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Abstract

The autophagy–lysosomal pathway is a self-catabolic process by which dysfunctional or unnecessary intracellular components are degraded by
lysosomal enzymes. Proper function of this pathway is critical for maintaining cell homeostasis and survival. Subarachnoid haemorrhage (SAH)
is one of the most devastating forms of stroke. Multiple pathogenic mechanisms, such as inflammation, apoptosis, and oxidative stress, are all
responsible for brain injury and poor outcome after SAH. Most recently, accumulating evidence has demonstrated that the autophagy–lysoso-
mal pathway plays a crucial role in the pathophysiological process after SAH. Appropriate activity of autophagy–lysosomal pathway acts as a
pro-survival mechanism in SAH, while excessive self-digestion results in cell death after SAH. Consequently, in this review article, we will give
an overview of the pathophysiological roles of autophagy–lysosomal pathway in the pathogenesis of SAH. And approaching the molecular
mechanisms underlying this pathway in SAH pathology is anticipated, which may ultimately allow development of effective therapeutic strate-
gies for SAH patients through regulating the autophagy–lysosomal machinery.
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Introduction

The autophagy–lysosomal system is a self-destructive process by
which cytoplasmic substrates are delivered to lysosomes for
degradation [1]. It serves as an important homeostatic mechanism
that is responsible for clearance of damaged organelles and
protein aggregates in eukaryotic cells [2]. Dysfunction of
autophagy–lysosomal pathway has been linked to various disease
states, such as cancers, infectious diseases and neurodegenerative
diseases [3–6]. Thus, deciphering molecular mechanisms of this
degradation pathway would contribute to harness this process for
therapeutic purposes.

Subarachnoid haemorrhage (SAH) is a serious, life-threatening
type of stroke, which denotes the presence of blood within the sub-

arachnoid space [7]. Approximately 85% of cases of spontaneous
SAH occur from the rupture of intracranial aneurysms, 10% fit into
the pattern of peri-mesencephalic non-aneurysmal haemorrhages and
the remaining 5% are caused by other medical conditions, such as
inflammatory or non-inflammatory lesions of intracerebral vessels,
sickle cell disease, coagulopathies, neoplasms or drugs [8]. It is
noteworthy that although SAH accounts for only 5% of all strokes, its
burden on individuals, their families and society is significant,
because of high mortality and disability rates, and remarkable inci-
dence among young adults [9]. On the other hand, despite consider-
able advances in diagnosis and treatment of SAH, clinical outcome
remains disappointing and effective therapeutic strategies are yet to
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be established [9]. As a consequence, further improving the under-
standing of SAH pathophysiology is emphasized.

Currently, early brain injury (EBI) and delayed brain injury (DBI)
are conceived as two most important mechanisms for SAH pathology
[10]. Experimental evidence has demonstrated that the function of
subcellular organelles is altered and is implicated in the pathogenesis
of brain injury after SAH [11]. Molecular events, such as transcription
factor translocation, endoplasmic reticulum stress and mitochondrial
dysfunction, occur in the neurovascular unit after SAH [12–14]. More
importantly, the ‘self-eating’ autophagy–lysosomal cascades are acti-
vated and play an important role in the pathophysiology of SAH [15].
Thus, this review aims to survey the role and underlying mechanism
of autophagy–lysosomal system in the pathogenesis of EBI and DBI
after SAH, which may ultimately contribute to develop novel therapeu-
tic targets for SAH treatment via modulating this pathway.

The mechanism and regulation of
autophagy–lysosomal system

Autophagy is a sophisticated catabolic process in which cytosolic
components and organelles are transported to lysosomes for degra-
dation [16]. Depending on the mode of cargo delivery to lysosome,
autophagy is commonly divided into three main subtypes, namely
microautophagy, chaperone-mediated autophagy (CMA) and
macroautophagy [17–19]. In this review, we will focus on macroau-
tophagy (hereafter referred to as autophagy), the major type of
autophagy–lysosomal pathway that eukaryotic cells use to degrade
long-lived proteins and organelles (Fig. 1) [20]. In the case of this
autophagic process, cytoplasmic cargos are sequestered into double-
membrane vesicles known as autophagosomes, which are then deliv-
ered to the lysosomes for degradation [21]. Mechanistically, the
autophagy–lysosomal pathway can be broken down into series of
sequential steps: nucleation, elongation, maturation, docking, fusion
and degradation [22]. In detail, it begins with initiation and nucleation,
where cup-shaped membrane structures termed phagophores are
formed [23]. Then, portions of cytoplasm, including organelles, are
enclosed by phagophores to form autophagosomes [24]. Autophago-
somes are thereafter trafficked to the lysosomes to form autolyso-
somes, where the captured substrates, together with the inner
membrane, are degraded by lysosomal enzymes [25]. The resulting
monomeric units (e.g. amino acids) are subsequently exported to the
cytoplasm for reuse.

