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Diabetic retinopathy is one of the serious complications of diabetes, which the leading
causes of blindness worldwide, and its irreversibility renders the existing treatment
methods unsatisfactory. Early detection and timely intervention can effectively reduce
the damage caused by diabetic retinopathy. Metabolomics is a branch of systems biology
and a powerful tool for studying pathophysiological processes, which can help identify the
characteristic metabolic changes marking the progression of diabetic retinopathy,
discover potential biomarkers to inform clinical diagnosis and treatment. This review
provides an update on the known metabolomics biomarkers of diabetic retinopathy.
Through comprehensive analysis of biomarkers, we found that the arginine biosynthesis is
closely related to diabetic retinopathy. Meanwhile, creatine, a metabolite with arginine as a
precursor, has attracted our attention due to its important correlation with diabetic
retinopathy. We discuss the possibility of the arginine-creatine metabolic pathway as a
therapeutic strategy for diabetic retinopathy.

Keywords: diabetic retinopathy, metabolomics, biomarker, creatine, arginine, mechanism
Abbreviation: DR, Diabetic retinopathy; T2DM, type 2 diabetes mellitus; PKC, protein kinase C; Cr, creatine; PCr,
phosphocreatine; CK, creatine kinase; NMR, nuclear magnetic resonance; MS, mass spectrometry; LC, liquid
chromatography; GC, gas chromatography; HILIC-MS, hydrophilic interaction chromatography-mass spectrometry; FIA–
MS, Flow-injection analysis-mass spectrometry; CE, capillary electrophoresis; HPLC, high-performance liquid
chromatography; UPLC, ultra-high performance liquid chromatography; CE, Capillary electrophoresis; PDR, proliferative
diabetic retinopathy; OIR, oxygen induced ischemic retinopathy; GC-MS, gas chromatography mass spectrometry; UPLC-MS,
ultra-performance liquid chromatography-mass spectrometry; TCA, tricarboxylic acid cycle; LC-MS, liquid chromatography-
mass spectrometry; HILIC-MS Hydrophilic interaction chromatography-mass spectrometry; UPLC-Q-Axis Orbiter-MS,
ultra-performance liquid chromatography-quadrupole-Exactive Orbitrap-mass spectrometry; IDO, indolamine-2,3-
dioxygenase; UACR, albumin/creatinine; KEGG, Kyoto Encyclopedia of Genes and Genomes; NOS, nitric oxide synthase;
NO, nitric oxide; EDHF, endothelium-derived hyperpolarizing factor; GAA, guanidinoacetate; Hcy, homocysteine;
ECs, endothelial cells; EC, endothelial cell; LPC, Lysophosphatidylcholine; ICAM-1, increased intercellular cell
adhesion molecule-1.
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INTRODUCTION

Diabetic retinopathy (DR) has been recognized as the main cause
of blindness worldwide, with about one-third of all diabetes
patients developing diabetic retinopathy (1). The retina is
metabolically active and transmits electrochemical signals from
photoreceptors to the brain via neurons, supported by glial cells
and vascular tissue (2). The entire process relies on highly
complex coordination between the various cell types, and the
blood-vision barrier plays a key role (3, 4). The accumulation of
glycation end products, oxidative stress, polyol pathway and
protein kinase C (PKC) activation are the main pathogenesis of
DR. This changes the normal interaction between cells and
causes serious blood vessel abnormalities leading to damaging
of the blood-retinal barrier and neuronal function (5–9).
Diabetic retinopathy is difficult to cure, diagnosis and drug
intervention in the early stages of diabetic retinopathy can
effectively prevent or slow down the progression of disease.
Therefore, identification of biomarkers associated with disease
progression can be very helpful.

Metabolomics is the analysis of a large number of endogenous
small molecules. It provides the overall metabolic profile of a
biological sample as opposed to genomics and proteomics, which
provide the profiles for DNA/RNA and proteins alone,
respectively (10–12). The methods of analysis used in
metabolomics are mostly classified into two categories: targeted
metabolomics and non-targeted metabolomics (13–15). In
contrast to targeted metabolomics, which focuses only on
changes in specific metabolites, non-targeted metabolomics is
designed to capture much more metabolite information to
compare these high-throughput data under normal vs. disease
states (15–17). Non-targeted metabolomics approaches can thus
discover potential biomarkers of diseases and provide an effective
basis for diagnosing and treating them (18–20).

