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ABSTRACT The rising prevalence of antimicrobial resistance in Salmonella enterica
serovars Typhi and Paratyphi A, causative agents of typhoid and paratyphoid, have
led to fears of untreatable infections. Of specific concern is the emerging resistance
against azithromycin, the only remaining oral drug to treat extensively drug resistant
(XDR) typhoid. Since the first report of azithromycin resistance from Bangladesh in
2019, cases have been reported from Nepal, India, and Pakistan. The genetic basis of
this resistance is a single point mutation in the efflux pump AcrB (R717Q/L). Here,
we report 38 additional cases of azithromycin-resistant (AzmR) Salmonella Typhi and
Paratyphi A isolated in Bangladesh between 2016 and 2018. Using genomic analysis
of 56 AzmR isolates from South Asia with AcrB-R717Q/L, we confirm that this muta-
tion has spontaneously emerged in different Salmonella Typhi and Paratyphi A geno-
types. The largest cluster of AzmR Typhi belonged to genotype 4.3.1.1; Bayesian
analysis predicts the mutation to have emerged sometime in 2010. A travel-related
Typhi isolate with AcrB-R717Q belonging to 4.3.1.1 was isolated in the United Kingdom,
increasing fears of global spread. For real-time detection of AcrB-R717Q/L, we developed
an extraction-free, rapid, and low-cost mismatch amplification mutation assay (MAMA).
Validation of MAMA using 113 AzmR and non-AzmR isolates yielded .98% specificity
and sensitivity versus phenotypic and whole-genome sequencing assays currently used
for azithromycin resistance detection. With increasing azithromycin use, AcrB-R717Q/L is
likely to be acquired by XDR strains. The proposed tool for active detection and surveil-
lance of this mutation may detect pan-oral drug resistance early, giving us a window to
intervene.

IMPORTANCE In the early 1900s, with mortality of ;30%, typhoid and paratyphoid
ravaged parts of the world; with improved water, sanitation, and hygiene in
resource-rich countries and the advent of antimicrobials, mortality dwindled to ,1%.
Today, the burden rests disproportionately on South Asia, where the primary means
for combatting the disease is antimicrobials. However, prevalence of antimicrobial re-
sistance is rising and, in 2016, an extensively drug resistant Typhi strain triggered an
ongoing outbreak in Pakistan, leaving only one oral drug, azithromycin, to treat it. Since
the description of emergence of azithromycin resistance, conferred by a point mutation
in acrB (AcrB-R717Q/L) in 2019, there have been increasing numbers of reports. Using
genomics and Bayesian analysis, we illustrate that this mutation emerged in approxi-
mately 2010 and has spontaneously arisen multiple times. Emergence of pan-oral drug
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resistant Salmonella Typhi is imminent. We developed a low-cost, rapid PCR tool to facil-
itate real-time detection and prevention policies.

KEYWORDS typhoid, Salmonella Typhi infection, paratyphoid fever, antimicrobial drug
resistance, azithromycin, Bangladesh, AMR, Paratyphi, Typhi, paratyphoid, typhoid

S almonella enterica serovars Typhi and Paratyphi A, which cause typhoid and para-
typhoid, respectively, are estimated to be responsible for 14.3 million illnesses and

136,000 deaths globally each year (1). The majority of the burden lay disproportion-
ately on low- and middle-income countries (LMICs), specifically South Asia and Sub-
Saharan Africa. Typhoidal Salmonella has exhibited resistance to all antimicrobials
widely used to treat typhoid and paratyphoid, leaving limited options for treatment
and raising fears of untreatable infections.