Importantly, several hetero-oligomeric protein complexes that con-
tain autophagy-related (Atg) proteins exert a critical role at different
stages of autophagy [26]. As an example, the Unc-51 like autophagy
activating kinase (ULK) complex, consisting of ULK1/2, Atg13, FIP200
(focal adhesion kinase family–interacting protein of 200 kD) and
Atg101, is essential for the initiation of autophagy [27]. Under normal
nutritional conditions, the serine/threonine kinase mammalian target of
rapamycin (mTOR) complex 1 targets the ULK complex and inactivates
it by phosphorylation of ULK1/2 and Atg13 [28]. Kim et al. reported
that high mTOR activity prevents ULK1 activation by phosphorylating
ULK1 Ser 757 when nutrients are plentiful [29]. In contrast, when

nutrients are depleted, the mTOR activity is inhibited and phosphoryla-
tion of ULK1 Ser 757 is decreased, and subsequently ULK1 can inter-
act with and be phosphorylated by AMP-activated protein kinase
(AMPK) on Ser 317 and Ser 777, which resulting in activation of ULK1
kinase and autophagy induction [27, 29]. This evidence indicates that
different phosphorylation events have distinct functions in autophagy
initiation. Downstream of the ULK complex, the class III phosphatidyli-
nositol 3-kinase (PI3K) complex, composed of class III PI3K, Beclin-1,
p150 and barkor (Beclin-1-associated autophagy-related key regula-
tor), is required for the nucleation and assembly of the initial phago-
phore membrane [30–32]. The elongation and closure of phagophores
depends on two ubiquitination-like reactions. In the first of the reac-
tions, the ubiquitin-like protein Atg12 is covalently tagged to Atg5 to
form Atg12–Atg5 conjugate, with the help of the E1-like enzyme Atg7
and the E2-like enzyme Atg10 [33]. The Atg12–Atg5 then conjugates
with Atg16L (Atg16-like protein) to form an ~800-kDa protein com-
plex, which serves as a platform for stimulating the microtubule-asso-
ciated protein 1 light-chain 3 (LC3)-PE (phosphatidylethanolamine)
conjugation [34, 35]. In the second ubiquitin-like reaction, the precur-
sor LC3 is cleaved at its COOH terminus by the protease Atg4B, result-
ing in the cytosolic isoform LC3-I. LC3-I is conjugated to PE to form
LC3-II with the action of the E1-like enzyme Atg7 and the E2-like
enzyme Atg3 [36, 37]. Thus, the conversion of LC3-I to LC3-II is a
well-known marker of autophagy induction [38]. More importantly, the
lipidated form of LC3, namely LC3-II, mediates membrane tethering
and hemifusion that essential for the expansion and closure of phago-
phores to form autophagosomes during autophagy [39].

Because of its pathophysiological significance in cellular self-can-
nibalism, the autophagic process must be tightly regulated. In mam-
malian cells, multiple signalling cascades, including mTOR-dependent
and mTOR-independent pathways, participate in the regulation of
autophagy in response to numerous environmental and cellular stim-
uli [40]. As aforementioned above, the classical mTOR pathway acts
as a major negative regulator of autophagy through blocking the ULK
complex [29, 41]. Apart from the classical mTOR pathway, the
mTOR-independent pathways, such as the cAMP-Epac-phospholipase
C (PLC)-e-inositol 1,4,5-trisphosphate (IP3) pathway and the Ca2+-
calpain-G-stimulatory protein a (Gsa) pathway, can also regulate
autophagy in mammalian systems [42, 43]. As an example, elevation
of intracellular cAMP levels by adenylate cyclase (AC) activates Epac,
and activated Epac in turn activates a small G protein Rap2B, leading
to PLC-e-mediated hydrolysis of phosphatidylinositol 4,5-bispho-
sphate (PIP2) to generate IP3, which eventually inhibits autophagy
[44]. Besides, an increase in cytosolic Ca2+ activates calpains, and
activated calpain activates Gsa, resulting in enhanced AC activity that
generates cAMP to suppress autophagy [43]. Additionally, starvation-
induced activation of c-Jun N-terminal protein kinase 1 phosphory-
lates Bcl-2, which allows Bcl-2 to dissociate from the autophagy-inhi-
bitory Beclin-1–Bcl-2 complex, thereby promoting the formation of
the autophagy-initiating Beclin-1–Vps34 complex to drive autophagy
[45, 46]. In contrast, molecular mechanisms underlying the pro-
cesses of autophagosome transport, autophagosome–lysosome
fusion, autolysosomal degradation and reutilization of degradation
products, are just beginning to be understood and warranted to be
further investigated.
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The autophagy–lysosomal system in
subarachnoid haemorrhage: potential
targets for therapeutic intervention