Arginine, a semi-essential amino acid, involved in many
biological processes such as creatine biosynthesis and the urea
cycle, is one of the strongest insulin secretagogues, which induce
insulin release from pancreatic b cells (21). Additionally, arginine
is a substrate for nitric oxide synthase (NOS) and can produce NO,
which exerts a significant influence on the health of the vascular
endothelial cells as well as the kidneys (22, 23). Creatine (Cr) can
be either be synthesized endogenously within the body or
extrinsically derived from foods like meat, fish, etc. (24). Cr,
phosphocreatine(PCr), and creatine kinase (CK) isoenzymes are
responsible for maintaining the ATP pool (25). Therefore, creatine
is one of the leading sports supplements (26). As research
continues, Creatine has been found to have multiple
physiological effects, including anti-inflammatory (27–29),
antioxidant (30–33), neuroprotective (34), reduce homocysteine
(Hcy) (35–37), and anti-diabetic (34).

This review aims to summarize the progress of metabolomics
studies in diabetic retinopathy and to explore common research
platforms for metabolomics. We also summarize the current
knowledge of known metabolomics biomarkers of diabetic
retinopathy based on literature and analyze the metabolic
pathways involving those biomarkers. In addition, we discuss
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the creatine-arginine metabolic network as a potential area for
finding new treatment strategies.
METABOLOMICS ANALYSIS PLATFORM

Metabolomics analysis platform can be divided into two main
types, nuclear magnetic resonance (NMR) spectroscopy (38) and
mass spectrometry (MS) (39, 40). Using different instruments
and platforms, typically 50 to as many as 5000 different
metabolites can be identified at any given time. No technique
so far has been successful in identifying all metabolites in a single
run or analysis, and most metabolomics studies use only one
platform or multiple tandems. Due to the complementarity
between NMR (41) and MS (42), researchers often use
combinations of NMR and MS as well as employ the current
method to enhance research quality and expand the metabolome
coverage (43–46).

Nuclear Magnetic Resonance
(NMR) Spectroscopy
NMR spectroscopy can measure the behavior of an atom’s
nucleus when subjected to a magnetic field (47, 48). Currently,
instruments that use 500 and 600 MHz frequencies are the most
widely used instruments to detect these signals and are the
optimal choice for their sensitivity and manufacturing cost. It
is worth noting that the resolution of these signals increases
when the magnetic field strength is higher (49).

NMR spectroscopy applies to both liquid/gas phase samples
as well as tissue samples (50, 51). It carries several advantages, for
example, it requires less sample preparation and the detection
process is non-destructive to the sample, so it can be reused for
other studies. Moreover, NMR has high reproducibility and good
quantitative performance, allowing the measurement of the
number of protons under a given condition which allows for
direct comparison with spectral data (52). However, the primary
disadvantage of NMR is its lower sensitivity compared with MS.
NMR can identify nearly 50 metabolites in serum/plasma
samples and approximately 200 in urine (53).

Mass Spectrometry (MS)
Mass spectrometry is an analytical method that measures the
ion-to-mass ratio based on the ionization of components in the
samples by an ion source, and is widely used in the detection of
metabolites (54–56). The sample can be directly analyzed by
mass spectrometry, or in tandem with other separation methods
to obtain mass spectra, such as liquid chromatography (LC) (57–
59), gas chromatography (GC) (60, 61), hydrophilic interaction
chromatography-mass spectrometry (HILIC-MS) (62), Flow-
injection analysis-mass spectrometry(FIA–MS) (63), or
capillary electrophoresis (CE) (64, 65). It should be noted that
no single method can separate all metabolites simultaneously, as
some metabolites are difficult to ionize, and in some cases, mass
number limitations prevent mass spectrometry techniques from
measuring all metabolites (66). LC has been most widely used
because of its better separation. Especially, high-performance
March 2022 | Volume 13 | Article 85801
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liquid chromatography (HPLC) and ultra-high performance
liquid chromatography (UPLC) have become increasingly
popular (67–69). GC also offers high separation, but it is
unable to measure metabolites with poor thermal stability (70).
Capillary electrophoresis (CE) has a long history of use. Its
application is mainly limited by its poor sensitivity, which has
been greatly improved by the introduction of the CE-ESI
interface (71, 72).