In the early 1900s, mortality due to typhoid/paratyphoid exceeded 30% in many
areas, but ampicillin, chloramphenicol, and trimethoprim-sulfamethoxazole were
instrumental in reducing it to ,1% (2–4). Simultaneous resistance to all three first line
of drugs, defined as multidrug resistance (MDR), started emerging in the 1980s; MDR
strains carried an IncHI1 plasmid with multiple resistance genes (5–7). As a result, the
primary treatment for enteric fever shifted to fluoroquinolones, but soon there were
reports of decreasing fluoroquinolone susceptibility due to the rise of point mutations
in the gyrase and topoisomerase genes (8, 9). Finally, in addition to a few sporadic
reports of ceftriaxone resistance (10, 11), in 2016, an outbreak of extensively drug-re-
sistant (XDR) Salmonella Typhi (resistant to chloramphenicol, ampicillin, trimethoprim-
sulfamethoxazole, streptomycin, fluoroquinolones, and third-generation cephalospo-
rins) was identified in Pakistan; to date, more than 11,000 cases have been confirmed
(12). Cephalosporin resistance of the XDR strains is caused by the acquisition of a
broad-spectrum beta-lactamase resistance gene on a plasmid (13). For patients with
uncomplicated XDR typhoid in Pakistan, azithromycin is the last oral option. With the
increasing use of this antimicrobial in South Asia, the number of reports of azithromy-
cin-resistant (AzmR) Salmonella Typhi is on the rise.

Our group demonstrated that the underlying mechanism of resistance is a point
mutation at amino acid position 717 (R717Q/L) in the efflux pump encoded by the
acrB gene (14). The presence of this single nucleotide polymorphism (SNP) raises the
MICs of Salmonella Typhi and Paratyphi A for azithromycin to $32mg/ml, the Clinical
and Laboratory Standards Institute (CLSI) breakpoint of resistance (15). Since the report
from Bangladesh in 2019, at least six AzmR Salmonella Typhi cases mediated by this
mutation have been reported from Nepal, India, and Pakistan, the epicenter of the XDR
typhoid outbreak (16–18). However, no further AzmR Salmonella Paratyphi A has been
described. This makes it imperative to gain deeper insights into the evolution and spread
of this mutation in typhoidal Salmonella. Low-cost and rapid diagnostic methods to iden-
tify this mutation need to be developed, since it can currently only be identified using
whole-genome sequencing (WGS).

Leveraging our ongoing enteric fever surveillance system (19), which yielded 3,025
Salmonella Typhi and Paratyphi A isolates since 2016 in Bangladesh, and the available
public data of other reports of AzmR strains from the region, we used WGS and com-
parative genomics to understand the emergence, evolution, and spread of azithromy-
cin resistance conferred for the AcrB-R717 mutation. In addition, we developed a PCR-
based mismatch amplification mutation assay (MAMA) to detect AcrB-R717 mutations in
typhoidal Salmonella serovars, which is a low-cost and straightforward tool to rapidly
identify and track this mutation.

RESULTS
Azithromycin resistance in Bangladesh. Between October 2016 and July 2018, we

screened 2,519 isolates of Salmonella Typhi and 506 Salmonella Paratyphi A for azithro-
mycin resistance using disc diffusion and identified 59 Salmonella Typhi and 45
Salmonella Paratyphi A potentially resistant isolates (zone diameters of #12mm [15]).
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Further assessment of these 104 isolates by Etest identified 32 Salmonella Typhi and 6
Salmonella Paratyphi A isolates with MIC$32mg/ml, confirming them as AzmR isolates
(20). In addition, we identified two Salmonella Typhi and three Salmonella Paratyphi A
isolates with MICs of 24mg/ml; these isolates are not considered AzmR by the CLSI
guidelines, but the MIC is much higher than for other nonresistant isolates (see Table S1
in the supplemental material).

We conducted WGS analyses for all 32 AzmR Salmonella Typhi and 6 AzmR
Paratyphi A isolates, as well as the 5 non-AzmR isolates with high MICs. All 32 AzmR
Salmonella Typhi isolates had the AcrB-R717Q/L mutation; 29 had AcrB-R717Q, and
three had AcrB-R717L. Five Paratyphi A isolates contained AcrB-R717Q. Of the five non-
AzmR isolates with a high MIC (24mg/ml), one Salmonella Typhi also contained an
AcrB-R717Q mutation, whereas the other four did not. For downstream analysis of
Bangladeshi isolates, we included the 38 isolates with the AcrB-R717Q/L mutation
identified here (including the one with an MIC of 24mg/ml) and another 13 isolates
from our previous study on the emergence of azithromycin resistance in Bangladesh
during 2009 to 2016, taking the total AzmR-resistant isolates identified in Bangladesh
to 51.