Subarachnoid haemorrhage is a complex, multisystem and multi-
faceted disorder which involves several ongoing pathological
processes [47]. EBI and DBI have been recognized as the important
determinants of morbidity and mortality as well as worsened clinical
outcome for SAH patients [48]. EBI was coined to describe the acute
pathophysiological events occurring in the brain within the first
72 hrs after an SAH [49]. Early pathological changes, such as acute
global ischaemia, mechanical and biochemical alterations, impaired

ionic homeostasis, excitotoxicity, oxidative stress, inflammation and
apoptosis, are all clinically relevant to the poor outcome of SAH
patients [50]. By contrast, DBI is designated to demonstrate a host of
critical, interrelated pathological events arising in the late phase (3–
14 days) of SAH [48]. Cerebral vasospasm (CVS) is conceived as a
major cause of delayed cerebral ischaemia and plays a crucial role in
the pathogenesis of DBI following SAH [51]. It is noteworthy that
molecular mechanisms leading to EBI and DBI are not mutually exclu-
sive. Instead, multiple pathological pathways deleterious to brain acti-
vate after the initial haemorrhage, evolve with time and eventually
contribute to overall outcome of SAH. More importantly, the
autophagy–lysosomal pathway is activated and involved in the patho-
physiologic process of SAH (Fig. 2). In consideration of the impor-
tance of autophagy–lysosomal system for neuronal survival, its

Fig. 1 Overview of the cellular and molecular events of autophagy–lysosomal pathway. The autophagy–lysosomal process consists of a series of

sequential steps: nucleation, elongation, maturation, docking, fusion and degradation. Several hetero-oligomeric protein complexes that contain
autophagy-related (Atg) proteins play a critical role at different stages of autophagy–lysosomal process. Multiple signalling pathways, including

mTOR dependent and independent, participate in the regulation of autophagy–lysosomal cascades in response to numerous environmental and cellu-

lar stimuli.
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pathological significance and underlying mechanisms are discussed
below.

Autophagy and brain injury

The autophagy–lysosomal system is a catabolic process that allows
the degradation and recycling of intracellular components to ensure
cell homeostasis and survival. In a modified endovascular perforation
rat model of SAH, Lee et al. demonstrated that the autophagy–lysoso-
mal pathway is activated in the ipsilateral frontobasal cortex following
SAH and lasts during the entire phase of EBI (up to 3 days) [15]. For
electron microscopy, numerous double- or multiple-membrane
autophagic vesicles are predominantly observed in neurons at 24 hrs
following SAH, demonstrating enhanced autophagy–lysosomal path-
way activity in neuronal cells after SAH [15]. By applying Rapamycin

(an autophagy inducer targeting mTOR) or 3-Methyladenine (3-MA)
(an autophagy inhibitor) to manipulate the autophagic activity, the
potential beneficial effect of autophagy on EBI was examined in rat
endovascular perforation models of SAH [52, 53]. Autophagy activa-
tion reduces translocation of Bax, a pro-apoptotic member of Bcl-2
family, from the cytosol to the mitochondrial membrane [52]. As a
consequence, Bax-mediated mitochondrial outer membrane perme-
abilization is alleviated, the subsequent cytochrome c release into the
cytosol is decreased, and the mitochondrial apoptotic pathway is
eventually inhibited [54]. Interestingly, melatonin, a hormone
secreted by the pineal gland in the brain, stimulated autophagy to
suppress apoptotic death of neural cells and ameliorated neurological
deficits after SAH [55]. The anti-apoptotic effect of melatonin-
enhanced autophagy is associated with prevention of mitochondrial
release of cytochrome c to mediate caspase-dependent apoptotic cas-
cades [55]. Also, Shao et al. demonstrated that trichostatin A, a pan-