Compared to NMR, MS has a much higher sensitivity and is
therefore able to measure a wider range of metabolites (40, 43,
73, 74). In particular, UPLC offers excellent chromatographic
separation, high speed, and high sensitivity, allowing the
detection of thousands of metabolites within a short
time (75–78). HPLC tandem MS plays a huge contribution in
research that requires high throughput, such as natural drug
development and disease biomarker identification (79–83).
BIOMARKERS FOR
DIABETIC RETINOPATHY

Vitreous Humor Biomarkers
Tomita et al. (84) analyzed the metabolites of vitreous humor in
43 proliferative diabetic retinopathy (PDR) patients, and 21
controls using ultra-performance liquid chromatography-mass
spectrometry (UPLC-MS) with significant differences in creatine.
The authors found that patients with PDR had lower levels of
creatine and higher levels of glycine in the vitreous humor than
controls. They also verified in an oxygen induced ischemic
retinopathy (OIR) model that reduced creatine levels correlate
with retinal vascular proliferation and demonstrated that oral
creatine caused a significant reduction in retinal vascular
proliferation (p=0.0024), opening the possibility for a new
therapeutic strategy for diabetic retinopathy. Wang et al. (85)
identified potential DR biomarkers in vitreous humor using gas
chromatography mass spectrometry (GC-MS). Vitreous humor
samples were gathered from 28 type-2 diabetes patients
with PDR as well as 22 non-diabetic patients with macular
fissure. They found 15 potential biomarkers in the vitreous
humor, namely pyruvate, ornithine, uric acid, pyroglutamic
acid, creatinine, L-leucine, L-alanine, L-threonine, L lysine,
L-valine, L-phenylalanine, L-isoleucine, L-glutamine, inositol,
and hydroxylamine. These are mainly involved in various
metabolic pathways such as gluconeogenesis, ascorbate-aldose
metabolism, valine-leucine-isoleucine biosynthesis, and
arginine-proline metabolism.

A non-targeted metabolomics study on vitreous humor from
patients with DR showed changes in glucose metabolism as well
as activation of the pentose phosphate pathway. Glass fluid
samples from PDR patients (n=9) and normal subjects were
kept as controls (n=8) and were analyzed by ultra-performance
liquid chromatography-mass spectrometry (UPLC-MS). A
variety of metabolites were found to be potential biomarkers,
including xanthine, pyruvate, proline, and guanine (86). Paris
et al. (62) used liquid chromatography-mass spectrometry (LC-
MS) and hydrophilic interaction liquid chromatography
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(HILIC)-mass spectrometry to analyze the vitreous humor of
PDR patients (n=9), non-diabetes control patients (n=11), and
OIR mouse model. They found significant changes in the levels
of octanoyl carnitine, propionyl carnitine, hexanoyl carnitine,
acetylcarnitine, palmitoylcarnitine, elaidic/vaccenylcarnitine,
allantoin, glutamate, lysine, and arginine. Barba et al. (87)
analyzed the vitreous humor of a total of 22 patients suffering
from PDR and 22 non-diabetic patients and found that the
content of lactate and glucose among the PDR patients was
higher than that in non-diabetic patients, while that of galactitol
and ascorbic acid was lower when compared with that in non-
diabetic patients. The reduced galactitol level was attributed to
activation of the polyol pathway.

Plasma Biomarkers
Plasma metabolomics of 124 DR patients and 32 controls were
explored using GC–MS, and UPLC–MS. They identified
glutamine and glutamic acid as new biomarkers for the
prediction of DR (88). A plasma metabolomics analysis based
on GC–MS demonstrated that 2,4-dihydroxybutyric acid
(DHBA), 3,4-DHBA, ribonic acid, and ribitol are risk markers
for DR progression as these metabolites are associated (P <0.042)
with DR (89). Another plasma metabolomics study using GC-
MS identified 11 potential biomarkers of diabetic retinopathy,
namely 1,5-gluconolactone, 1,5-anhydroglucitol, gluconic acid,
lactose/cellobiose, maltose/trehalose, 2-deoxyribonic acid, 3,4-
dihydroxybutyric acid, erythritol, mannose, ribose, and urea. The
samples for this study were acquired from 40 patients
undergoing non-proliferative diabetic retinopathy (NPDR) and
40 patients suffering from T2DM without retinopathy. Metabolic
pathway analysis indicated a remarkable enrichment of the
pentose phosphate pathway, which could explain the NADPH
production against oxidative stress (49). Sumarriva et al.
performed plasma metabolomics research showed that
compared to diabetes controls, the metabolism of multiple
amino acids, such as leukotrienes, niacin, pyrimidine, and
purine, changed in DR patients. Arginine, citrulline, glutamic
g-semialdehyde, and de-hydroxy carnitine were critical members
in the above pathways differences (90). Li et al. (91) employed
GC-MS in the study of plasma metabolomics in 25 patients with
PDR, 39 patients with NPDR, and 24 patients with NDR, and
found 10 metabolites with significant differences: b-
hydroxybutyrate, methylmalonic acid, citric acid, pyruvate,
glucose, stearic acid trans-oleic acid, L-aspartate, linoleic acid,
and arachidonic acid.