The first Salmonella Typhi with an AcrB-R717Q/L mutation was isolated in 2013.
Since then, there has been a gradual increase in the number of AzmR Salmonella Typhi
isolates. The number of total Typhi/Paratyphi A isolates also increased over the years
with implementation of enhanced surveillance programs (Fig. 1A). All of the AzmR
Salmonella Typhi strains isolated between 2013 and 2016 belonged to genotype
4.3.1.1 (Fig. 2B). Additional genotypes with the same mutations began to emerge in
2017; these included genotypes 2.3.3, 3.2.2, 3.3.2, and 4.3.1.3 (Fig. 2A and B). The differ-
ence in MICs between Salmonella Typhi with AcrB-R717Q/L mutations or without
(AcrB-WT) was 8-fold (mean MIC = 73.77mg/ml versus 9.48mg/ml: Fig. 1B; see also
Fig. S1A in the supplemental material). The first Salmonella Paratyphi A with AcrB-
R717L mutation was identified in 2014. Five additional Salmonella Paratyphi A strains
were identified in 2017 and 2018 (Fig. 1C). The mean MIC for Paratyphi A isolates with
AcrB-R717L/Q is also 8-fold higher than for AcrB-WT (138.66mg/ml versus 17.06mg/ml
[Fig. 1D; see also Fig. S1B]).

Spontaneous appearance of AcrB-R717Q/L mutations in different Salmonella
Typhi genotypes. To gain further genomic and evolutionary insight into the AcrB-717
mutations of Salmonella Typhi, we contextualized 33 AcrB-R717Q/L and 47 AcrB-
717WT isolates collected in the same study in a maximum-likelihood phylogenetic tree
against 750 Salmonella Typhi genomes reported from Bangladesh in previous studies
(14, 18, 21, 22) (see Table S2). These previous studies included 12 genomes with AcrB-
R717Q/L mutations. In addition, the tree also included five AcrB-717 mutants previ-
ously identified in the United Kingdom, Nepal, and Pakistan (16–18). The final tree con-
tained 50 Salmonella Typhi genomes with AcrB-R717Q/L. The largest cluster of
Salmonella Typhi genomes with the AcrB-R717Q mutation belonged to genotype
4.3.1.1 (62%; n=31), followed by 3.2.2 (18%; n=9), 3.3.2 (6%; n=3), and 2.3.3 (2%;
n=1) (Fig. 2A). Six isolates had the AcrB-R717L mutation; three belonged to genotype
4.3.1, two belonged to 4.3.1.3, and one belonged to 2.3.3 (Fig. 2A). The presence of this
mutation in different genotypes indicates that AcrB-R717Q/L has emerged spontane-
ously and independently multiple times.

At least two instances of the independent emergence of AcrB-R717 mutations were
also observed in the phylogenetic tree of Salmonella Paratyphi A (Fig. 3). This tree
included five AzmR and 15 randomly selected sensitive Salmonella Paratyphi A isolates,
contextualized against 121 publicly available genomes (see Table S3) (14, 23, 24). The
five Salmonella Paratyphi A with AcrB-R717Q isolated between 2016 and 2018 clus-
tered together, whereas the only genome with AcrB-R717L belonged to a distant and
much smaller Bangladesh-specific cluster (Fig. 3).

Emergence and transmission of AcrB-R717Q mutation within the predominant
genotype 4.3.1.1. As mentioned above, the largest cluster of AzmR strains in
Bangladesh belonged to genotype 4.3.1.1 (n=29). In addition, the genome of Salmonella
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Typhi isolated in the United Kingdom that contained the AcrB-R717Q mutation also
belonged to the same cluster, and was related to travel to Bangladesh (14, 25). To gain
insights into the history of the emergence of this mutation, we performed evolutionary
analysis using the Bayesian Evolutionary Analysis Sampling Trees (BEAST) program, fo-
cusing on these 30 Bangladeshi Salmonella Typhi genomes containing the AcrB-R717Q
mutation and eight closely related genomes with AcrB-WT as identified from the phylo-
genetic analysis. Salmonella Typhi strain P-stx-12 that belongs to genotype 4.3.1.1 and
has a complete annotated genome was also included. The maximum clade credibility
tree obtained indicated that 4.3.1.1 AcrB-R717Q cluster emerged between 2010 and