Fig. 2 Scheme of the role of autophagy–lysosomal system in the pathophysiology of SAH. The autophagy–lysosomal pathway plays a vital role in

the pathophysiological process of SAH. Appropriate autophagy–lysosomal activity acts as a pro-survival mechanism in SAH, while excessive self-

digestion of autophagy results in cell death after SAH.
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histone deacetylase inhibitor, significantly increased the levels of
Beclin-1 and LC3-II/LC3-I ratio, while decreased the expression of
Bax and cleaved caspase-3 in the cortex at 24 hrs after experimental
SAH [56]. Simultaneously, SAH-induced neuronal apoptosis in the
ipsilateral basal cortex was significantly inhibited, and neurological
deficits are largely attenuated after TSA application [56]. However, it
remains to be investigated whether TSA and other histone deacetylase
inhibitors could correct potentially low levels of histone acetylation
status following SAH, thus facilitate Atg genes transcription through
increasing the accessibility of their promoters to related transcription
factors [57]. Additionally, autophagy activation in response to endo-
plasmic reticulum stress is protective in prevention of EBI in the rat
endovascular perforation SAH model [58]. Inhibition of autophagy
with 3-MA promoted apoptotic cascades, aggravated neurological
deficits and naturalized the endoplasmic reticulum stress-induced
beneficial effect after SAH [58].

Similar to the data from endovascular perforation SAH models,
Wang et al. found that the expression of LC3 and Beclin-1 was
significantly increased in the cortex and peaked at 24 hrs after
prechiasmatic cistern blood injection, indicating the activation of
autophagy–lysosomal system in the brain post-SAH [59]. The autop-
hagy activator Rapamycin can up-regulate the expressions of LC3
and Beclin-1, down-regulate cortical apoptosis, ameliorate blood–
brain barrier (BBB) permeability and alleviate clinical behaviour
function impairment caused by SAH [59]. Conversely, the autophagy
inhibitor 3-MA can decrease the expressions of LC3 and Beclin-1,
increase cortical apoptosis, promote BBB permeability and ultimately
aggravate clinical behaviour function impairment induced by SAH
[59]. Liu et al. demonstrated that pre-treatment with a cysteine pro-
tease inhibitor Cystatin C with low or medial dosages promotes the
autophagic process within neurons, inhibits BBB impairment and
ameliorates brain oedema formation, which contributes to alleviation
of secondary learning deficits in the prechiasmatic cistern SAH injec-
tion model [60]. Cystatin C-mediated inhibition of mTOR-signalling
pathway may contribute to autophagy activation under those stress
conditions [61, 62]. Taken together, these findings suggested the
protective contribution of autophagy–lysosomal pathway in the
pathogenesis of EBI during experimental SAH.

Autophagy and cerebral vasospasm

Cerebral vasospasm is one of the most common and devastating
sequelae for patients who have sustained SAH. It is involved in the
development of delayed cerebral ischaemia and contributes to DBI
after SAH [51]. The contribution of autophagy–lysosomal system in
the pathogenesis of CVS following SAH has also been investigated. In
a rat cisterna magna single-injection model of SAH, Liu et al. demon-
strated that the autophagic pathway is activated in the spastic basilar
arteries after SAH [63]. Interestingly, Cystatin C promotes the activa-
tion of autophagy in the walls of basilar arteries and ameliorates the
degree of CVS in this SAH model [63]. However, the exact anti-vasos-
pasm mechanisms of autophagy remain unknown and are warranted
to be clarified.

Lysosome and cathepsin in subarachnoid
haemorrhage

Lysosomes, the cytoplasmic membrane-enclosed organelles that
contain hydrolytic enzymes, are the key degradative compartments of
the cell that control the intracellular turnover of macromolecules [64].
The lysosomal hydrolases including cathepsins, which are enclosed
in the lysosomes, play a crucial role in the degradation of heteropha-
gic and autophagic material [65]. It is important to note that lyso-
somes participate in cellular iron metabolism and recycling [66].
Because of this, most lysosomes contain relatively large amounts of
redox-active iron [67]. These iron-rich lysosomes are unusually sus-
ceptible to destabilization in response to oxidative challenge, resulting
in the release of hydrolytic enzymes (i.e. cathepsin B/D) into the cyto-
plasm, which in turn trigger the lysosomal pathway of apoptosis
through cleavage of the pro-apoptotic Bcl-2 family member Bid and
the degradation of the anti-apoptotic Bcl-2 members such as Bcl-2,
Bcl-xL and Mcl-1 [68].