Serum Biomarkers
Xuan et al. (92) studied 43 patients with diabetic retinopathy and
44 normally controlled serum lipomics using UPLC-MS.
Significant differences were found in the following 14 lipid
metabolites: Lysophosphatidylcholine(LPC)(14:0) LPC (14:0),
LPC (16:0) LPC (14:0), LPC (16:0), LPC (16:1), LPC (18:0),
LPC (18:1), LPC (18:2), LPC (18:3), LPC (18:4), LPC (20:0), LPC
(20:3), LPC (20:4), LPC (20:5), LPC (22:3), and LPC (22:6). These
provide a basis for the discovery of lipid biomarkers in diabetic
retinopathy. Xuan et al. (93) in their study used multi-platform
techniques to analyze serum samples from 111 diabetic patients
March 2022 | Volume 13 | Article 858012
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without retinopathy (NDR=111) and 350 diabetic patients with
retinopathy (n=350). The DR-induced metabolic changes were
usually linked to glycolytic metabolism, tricarboxylic acid cycle
(TCA) metabolism, urea cycle metabolism, polyol metabolism,
amino acid metabolism, and lipid metabolism. Following a
systematic screening using univariate analysis, 2-piperidone
and 12-HETE were recognized as potential biomarkers for DR.
12-HETE, an eicosanoid-like acid, is the leading product of
human 12-lipoxygenase (LOX), inducing endoplasmic
reticulum stress in human retinal endothelial cells. Studies
show that 12-LOX is involved in retinal microvascular
disorders of DR (94–96). A study based on widely targeted
metabolomics evaluated serum metabolites from 69 type 2
diabetes mellitus (T2DM) patients with DR and 69 T2DM
patients without DR. The biomarkers of diabetic retinopathy
identified using a UPLC-MS system were linoleic acid,
nicotinuric acid, ornithine, and phenylacetylglutamine. In
particular, this research developed a new multidimensional
network of biomarker systems and the area under the curve
(95% CI) of this system is an exploration of the biomarker
determination method (97).

Zhu et al. (98) studied the serum metabolomics of 21 PDR
patients and 21 diabetic patients without retinopathy (NDR)
patients. A total of 63 significant changes in metabolites were
found using LC-MS. Fumaric acid, uridine, acetic acid, and
cytidine (area under curve 0.96, 0.95, 1.0, and 0.95,
respectively) are considered potential biomarkers of PDR. A
serum metabolomics study of 24 patients with PDR, 22 patients
with NPDR, and 35 healthy human control groups demonstrated
that compared with the control group, indolamine-2,3-
dioxygenase (IDO) expression was enhanced among patients
with NPDR, while the levels of kynurenine, kynurenic acid, and
3-hydroxy kynurenine were higher in PDR patients. The authors
speculated that diabetic retinopathy might be related to IDO and
tryptophan metabolites (99). Serum samples from patients with
NPDR (n=123), PDR (n=51), and NDR (n=143) were profiled by
targeted mass-spectrometry-based metabolomics. After
multivariate analyses, 16 metabolites were found to show
profound changes, including tetradecenoylcarnitine (C14:1),
hexadecanoylcarnitine (C16), lysine, methionine, tryptophan,
tyrosine, total dimethyarginine, phosphatidylcholine diacyl
C32:2, phosphatidylcholine diacyl C34:2, phosphatidylcholine
d i a cy l C36 : 2 , phospha t idy l cho l ine d i a cy l C38 : 6 ,
phosphatidylcholine diacyl C40:6, phosphatidylcholine acyl-
a lkyl C36:5 , phosphat idylchol ine acyl-alkyl C42:3,
hydroxysphingomyeline C22:1 and sphingomyeline C24:0 (63).

Aqueous Humor Biomarkers
Wang et al. (85) analyzed and identified potential DR biomarkers in
aqueous humor of 23 patients suffering from PDR and 25 patients
with non-diabetic cataracts. Eight metabolites, namely D-glyceric
acid, isocitric acid, threonine, d-glucose, inositol, L-lactic acid,
citrulline, and fructose 6-phosphate, were found to be significantly
different in the aqueous humor by comparative analysis.

