, F. Chen, S. Gao, J. Pei, L. Lai, Deep learning for drug-induced liver 
injury, J. Chem. Inf. Model. 55 (2015) 2085–2093. 

[17] N. Gianchandani, A. Jaiswal, D. Singh, V. Kumar, M. Kaur, Rapid COVID-19 
diagnosis using ensemble deep transfer learning models from chest radiographic 
images, J Ambient Intell Humaniz Comput 16 (2020) 1–13. 

[18] D. Singh, V. Kumar, M. Kaur, Densely connected convolutional networks-based 
COVID-19 screening model, Appl. Intell. (2021), https://doi.org/10.1007/s10489- 
020-02149-6. 

[19] J.M. Stokes, K. Yang, K. Swanson, W. Jin, A. Cubillos-Ruiz, N.M. Donghia, C. 
R. MacNair, S. French, L.A. Carfrae, Z. Bloom-Ackermann, V.M. Tran, 
A. Chiappino-Pepe, A.H. Badran, I.W. Andrews, E.J. Chory, G.M. Church, E. 
D. Brown, T.S. Jaakkola, R. Barzilay, J. Collins, A deep learning approach to 
antibiotic discovery, Cell 181 (2020) 475–483. 

[20] M. Kumari, N. Tiwari, N. Subbarao, S. Chandra, Evaluation of predictive models 
based on random forest, decision tree and support vector machine classifiers and 
virtual screening of anti-mycobacterial compounds, Int. J. Comput. Biol. Drug Des. 
10 (2017) 248–263. 

[21] J. Chen, L. Wu, J. Zhang, L. Zhang, D. Gong, Y. Zhao, Q. Chen, S. Huang, M. Yang, 
X. Yang, S. Hu, Y. Wang, X. Hu, B. Zheng, K. Zhang, H. Wu, Z. Dong, Y. Xu, Y. Zhu, 
X. Chen, H. Yu, Deep learning-based model for detecting 2019 novel coronavirus 
pneumonia on high-resolution computed tomography, Sci. Rep. 10 (2020) 19196. 

[22] J. Peng, J. Li, X. Shang, A learning-based method for drug-target interaction 
prediction based on feature representation learning and deep neural network, BMC 
Bioinf. 21 (2020) 1–13. 

[23] S. Hu, C.P. Chen, J. Zhang, B. Wang, Predicting drug-target interactions from drug 
structure and protein sequence using novel convolutional neural networks, BMC 
Bioinf. 20 (2019) 689. 

[24] J.G. Meyer, S. Liu, I.J. Miller, J.J. Coon, A. Gitter, Learning drug functions from 
chemical structures with convolutional neural networks and random forests, 
J. Chem. Inf. Model. 59 (2019) 4438–4449. 

[25] J. Sadowski, J. Gasteiger, G. Klebe, Comparison of automatic three-dimensional 
model builders using 639 X-ray structures, J. Chem. Inf. Model. 34 (1994) 4. 

[26] K. Liu, J. Feng, S.S. Young, PowerMV: a software environment for molecular 
viewing, descriptor generation, data analysis and hit evaluation, J. Chem. Inf. 
Model J Chem Inf Model 45 (2005) 515–522. 

[27] N. Friedman, D. Geiger, M. GoldSzmidt, Bayesian network classifiers, Mach. Learn. 
29 (1997) 131–163. 

[28] L. Breiman, Random forests, Mach. Learn. 45 (2001) 5–32. 
[29] J.R. Quinlan, Induction of decision trees, Mach. Learn. 1 (1986) 81–106. 
[30] K. Fukushima, Neocognitron: a hierarchical neural network capable of visual 

pattern recognition, Neural Network. 1 (1988) 119–130. 
[31] R. Yamashita, M. Nishio, R.K.G. Do, K. Togashi, Convolutional neural networks: an 

overview and application in radiology, Insights Imaging 9 (2018) 611–629. 
[32] Q. Xu, M. Zhang, Z. Gu, G. Pan, Overfitting remedy by sparsifying regularization on 

fully-connected layers of cnns, Neurocomputing 328 (2019) 69–74. 
[33] J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu, X. Wang, G. Wang, 

J. Cai, T. Chen, Recent advances in convolutional neural networks, Pattern Recogn. 
77 (2018) 354–377. 

[34] Y.A. LeCun, L. Bottou, G.B. Orr, K.-R. Müller, Efficient backprop, in: Neural 
Networks: Tricks of the Trade, second ed., 2012, pp. 9–48. 