FIG 1 Detection of azithromycin resistance and types of AcrB-717 mutation in Salmonella Typhi and Paratyphi A in
Bangladesh. (A) Temporal distribution of 3043 Salmonella Typhi isolates identified in this study and by Hooda et al.
(14). The total number of isolates tested is shown as the line plot from 2013 to 2018. The numbers of AzmR strains
isolated each year is shown in the bar plot. (B) Azithromycin MICs among AcrB-WT and AcrB-R717Q and AcrB-R717QL
mutant strains of Salmonella Typhi. (C) Temporal distribution of 587 Salmonella Paratyphi A isolates identified in this
study and by Hooda et al. (14). The number of isolates is shown as the line plot from 2013 to 2018. The number of
AzmR strains isolated each year is shown in the bar plot. (D) Azithromycin MICs among acrB wild-type and AcrB-R717Q
and AcrB-R717QL mutant strains of Salmonella Paratyphi A. ****, P# 0.0001; ***, P# 0.001.
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FIG 2 Spontaneous emergence of AcrB-R717Q/L mutation in five different genotypes of Salmonella Typhi. (A) A whole-genome SNP
tree containing 825 Salmonella Typhi strains highlights different azithromycin-resistant Salmonella Typhi genotypes. The inner circle
shows the distribution of Salmonella Typhi genotypes, and the outer circle shows the mutations in AcrB-717. (B) Temporal
distribution of the acrB mutation in different genotypes between 2013 and 2018.
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2012 (Fig. 4), not long before it was first detected in our passive typhoid surveillance in
2013. All AzmR isolates of this cluster have four unique SNPs in genes STY2741, STY0519,
and STY1399, which were also described previously (14).

Rapid and low-cost PCR detection of AcrB-R717 mutation. For rapid and low-
cost detection of azithromycin resistance in typhoidal Salmonella, we designed a mis-
match amplification mutation assay (MAMA) to detect the SNP of the acrB gene that
leads to the AcrB-R717Q/L mutation. The primal focus of this rapid mismatch assay was
nucleotide 2150 (part of the codon for amino acid 717) of the acrB gene. A universal
forward primer AcrB-UFP, targeting the conserved upstream region (nucleotides 1770
to 1789) of the mutation, was designed. The reverse primer AcrB-MAMA-R was
designed so that it partially matches the wild-type allele of the acrB gene with a mis-
match at the third nucleotide (A to C) from the 39 end; this increased allelic discrimina-
tion (Fig. 5A and B). A single nucleotide discrepancy in the AcrB-MAMA-R primer has
minimal impact on the PCR yield but terminates the reaction if an additional neighbor-
ing mismatch is present, such as the SNP at position 2150 (Fig. 5B and C) (26, 27). A
control set of primers (ParC-F and ParC-R) targeting the highly conserved parC (topo-
isomerase IV) gene of Salmonella Typhi and Salmonella Paratyphi A was also designed
as a PCR control so that it can be run in a multiplex fashion with the AcrB primers
described above (Fig. 5A). Further details of this PCR are provided in Materials and
Methods. The entire process of detection of the mutation using this procedure with an
isolate takes ;3.5 h; the step of boiling and centrifugation takes ;25min, reaction mix
preparation and PCR takes ;120min, and gel preparation and electrophoresis takes
;60min.

To validate the assay, 51 Salmonella Typhi and Paratyphi A AcrB-R717Q/L mutants

FIG 3 Maximum-likelihood tree based on SNP alignment of 141 Salmonella Paratyphi A strains with six
azithromycin-resistant isolates. The inner circle depicts the country of isolation, the circle in the middle depicts the
year of isolation, and the outer circle depicts the different mutations at AcrB-717.
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(38 found in this study and 13 reported by Hooda et al. [14]) and 62 randomly selected
isolates (47 Salmonella Typhi and 15 Salmonella Paratyphi A) with AcrB-WT were cho-
sen from our collection (see Table S1). PCR using AcrB-UFP and AcrB-MAMA-R primers
generated a 397-bp amplicon in wild-type (WT) strains. As expected, there was no
band for AcrB mutants due to PCR inhibition. In all cases, ParC control primers yielded
a 758-bp band indicating successful PCR amplification (see Fig. S2). The test set of 113
Salmonella Typhi and Paratyphi A AcrB R717Q/L mutants and WT isolates detected via
MAMA exhibited 100% sensitivity and 100% specificity compared to WGS data (Fig. 5D)
and 98% sensitivity and 98.4% specificity compared to Etest results (Fig. 5E). All PCRs for
validation were conducted using boiled DNA, bypassing the step of DNA extraction to
reduce time and cost and to save resources.