A metabolomics study based on NMR was carried out on the
aqueous humor samples from diabetic patients with cataracts
(n=13), DR patients with cataracts (n=14), and elderly cataracts
Frontiers in Endocrinology | www.frontiersin.org 4
(n=7). Metabolites such as lactate, succinate, 2-hydroxybutyrate,
aspartamide, dimethylamine, histidine, threonine, and glutamine
showed significant changes. Pathway analysis showed that DR
might be related to alanine, aspartic acid, and glutamate
metabolic pathways (100). The information of DR biomarker
was listed in Table 1.
KEGG ENRICHMENT ANALYSIS

We enriched the above potential biomarkers according to the
types of biological fluids, intending to comprehend the
relationship between biomarkers and diseases. Enrichment
analysis by metaPA and Kyoto Encyclopedia of Genes and
Genomes (KEGG) showed that metabolic pathways enriched
in the different biological fluids are unique (Figure 1). It is worth
mentioning that arginine-related metabolism was both enriched
in vitreous humor, plasma, serum, and aqueous humor. This
suggests that arginine has a critical effect on diabetic retinopathy.
DISCUSSION

Biomarkers can provide early warning signs in patients with
serious diseases. Therefore, they help in the early diagnosis of the
disease so that effective treatment can be made available to
the patient at the earliest. In this review, we have summarized
the known potential biomarkers for DR, in a variety of biological
samples, including vitreous humor, plasma, serum, and aqueous
humor, from research done in recent years. Through enrichment
analysis, we found that arginine-related metabolic pathways were
abnormal in a variety of biological fluids.

Arginine Biosynthesis-Related Metabolites
Are Significantly Elevated in DR Patients
The urea cycle is a part of the arginine biosynthesis pathway, and
the arginase enzyme can cleave arginine to generate urea and
ornithine. Ornithine can be converted into citrulline, and then
citrulline is produced through a series of reactions to arginine
(101). The metabolites of the urea cycle seem to have some
association with DR. The metabolites of the urea cycle seem to
have some association with DR.The levels of ornithine (85, 97,
102), arginine (62, 90, 102), citrulline (85, 90, 102), proline (86),
and argininosuccinate (102) were significantly elevated in DR
patients (Figure 2) (73). The above content expands our
understanding of the pathogenesis of DR. The changes in the
metabolites of the urea cycle, especially arginine, are significantly
associated with DR.

Arginine is involved in many biological processes and is also
the substrate of nitric oxide synthase (NOS) and arginase,
producing nitric oxide (NO) and urea, respectively (103). NO
is a vasodilator that exerts a significant influence on vascular
endothelial health, while arginine induces the release of insulin
in pancreatic b cells (Figure 3) (104). In addition, animal
experiments using DR mouse models and bovine retinal
endothelial cells cultivated by high glucose revealed the role of
arginine metabolism as a mediator for DR (105, 106).
March 2022 | Volume 13 | Article 858012
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TABLE 1 | The information of diabetic retinopathy biomarker.

Study Samples Platform Number (cases/model
and controls)

Potential biomarkers Pathways

Tomita et al. (84) Vitreous
humour

UPLC-MS 43 PDR and 21 non-
diabetic epiretinal
membrane

Creatine, succinate, glycine, lactate, pyruvate, proline,
allantoin, urate, citrulline, ornithine, dimethylglycine, N-
acetylserine, a-ketoglutarate

Glycine, serine, arginine
and proline amino acid
metabolism

Wang et al. (85) Vitreous
humour

GC-TOF-MS 28 PDR and 22 non-
diabetic patients with
macular fissure

Pyruvate, ornithine, uric acid, pyroglutamic acid,
creatinine, L-leucine, L-alanine, L-threonine, L lysine, L-
valine, L-phenylalanine, L-isoleucine, L-glutamine, inositol,
and hydroxylamine

Gluconeogenesis,
ascorbate-aldose
metabolism, valine-
leucine-isoleucine
biosynthesis, and arginine-
proline metabolism

Haines et al. (86) Vitreous
humour

UPLC-MS 9 PDR and 8 non-
diabetic patients

Xanthine, pyruvate, proline, and guanine Unclear

Paris et al. (62) Vitreous
humour

LC-MS and
HILIC-MS

9 PDR and 11 non-
diabetic patients

Octanoylcarnitine, propionylcarnitine, hexanoylcarnitine,
acetylcarnitine, palmitoylcarnitine, elaidic/
vaccenylcarnitine, allantoin, glutamate, lysine, and
arginine