In the setting of SAH, lysosomes may become iron overload and
is particularly prone to destabilization, resulting in lysosomal mem-
brane rupture and the release of hydrolytic enzymes into cytoplasm
[69, 70]. Alternatively, overactivation of autophagy may lead to the
accumulation of enlarged and unstable acidic vesicles, which would
contribute to lysosomal permeabilization and hydrolytic enzymes
released from destabilized autolysosomes [71, 72]. However, whether
these events are key mediators in SAH-induced hydrolytic enzymes
up-regulation deserve further investigation. During the acute phase of
SAH, the levels of cathepsin B/D and caspase-3 were up-regulated in
the neuron of rat cortex soon after blood injection, which peaked at
48 hrs post-SAH, suggested that the lysosomal membrane of neuron
was damaged after SAH [70]. The disruption of lysosomal membrane
allows lysosomal proteases (i.e. cathepsin B/D) to be released into
the cytoplasm to activate caspase-dependent apoptotic pathway [70,
73, 74]. Intraperitoneal administration of deferoxamine, an iron chela-
tor, down-regulates expression of cathepsin B/D and prevents up-reg-
ulation of caspase-3 in the cortex 48 hrs after SAH, which contributes
to attenuate apoptotic cell death, BBB permeability, brain oedema and
motor deficits after SAH [70]. More recently, Wang et al. also demon-
strated that lysosomes were impaired and cathepsin B/D was up-
regulated in the cerebral cortex of affected rats under SAH conditions
[75]. By contrast, a-lipoic acid-plus, an amine derivative of a-lipoic
acid, can provide neuroprotective effects against EBI via targeting
lysosomes and chelating intra-lysosomal iron in this prechiasmatic
cistern SAH model [75]. Treatment with a-lipoic acid-plus reduces
oxidative stress and decreases iron deposition in the cortex of brain,
alleviates lysosomal membrane permeabilization and prevents lysoso-
mal rupture following SAH [75, 76]. As a result, the protein levels of
cathepsin B/D in the cytoplasm of neurons are decreased and the
ensuing Bax-induced apoptotic cell death is reduced, which is protec-
tive for amelioration of BBB disruption, brain oedema and neurologi-
cal behaviour impairment after experimental SAH [75, 77].

Additionally, an imbalance between cysteine cathepsin enzymes
and their inhibitor Cystatin C in the arterial walls may exert a promi-
nent role in the progression and rupture of cerebral aneurysms [78,
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79]. When compared with the control cerebral arterial walls, cathep-
sin B, K and S were highly expressed in the intima and media of
aneurysmal walls [78]. In contrast, Cystatin C was lowly expressed in
the endothelial cell layer and the media of arterial wall of cerebral
aneurysm [78]. Increased expression of cathepsins and decreased
expression of Cystatin C causes excessive degradation of extracellular
matrix in the aneurysmal walls, which will lead to the progression and
rupture of cerebral aneurysm [78, 80, 81]. Treatment with NC-2300, a
selective inhibitor for cysteine cathepsins, decreased the activity of
cathepsin B, K and S, inhibited the degradation of extracellular matrix
in aneurysmal walls and prevented the progression of cerebral aneur-
ysms [78]. It is noteworthy that research on the role of cathepsins in
the progression of cerebral aneurysms is still limited, and further
investigations are anticipated, which may reveal new therapeutic
avenues in preventing aneurysmal progression and rupture.

Taken together, accumulating lines of evidence indicate that the
autophagy–lysosomal system is deeply involved in the pathophysiol-

ogy of SAH. Thus, pharmacological modulation of the autophagy–
lysosomal system may represent a potential therapeutic strategy to
limit brain injury after SAH. Currently, several pharmacological agents
that are able to modulate the autophagy–lysosomal system have been
identified, such as mTOR inhibitors, AMPK modulators, calcium low-
ering agents and lysosome inhibitors [82–84]. These modulators of
the autophagy–lysosomal system could be tested in the treatment of
SAH in future, many of whom appear to have high potential to be
efficient.