DISCUSSION

The rising prevalence of resistance and the drying pipeline of new antimicrobials
have left us with a few options of oral drugs to treat typhoidal Salmonella. In this study,
we describe the increasing resistance of Salmonella Typhi and Paratyphi A against azi-
thromycin, the last oral antimicrobial against uncomplicated typhoid fever, in Bangladesh
and other countries of endemicity. Since the first confirmed identification of AzmR
Salmonella Typhi, conferred by a SNP, from Bangladesh, there has been an increasing
number of reports from surrounding countries in South Asia. With the largest collection of
AzmR isolates, our data, in concordance with other publications, show that azithromycin

FIG 4 Bayesian estimation of the maximum clade credibility tree of genotype 4.3.1.1 azithromycin-resistant
and related azithromycin-sensitive Salmonella Typhi isolates. The azithromycin-resistant clade containing the
AcrB-R717Q mutation is shaded in gray, and the closely related AcrB-WT strains are outside the gray box. The
Salmonella Typhi strain P-stx-12 (AcrB-WT) belonging to 4.3.1.1 was used as a reference strain. The AcrB-R717Q
mutation is predicted to have emerged between 2010 and 2012 in Bangladesh. The travel-related Salmonella
Typhi isolate from the United Kingdom is highlighted with a red arrow. The scale bar indicates the number of
substitutions per variable site per year.
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resistance has arisen independently multiple times in different genotypes in Salmonella
Typhi. We further go on to show similar spontaneous emergence in Paratyphi A isolates. In
order to vigilantly track this mutation and guide treatment options and decisions, we
developed a low-cost PCR tool for quick detection of the mutation, AcrB-R717Q/L, respon-
sible for azithromycin resistance.

Since 2013, we have identified over 50 Typhi and Salmonella Paratyphi A isolates in
Bangladesh that carried the AcrB-R717Q/L mutation and were resistant to azithromy-
cin. Phylogenetic analysis showed the presence of this SNP in several different geno-
types, indicating independent emergence of the AcrB-R717 mutation in both Salmonella
Typhi and Paratyphi A (Fig. 2A and 3). In Salmonella Typhi, we also noted that the diver-
sity of genotypes carrying the AzmR mutation increases over time, most likely due to the
strong selection pressure placed by increasing use of azithromycin. Use of this antimicro-
bial is common in many countries of endemicity, including Pakistan and Bangladesh,
where the drug is sold over-the-counter without a prescription (28).

In Bangladesh, the AcrB-R717Q/L mutation is most frequently observed in Salmonella
Typhi genotype 4.3.1.1 (see Fig. S3), which is also the predominant circulating genotype
in the country (Fig. 2A) (22). Using Bayesian analysis, we predict that the first AcrB-R717
mutation in this genotype appeared between 2010 and 2012, which subsequently led to
the detection of 29 cases in our surveillance in Dhaka, Bangladesh (14). A travel-related