Unclear

Barba et al. (87) Vitreous
humour

NMR 22 PDR and 22 non-
diabetic patients

Lactic acid, glucose, galactitol, and ascorbic acid Unclear

Rhee et al. (88) Plasma GC–TOF–MS
and UPLC–
Q–TOF–MS

124 DR and 32 NDR Glutamine and glutamic acid Unclear

Curovic et al. (89) Plasma GC-MS 141 DR and 504 NDR 2,4-dihydroxybutyric acid (DHBA), 3,4-DHBA, ribonic
acid, and ribitol

Unclear

Chen et al. (49) Plasma GC-MS 44 NPDR and 40 NDR 1,5-Anhydroglucitol, 1,5-gluconolactone, 2-deoxyribonic
acid, 3,4-dihydroxybutyric acid, erythritol, gluconic acid,
lactose/cellobiose, maltose/trehalose, mannose, ribose,
and urea

Pentose phosphate
pathway

Sumarriva et al.
(90)

Plasma LC-MS 83 DR and 90 NDR Arginine, citrulline, glutamic g-semialdehyde, and
dehydroxycarnitine

The metabolism of
multiple amino acids,
leukotrienes, niacin,
pyrimidine, and purine

Li et al. (91) Plasma GC-MS 25 PDR, 39 NPDR, and
24 NDR

Pyruvate, L-aspartate, b-hydroxybutyrate, methylmalonic
acid, citric acid, glucose, stearic acid trans-oleic acid,
linoleic acid, and arachidonic acid

Unclear

Xuan et al. (92) Serum UPLC - MS 44 PDR and 43 non-
diabetic patients

LPC (14:0), LP (16:0), LPC (14:0), LPC (16:0), LPC
(16:1), LPC (18:0), LPC (18:1), LPC (18:2), LPC (18:3),
LPC (18:4), LPC (20:0), LPC (20:3), LPC (20:4), LPC
(20:5), LPC (22:3), and LPC (22:6)

Unclear

Xuan et al. (93) Serum GC-MS, LC-
MS

350 DR and 111 NDR 2-Piperidone and 12-HETE Unclear

Zuo et al. (97) Serum UPLC-MS 69 DR and 69 NDR Linoleic acid, nicotinuric acid, ornithine, and
phenylacetylglutamine

Unclear

Zhu et al. (98) Serum LC-MS 44 NPDR and 40 NDR Fumaric acid, uridine, acetic acid, and cytidine Alanine, aspartate and
glutamate metabolism,
caffeine metabolism, beta-
alanine metabolism, purine
metabolism, cysteine and
methionine metabolism,
sulfur metabolism,
sphingosine metabolism,
and arginine and
proline metabolism

Munipally et al. (99) Serum HPLC 24 PDR, 22 NPDR, and
35 healthy human
control group

kynurenine, kynurenic acid, and 3-hydroxy kynurenine Tryptophan metabolites

Yun et al. (63) Serum LC-MS and
FIA-MS

123 NPDR, 51 PDR,
and 143 NDR

Tetradecenoylcarnitine, hexadecanoylcarnitine, lysine,
methionine, tryptophan, tyrosine, total Dimethyarginine,
phosphatidylcholine diacyl C32:2, phosphatidylcholine
diacyl C34:2, phosphatidylcholine diacyl C36:2,
phosphatidylcholine diacyl C38:6, phosphatidylcholine
diacyl C40:6, phosphatidylcholine acyl-alkyl C36:5,
phosphatidylcholine acyl-alkyl C42:3,
hydroxysphingomyeline C22:1, and phingomyeline C24:0

Unclear

(Continued)
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Arginine-Creatine Metabolic Pathway May
Be a New Therapeutic Strategy for DR
Meanwhile, another biomarker that caught our attention,
creatine, a product of arginine metabolism. Unlike the elevated
levels of arginine, creatine levels were significantly lower in
patients with DR (84, 85). Thereby, we put forward a
hypothesis that the reduced conversion of arginine to creatine
leads to metabolic changes in DR patients with increased
arginine levels and decreased creatine levels. Callback of this
metabolic change, may be a new treatment strategy for DR.
There is no strong evidence for this hypothesis, but there is
substantial research supporting the positive effects of creatine
supplementation on DR.
Frontiers in Endocrinology | www.frontiersin.org 6
Creatine can be either be synthesized endogenously within the
body or extrinsically derived from foods like meat, fish, etc. (24).
There are two steps in creatine biosynthesis. The first step is
to catalyze arginine and glycine with L-arginine glycine
amidinotransferase (AGAT; EC 2.1.4.1) to produce ornithine and
guanidinoacetate (GAA).This stepmainlyoccurs in thekidneyand is
mostly distributed in themitochondrial intermembrane space (107).
The second step is themethylation of GAA in the amidino group for
producing Cr through the action of S-adenosyl-l-methionine: N-
guanidinoacetate methyltransferase (GAMT; EC 2.1.1.2) (108), the
liver is possible to be the principal organ contributing this reaction
(109,110).Approximately two-thirdsofCr isphosphorylated to form
PCr, a key agents of cellular energy regeneration (111, 112). Cr, PCr,
TABLE 1 | Continued