Perspective

Subarachnoid haemorrhage is a complex, multifaceted event that
involves multiple ongoing processes contributing to its final patho-
genesis. Despite great advances have been made in diagnostic meth-
ods, surgical and endovascular repair of ruptured aneurysms and

Table 1 Main findings of the autophagy–lysosomal system in the pathogenesis of subarachnoid haemorrhage

Model Stage Main findings Reference

Modified endovascular perforation rat model EBI Activation of autophagy–lysosomal pathway Lee et al., [15]

Prechiasmatic blood injection rat model EBI Activation of autophagy–lysosomal pathway
Inhibition of EBI

Wang et al., [59]

Endovascular perforation rat model EBI Activation of autophagy–lysosomal pathway
Inhibition of EBI
Anti-apoptotic effect

Jing et al., [52]

Endovascular perforation rat model EBI Activation of autophagy–lysosomal pathway
Inhibition of EBI
Anti-apoptotic effect

Zhao et al., [53]

Endovascular perforation rat model EBI Melatonin-induced autophagy activation
Inhibition of EBI
Anti-apoptotic effect

Chen et al., [55]

Prechiasmatic blood injection rat model EBI Cystatin C-induced autophagy activation
Inhibition of EBI

Liu et al., [60]

Endovascular perforation rat model EBI Endoplasmic reticulum stress-induced autophagy activation
Inhibition of EBI
Anti-apoptotic effect

Yan et al., [58]

Endovascular perforation rat model EBI Trichostatin A-induced autophagy activation
Inhibition of EBI
Anti-apoptotic effect

Shao et al., [56]

Cisterna magna blood injection rat model CVS Cystatin C-induced autophagy activation
Inhibition of CVS

Liu et al., [63]

Prechiasmatic blood injection rat model EBI Deferoxamine-mediated protection of lysosomal membrane
Decreased release of cathepsin B/D
Inhibition of EBI
Anti-apoptotic effect

Yu et al., [70]

Prechiasmatic blood injection rat model 3 EBI a-Lipoic acid-plus-mediated chelation of intralysosomal iron
Decreased release of cathepsin B/D
Inhibition of EBI
Anti-apoptotic effect

Wang et al., [75]
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management of medical complications, outcome for patients with
SAH remains poor. Early brain injury and DBI, two major pathological
mechanisms, are recognized as dominant contributors to the progno-
sis of SAH. The autophagy–lysosomal system is activated and plays a
role in the pathogenesis of EBI and CVS after SAH (Table 1). It is sig-
nificant to note that proper functioning of autophagy–lysosomal path-
way acts as a pro-survival mechanism to combat apoptotic cell death
following SAH [56, 85]. However, if SAH-induced stress gets too high
to deal with, lysosomal membranes would become destabilized so
that hydrolytic enzymes would escape into the cytosol to trigger
apoptotic cell death [70]. Consequently, it is imperative to maintain
the most appropriate threshold of autophagic activity for neuronal
survival in the context of SAH, which would be beneficial for patient
outcome after SAH.

It is noteworthy that even though knowledge of autophagy–
lysosomal system in SAH pathology, the precise roles and under-
lying mechanisms of autophagy–lysosomal pathway in the setting
of SAH remain vague. Indeed, ‘self-eating’ autophagy and ‘self-
killing’ apoptosis crosstalk with each other extensively in the
pathophysiological conditions [86]. Core directors, such as
Beclin-1, caspase family proteases and p53, play a crucial role in
directing molecular switches between these two intimately con-
nected processes [85, 87]. Therefore, future investigating the role
of those core directors will help to elucidate the interrelationship
between autophagy and apoptosis in the setting of SAH. In addi-
tion, autophagy extensively communicates with other subtype of
autophagy (i.e. CMA), as well as the ubiquitin-proteasome system
during the protein degradation process [88]. Also, autophagy is
intricately interlinked with necroptotic cell death [89]. It has
been shown that autophagy can either promote or suppress
necroptosis under certain conditions [90, 91]. However, the

crosstalk between autophagy and necroptosis in SAH pathology
remains largely unclarified. And a better knowledge of the inter-
connection between these degradation pathways is of great sig-
nificance, with the goal of developing effective strategies to
manipulate them for optimizing the therapeutic approaches for
SAH.

Conclusion

The autophagy–lysosomal system exerts critical roles in maintaining
intracellular homeostasis in the brain under SAH conditions. Appro-
priate autophagy functions as protective mechanisms for cell survival
after SAH, while excessive ‘self-eating’ autophagy may lead to cell
death. Therefore, approaching molecular mechanisms of autophagy–
lysosomal system in the setting of SAH is anticipated, which may ulti-
mately allow to develop effective therapeutic strategies for SAH
patients through regulating this pathway.
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