FIG 5 Design and sensitivity and specificity of PCR-based mismatch amplification mutation assay (MAMA) for detecting AcrB
mutations. (A) PCR cycling condition, primer sequences, and amplicon sizes generated by the AcrB MAMA and ParC control primers
utilized in this study. (B) MAMA PCR primers for detecting mutation at the nucleotide position 2150 (amino acid 717) of the acrB
gene. A single mismatch was incorporated at the conserved nucleotide (A to C; red, AcrB-MAMA-R) to increase allelic discrimination
and chain termination in the presence of any mutation (G to A or T; red highlight). Published sequences of typhoidal Salmonella (e.g.,
Salmonella Typhi 5330M and Salmonella Paratyphi A 3144M [14]) with both Q (glutamine) and L (leucine) mutations were used to
design the assay in silico. (C) Interpretation of the bands generated by AcrB MAMA and ParC control primers designed in this study.
(D) Sensitivity and specificity of MAMA and WGS. (E) Sensitivity and specificity of MAMA and Etest compared to each other.
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AzmR isolate identified in the United Kingdom belonged to the same cluster, confirming
the fear of global transmission of this mutation. In addition, the XDR Salmonella Typhi
outbreak strain of Pakistan also belongs to genotype 4.3.1.1 (13), and recently, the same
AcrB mutation was identified in this genotype in Pakistan (17). Fortunately, the Pakistani
AzmR strain was not XDR, but the gradual takeover of the entire Salmonella Typhi popu-
lation by this genotype heralds the emergence of pan-oral drug-resistant (PoDR; resistant
to chloramphenicol, ampicillin, trimethoprim-sulfamethoxazole, fluoroquinolones, third-
generation cephalosporins, and azithromycin) Salmonella Typhi unless new effective oral
drugs are widely introduced (29).

Monitoring this AcrB mutation is essential to track its spread and forecast PoDR
typhoid outbreaks. Currently, the only method of detecting this mutation is by WGS,
which is cost and resource extensive and not possible to continuously conduct in
LMICs in real-time to guide rapid public health action. To overcome this barrier, we
developed a mismatch amplification mutation assay that can reliably detect the AcrB-
717 mutation using a simple step of conventional PCR, without the requirement of the
time-consuming and expensive steps of DNA extraction. It costs ,USD 1.5, requires a
conventional PCR machine, demands little expertise, and can be performed in a basic
laboratory, delivering results in;3.5 h. We validated this method by using a mix of 113
resistant and sensitive Salmonella Typhi and Paratyphi A isolates, and this assay
showed 100% concordance with the WGS data. Compared to Etest results, it showed
more than 98% sensitivity and specificity.

Considering the quick turnaround times, high sensitivity, and specificity of this test,
it may be used in accompaniment with phenotypic susceptivity tests for azithromycin,
which takes .16 h after isolation of the bacteria (;18 h). In addition, some laboratories
are unable to conduct MIC tests as E-strips are expensive and, as shown in this and pre-
vious studies, the results of disk diffusion assays of azithromycin are unreliable (only
36.5% are true resistant isolates) (14). The interpretation of the PCR assay is simple,
requiring no additional training: the presence or absence of a 397-nucleotide band
indicates the absence or presence of the mutation. We have also incorporated an inter-
nal control using the conserved gene parC to confirm valid PCR runs. It must be noted,
however, that (i) this assay cannot distinguish between the two mutations (R717Q and
R717L), which are also phenotypically indistinguishable, and (ii) new modes of azithro-
mycin resistance will not be detected through this method.

This study highlights the increasing and spontaneous occurrence of azithromycin
resistance in both Salmonella serovars Typhi and Paratyphi A. Although no azithromy-
cin-resistant XDR isolate has been reported to date, (i) the increasing use of azithromy-
cin, (ii) the spontaneous acquisition of AcrB-R717 mutations, (iii) the clear historical re-
cord of widespread dissemination of resistance to all previously widely used antimicrobials
by Salmonella Typhi, and (iv) the global spread of XDR strains (3, 4, 44) suggest that strains
resistant to almost all oral antimicrobials is only a matter of time. Acquisition of the plas-
mid that confers cephalosporin resistance in XDR strains by the Bangladeshi AzmR strains
or acquisition of the AcrB mutation in the XDR strains in Pakistan could be the end of oral
treatment for typhoid. After fluoroquinolone-nonsusceptible isolates appeared, they
became the dominant strains within a decade. Similarly, XDR Salmonella Typhi isolates
now account for.70% of Salmonella Typhi isolated in Pakistan, less than 5 years after their
first appearance (30, 31). This underscores the risk of PoDR Salmonella Typhi becoming the
dominant type in the near future once it appears. This would pose serious threats to the
health system of LMICs, where typhoid is endemic. Institution of immediate preventative
measures, such as improved water, sanitation, and hygiene, and active AMR surveillance to
track the resistant genotypes are imperative to interrupt this trend toward the emergence
and spread of PoDR.