Study Samples Platform Number (cases/model
and controls)

Potential biomarkers Pathways

Wang et al. (85) Aqueous humor GC-TOF-MS 23 PDR and 25 NDR D-glyceric acid, isocitric acid, threonine, d-glucose,
inositol, L-lactic acid, citrulline, and fructose 6-phosphate

Unclear

Jin et al. (100) Aqueous humor NMR 13 diabetic patients with
cataract, 14 DR with
cataract, and 7 elderly
cataract

Lactate, succinate, 2-hydroxybutyrate, aspartamide,
dimethylamine, histidine, threonine, and glutamine

Alanine, aspartic acid and
glutamate metabolic
pathways
March 2022 | V
LC-MS, liquid chromatography-mass spectrometry; HPLC, ultra-performance liquid chromatography; UPLC-MS, ultra-performance liquid chromatography-mass spectrometry;
UPLC–Q–TOF–MS, ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry; GC-MS, gas chromatography mass spectrometry; GC-TOF-MS, gas
chromatography quadrupole time-of-fight mass spectrometry; HILIC-MS hydrophilic interaction chromatography-mass spectrometry; NMR, nuclear magnetic resonance;
FIA–MS, flow-injection analysis-mass spectrometry; UPLC-Q-Axis Orbiter-MS, ultra-performance liquid chromatography-quadrupole-Exactive Orbitrap-mass spectrometry;
DR, diabetic retinopathy; NDR, diabetic patients without retinopathy; PDR, proliferative diabetic retinopathy; NPDR, non-proliferative diabetic retinopathy;
LPC, Lysophosphatidylcholine.
FIGURE 1 | Enrichment analysis of DR potential biomarkers in vitreous humor, plasma, serum, and aqueous humor.
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and creatine kinase (CK) isoenzymes are responsible formaintaining
the ATP pool (25). This is critical for some organs with high energy
demands, like retina, skeletal or cardiac muscle, retina, spermatozoa,
and brain (113).

AGAT is the rate-limiting enzyme in creatine biosynthesis,
simultaneous reduction in mRNA content, enzyme levels, and
AGAT enzyme activity when endogenous sources or dietary Cr
supplementation (114). This feedback inhibition of AGAT by Cr
is most pronounced in the kidney and pancreas, which are the
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major tissues for GAA production (115). Research shows that
ingestion of creatine supplements reduces the rate of creatine
biosynthesis (116).GAA, catalyzed by GAMT to generate
creatine, is an important intermediate in creatine biosynthesis.
Deficiency of GAMT will cause GAA accumulation and lead to
axonal hypersprouting and apoptosis (117). There are no reports
of abnormal GAA levels in DR patients.

Studies have shown that creatine supplementation can help
improve hyperglycemia (34) and improve glycemic control in
FIGURE 2 | Increased levels of proline, ornithine and arginine in the vitreous humor of PDR patients; arginine levels are elevated in the serum of severe DR patients;
citrulline levels are elevated in the aqueous humor of DR patients.
FIGURE 3 | Arginine is catalyzed by the substrate of nitric oxide synthase (NOS) to produce NO, and arginine can induce the release of insulin from pancreatic b cells.
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patients with type 2 diabetes (118). In mice, lower creatine levels
could be ascribed to the vascular proliferation of the retina under the
OIR model (p=0.027) with the use of retinal metabolomics.
Moreover, it was seen that this vascular proliferation could be
reversed after the administration of oral creatine via anti-VEGF
(84). Tomita et al. found that a decrease in creatine was
accompanied by an increase in glycine levels in OIR mice, this
results consistent with the vitreous humor of PDR patients (84).
Glycine is involved in the biosynthesis of creatine, the amidine
group of arginine is transferred to glycine to generate ornithine and
GAA, and then GAA is catalyzed by GAMT to generate creatine.
Increased glycine appears to be protective for DR, and glycine has
proven anti-glycation and anti-diabetic properties (119, 120).
Moreover, glycine significantly upregulated the mRNA expression
of PEDF (an angiogenesis inhibitor) (121). However, in the study by
Tomita et al., arginine was not significantly different in the vitreous
humor of PDR patients and the retina of OIR mice. In previous
studies, arginine was reported to be significantly elevated in plasma
and vitreous humour (62, 90, 102).