[35] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, R. R. Salakhutdinov, 
Improving Neural Networks by Preventing Co-adaptation of Feature Detectors, 
CoRR abs/1207.0580. 

[36] V. Nair, G.E. Hinton, Rectified linear units improve restricted Boltzmann machines, 
in: Proceedings of the International Conference on Machine Learning, ICML, 2010, 
pp. 807–814. 

[37] D. Jimenez-Carretero, V. Abrishami, L. Fernandez-de-Manuel, I. Palacios, 
A. Quilez-Alvarez, A. Diez-Sanchez, M.A. Del Pozo, M.C. Montoya, Tox_(R)CNN: 
deep learning-based nuclei profiling tool for drug toxicity screening, PLoS Comput. 
Biol. 14 (2018), e1006238. 

[38] G.B. Goh, C. Siegel, A. Vishnu, N.O. Hodas, N. Baker, Chemception: a Deep Neural 
Network with Minimal Chemistry Knowledge Matches the Performance of Expert- 
Developed QSAR/QSPR Models. arXiv, 2017, p. 1706, 06689. 

[39] K.M. Ting, Confusion matrix, in: C. Sammut, G.I. Webb (Eds.), Encyclopedia of 
Machine Learning and Data Mining, Springer, Boston, MA, 2017. 

[40] C.A. Lipinski, F. Lombardo, B.W. Dominy, P.J. Feeney, Experimental and 
computational approaches to estimate solubility and permeability in drug 
discovery and development settings, Adv. Drug Deliv. Rev. 46 (2001) 3–26. 

Madhulata Kumari is a research associate in the School of Computational & Integrative 
Sciences, Jawaharlal Nehru University, New Delhi, India. She holds Ph.D. in Information 
Technology by the Kumaun University, Nainital, Uttarakhand, India. Her main area of 
research interest is the data mining, machine learning, deep learning, molecular docking, 
Molecular dynamic simulation, pharmacophore modelling, 3D-QSAR modelling, lead 
optimization and in silico ADMET prediction and drug design. Her work has been pub-
lished in various peer-reviewed journals. 

Naidu Subbarao is an Associate Professor in the School of Computational and Integrative 
Sciences, Jawaharlal Nehru University, New Delhi, India. He received his MSc and PhD 
from IIT Kanpur. His research interests molecular modelling, molecular docking, Molec-
ular dynamic simulation, pharmacophore modelling, 3D-QSAR modelling, development of 
drug target databases of Plasmodium falciparum and Mycobacterium tuberculosis, compu-
tational biology, cooperativity in macromolecules, protein-protein interactions, and 
structure based drug designing. His work has been published in various peer-reviewed 
journals. 

M. Kumari and N. Subbarao                                                                                                                                                                                                                 

http://refhub.elsevier.com/S0010-4825(21)00111-6/sref1
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref1
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref2
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref2
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref3
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref3
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref4
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref4
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref5
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref5
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref5
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref6
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref6
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref6
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref7
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref7
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref7
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref7
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref8
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref8
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref8
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref9
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref9
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref9
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref9
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref10
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref10
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref10
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref11
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref11
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref11
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref12
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref12
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref13
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref13
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref14
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref14
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref14
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref15
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref15
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref16
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref16
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref17
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref17
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref17
https://doi.org/10.1007/s10489-020-02149-6
https://doi.org/10.1007/s10489-020-02149-6
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref19
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref19
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref19
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref19
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref19
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref20
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref20
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref20
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref20
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref21
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref21
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref21
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref21
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref22
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref22
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref22
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref23
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref23
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref23
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref24
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref24
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref24
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref25
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref25
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref26
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref26
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref26
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref27
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref27
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref28
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref29
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref30
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref30
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref31
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref31
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref32
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref32
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref33
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref33
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref33
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref34
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref34
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref36
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref36
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref36
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref37
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref37
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref37
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref37
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref38
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref38
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref38
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref39
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref39
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref40
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref40
http://refhub.elsevier.com/S0010-4825(21)00111-6/sref40