MATERIALS ANDMETHODS
Study site and patient enrollment. In this study, we report data from enteric fever surveillance con-

ducted in the inpatient departments of the two largest pediatric hospitals of Bangladesh—Dhaka Shishu
(Children) Hospital and Shishu Shasthya (Child Health) Foundation Hospital—and three branches of an
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outpatient-based clinic, the Popular Diagnostic Center. These sites include sentinel sites of the World
Health Organization-supported Invasive Bacterial Vaccine Preventable Diseases surveillance platform
(32) and the Surveillance of Enteric Fever Project of Sabin Vaccine Institute (33).

Etiology detection and antimicrobial susceptibility testing. Identification of blood culture posi-
tive Salmonella Typhi/Paratyphi A isolates was first confirmed by standard biochemical tests. Next, all
Salmonella species were confirmed using polyvalent Salmonella O antisera (A–S MAST Assure; Mast
Group, Ltd., Liverpool, UK). All Typhi and Paratyphi A serovars were confirmed using the monovalent
antisera factor-d and factor-O2 (MAST Assure), respectively, accompanied by Salmonella-specific anti-
sera. For antimicrobial susceptibility testing (AST), the Kirby-Bauer disk diffusion method was followed
utilizing 15-mg azithromycin discs (Oxoid, Thermo Scientific, Waltham, MA) (34). To determine azithro-
mycin MIC, E-strips were used (bioMérieux, France). Since there is no defined azithromycin CLSI break-
point for any Salmonella serovars other than Salmonella Typhi, the following definition of resistance
(adopted from Salmonella Typhi) was used: zone # 12mm and MIC $ 32mg/ml (20). ASTs were per-
formed in a blinded fashion without any prior knowledge of sequence data to minimize bias.

DNA extraction and whole-genome sequencing. Isolates were grown on MacConkey agar (Oxoid,
UK) overnight and DNA was extracted from a suspension of the overnight culture using the QIAamp
DNA minikit (Qiagen, Hilden, Germany). Sequencing was conducted in an Illumina HiSeq 4000 paired-
end (150-bp) system at the Wellcome Sanger Institute. Raw reads of all the isolates sequenced in this
study can be found under ENA study accession number PRJEB30334.

Acquiring additional genomic data, SNP-based phylogenetic analysis, and detection of AcrB-
717 mutations. A total of 835 Salmonella Typhi isolates were used for phylogenetic analysis; 755
genomes were described elsewhere, and 80 were sequenced here (see Table S2) (14, 15, 21, 22, 35).
Phylogenetic analyses of Salmonella Paratyphi A included 141 isolates (14 were sequenced in this study,
and 121 were described elsewhere) (see Table S3) (14, 36, 37).

Raw fastq reads were mapped using Bowtie2 (default options) against the CT18 reference genome
(GenBank accession AL513382.1) for Salmonella Typhi or, AKU_12601 (GenBank accession FM200053.1)
for Salmonella Paratyphi A. Candidate SNPs were identified using SAMtools (view -ubS; sort; index; mpileup -d
1000 -t DP -t SP -ugBf) and bcftools (call -cv; view -v snps) (38). Only the homozygous (bcftools view -g hom),
unambiguous SNPs with a phred-quality score of .20 were selected using a customized python script
(https://github.com/CHRF-Genomics/filter_SNP_quality). SNPs were discarded if they had strand bias of P ,
0.001, a mapping bias of P , 0.001, or a tail bias of P , 0.001 (vcfutils.pl varFilter -1 0.001-3 0.001-4 0.001).
SNPs located in phage or repeat regions (354 kb for Salmonella Typhi CT18 as reported earlier [39] and
118.9 kb for Salmonella Paratyphi AKU_12601 as detected in PHASTER and GenBank annotation filtered
with a customized python script [https://github.com/katholt/genotyphigithub.com/CHRF-Genomics/extract_
position_from_GenBank]) were also excluded. Gubbins was used (run_gubbins –tree_builder raxml –conver-
ge_method recombination –raxml_model GTRGAMMA –verbose) to detect the recombinant regions (40), and
SNPs in these regions were excluded as well, resulting in final alignments of 4,888 and 1,042 chromosomal
SNPs for Salmonella Typhi and Paratyphi. All Salmonella Typhi strains were genotyped using the genotyphi
script (https://github.com/katholt/genotyphi). The Bdq sublineage of genotype 4.3.1.3 was detected using
another script (https://github.com/arif-tanmoy/DetectBdq). A customized python script was written to detect
the mutation at AcrB-717 in Salmonella Paratyphi A (github.com/CHRF-Genomics/paratyphiA_acrB717_
screening).