Mitochondria are the primary site of production ATP and the
main source of cellular energy. The number of mitochondria in a
cell depends on its energy demand (122). Mitochondrial
Frontiers in Endocrinology | www.frontiersin.org 8
dysfunction due to overproduced of ROS in hyperglycemic states
(122, 123), and make a major impact on tissues with high energy
demands, such as the retina (111). Study shows persistent
hyperglycemia leads to reduced mitochondrial respiration (124),
Cr-Pcr system is essential for energy-demanding tissues and cells
due to the maintenance of adequate ATP pools (111).

Another study showed that creatine enhanced the functional
capillary density in skin and recruitment in post-occlusive reactive
hyperemia (35, 125). The author speculates that creatine may help
increase the bioavailability of epoxyeicosatrienoic acid (EET),
thereby improving endothelium-derived hyperpolarizing factor
(EDHF) stimulation and microvascular dilation (125). Apart from
this, the potential therapeutic effect of creatine on the nervous
system also deserves attention. It has been reported that creatine
protects against neurotoxicity and oxidative stress (30, 31).
Oxidative stress is one of the biggest risk factors for diabetic
retinopathy. An animal experiment demonstrated that creatine
has a significant antioxidant effect and indicated that creatine
supplementation may become a treatment strategy for
neurodegenerative diseases caused by oxidative stress (34, 126).
Besides, creatine administration significantly attenuated abnormal
glucose tolerance, and is considered to delayed the onset of diabetes
FIGURE 4 | The approach of creatine in treating diabetic retinopathy: i) Creatine has the potential to act as an anti-inflammatory aid and provide vascular protection.
ii) Creatine has a significant antioxidant effect and protects mtDNA and nerve cells from cytotoxicity induced by oxidative stress. iii) Creatine may help increase the
bioavailability of epoxyeicosatrienoic acid, thereby improving microvascular dilation. iv) Creatine may reduce the formation of Hcy. v) Creatine supplementation can
help improve hyperglycemia.
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(34). Studies have shown that creatine exhibits resistance to
oxidation, which is effective in protecting mtDNAs from oxidative
stress-elicited cytotoxicity (127, 128). Suggestively, creatine could
provide a way for the effective management of diseases involving
oxidative stress (126–128).

Synthesis of creatine yields homocysteine as a byproduct,
which is an amino acid that contains sulfhydryl groups.
S-adenosylmethionine (SAM) is demethylated to generate creatine
as well as S-adenosyl homocysteine (SAH). SAH hydrolase (SAHH)
enzyme then hydrolyzes SAH to Hcy. A correlation has been
reported between the increase in Hcy expression and an
aggravated risk for diverse DR, including blood retinal barrier
dysfunction, inflammation, and mitochondria dysfunction (129–
131). Replenishment of creatine has been demonstrated to save the
SAM input (132–134) given about 40–70% expenditure of entire
methyl groups by the creatine synthesis (134), which can diminish
the Hcy formation (133) and may help reduce the possibility of
developing DR.

In addition, creatine can reduce acute inflammation induced by
carrageenan, whose action is identical to that of butazepine, a non-
steroidal anti-inflammatory drug (27). Research done by Nomura
et al. on pulmonary endothelial cells (ECs) revealed that after the
administration of 0.5 mM creatine, the endothelial cell (EC)
expressions of E-selectin and Intercellular Adhesion Molecule-1
were suppressed. Moreover, the serotonin-and H2O2-elicited
permeability of endothelium was also prominently reduced upon
creatine (5 mM) replenishment. These observations suggested that
the administration of creatine makes the membranes more stable,
and the ECs less leaky (28). Associations between DR and increased
intercellular cell adhesion molecule-1 (ICAM-1), E-selectin
expressions, and enhanced permeability “leakiness” of the
Frontiers in Endocrinology | www.frontiersin.org 9
endothelium have been reported several times (135). It shows that
creatine has the potential to act as a protector of the vascular system
and as an inflammation inhibitor (Figure 4).
CONCLUSION

In recent years, researchers have identified many potential DR
biomarkers, which are not yet used for clinical diagnosis. Further
research is required to clarify their molecular mechanisms in DR.
In this review, we have discussed the known biomarkers of
diabetic retinopathy, which can help in predicting and
preventing DR in the future. Furthermore, we suggest that the
arginine-creatine metabolic pathway may be a new strategy for the
treatment of diabetic retinopathy.
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