Maximum-likelihood trees (MLT) were built from the chromosomal SNP alignments using RAxML ver-
sion 8.2.12 (with the Generalized Time-Reversible model and a Gamma distribution to model site-specific
rate variation [GTRGAMMA] in RAxML) (41). Support for the MLT was calculated using 100 bootstrap
pseudoanalyses of the alignment. The MLT was outgroup rooted by including the pseudoalleles from
Salmonella Paratyphi A AKU_12601 (for Salmonella Typhi) or Salmonella Typhi CT18 (for Salmonella
Paratyphi A) in the alignment. Tree visualization was performed using iTol v5.5 (42). The same tool was
used to prune 10 Salmonella Typhi with low genotyping support (,0.9) from the MLT of Salmonella
Typhi, eventually making it an MLT of 825 isolates.

Evolutionary analysis with BEAST. Bayesian phylogenetic analyses were conducted to investigate
the emergence of AcrB-R717Q mutation in isolates belonging to genotype 4.3.1.1. The 30 AzmR isolates
from Bangladesh and 8 closely related azithromycin-sensitive Salmonella Typhi genomes belonging to
4.3.1.1 were selected (see Table S4), and SNPs were identified using the ParSNP tool (1phipack package)
(43) with Salmonella Typhi P-stx-12 strain as the reference genome (44). The SNPs were subsequently
used for Bayesian analysis with BEAST v1.10.4 (45). GTR1G4 substitution model, an uncorrelated lognor-
mal relaxed-clock model, and the exponential coalescent tree prior were used. Three independent analy-
ses were performed with 5� 108 steps, recording samples every 5� 104 steps. The results from the three
independent analyses gave similar estimates for the emergence of the 4.3.1.1 AzmR cluster. To calibrate
the molecular clock, we used the sampling year of all sequences. The selected model combinations,
including the molecular clock model and tree priors, have previously been used by Park et al. (39) for
Salmonella Typhi evolutionary analysis.

Validation of MAMA. (i) DNA preparation. To validate the assay, we selected an additional 38
AzmR (Salmonella Typhi, n= 32; Salmonella Paratyphi A, n= 06) and 62 randomly selected non-AzmR
(Salmonella Typhi, n= 48; Salmonella Paratyphi A, n=14) isolates isolated between 2016 and 2018 in
Bangladesh. All the isolates (n= 113, including 13 from Hooda et al. [14]) selected for validation (see
Table S1) were subjected to cell lysis by a simple boiling method. In brief, a single colony from
MacConkey agar (Oxoid, Thermo Scientific) was suspended in a 1.5-ml microcentrifuge tube containing
200ml of sterile DNase-free water. The tube was placed in a heating block at 100°C for 20 min and then
centrifuged at 12,000 rpm for 5 min. The supernatant was used for downstream applications.
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(ii) Duplex PCR. The total volume of the duplex PCR assay was 25ml, with 5� master mix (Hot
FIREPol; Solis BioDyne, Tartu, Estonia). The final concentrations of the primers were 0.1 and 0.8mM for
the parC and acrB genes, respectively. Amplification was performed in a thermal cycler (ProFlex 3� 32;
Thermo Scientific) (Fig. 5A). The thermocycling conditions are shown in Fig. 5A. Amplified PCR products
were run on 2% agarose gel (Invitrogen, Carlsbad, CA) at 100 V for 60min and visualized on a Bio-Rad
Gel Doc XR1 (Bio-Rad, Richmond, CA).

Statistical analysis. R 4.0.0 base functions and ggplot2, dplyr, epiR, and map packages were used
for the sensitivity and specificity tests and statistical analyses. A Wilcoxon rank sum test was used to
compare the mean MICs of wild-type and mutant isolates.
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