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Abstract
1. Point data obtained from real-time location systems (RTLSs) can be processed into 

animal contact networks, describing instances of interaction between tracked in-
dividuals. Proximity-based definitions of interanimal “contact,” however, may be 
inadequate for describing epidemiologically and sociologically relevant interac-
tions involving body parts or other physical spaces relatively far from tracking 
devices. This weakness can be overcome by using polygons, rather than points, to 
represent tracked individuals and defining “contact” as polygon intersections.

2. We present novel procedures for deriving polygons from RTLS point data while 
maintaining distances and orientations associated with individuals' relocation 
events. We demonstrate the versatility of this methodology for network modeling 
using two contact network creation examples, wherein we use this procedure to 
create (a) interanimal physical contact networks and (b) a visual contact network. 
Additionally, in creating our networks, we establish another procedure to adjust 
definitions of “contact” to account for RTLS positional accuracy, ensuring all true 
contacts are likely captured and represented in our networks.

3. Using the methods described herein and the associated R package we have de-
veloped, called contact, researchers can derive polygons from RTLS points. 
Furthermore, we show that these polygons are highly versatile for contact net-
work creation and can be used to answer a wide variety of epidemiological, etho-
logical, and sociological research questions.

4. By introducing these methodologies and providing the means to easily apply them 
through the contact R package, we hope to vastly improve network-model realism 
and researchers' ability to draw inferences from RTLS data.
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1  | INTRODUC TION

Real-time location systems (RTLSs) allow for spatial positioning and 
tracking of animate and inanimate objects in real time (Li, Chan, 
Wong, & Skitmore, 2016). Data sets generated by RTLSs are in-
credibly versatile and can be used in conjunction with other geo-
graphic data (e.g., remotely sensed data) to answer a wide variety of 
ecological research questions pertaining to individual- and popula-
tion-level animal behaviors (Kays, Crofoot, Jetz, & Wikelski, 2015). 
Previous studies have used RTLS data to draw inferences about 
(a) animals' movement speed and tortuosity (Bastille-Rousseau 
et al., 2019; Liu, Xu, & Jiang, 2015; Schiffner, Fuhrmann, Reimann, 
& Wiltschko, 2018), (b) energy expenditures (Williams et al., 2014), 
(c) habitat use (Keeley, Beier, & Gagnon, 2016; Thomson et al., 2017; 
Tsalyuk, Kilian, Reineking, & Marcus, 2019), (d) survival and mortality 
rates (Klaassen et al., 2013), (e) responses to environmental stimuli 
(Bastille-Rousseau et al., 2019; Tsalyuk et al., 2019), and (f) inter-
actions with other individuals, specific locations, or environmental 
substrates (Chen, Sanderson, White, Amrine, & Lanzas, 2013; Chen 
& Lanzas, 2016; Dawson, Farthing, Sanderson, & Lanzas, 2019; 
Spiegel, Leu, Sih, & Bull, 2016; Theurer et al., 2012).

The most fruitful areas of RTLS data application have been dis-
ease ecology and epidemiology. Variation in contact is one of the 
most important drivers of disease transmission. By quantifying in-
teranimal and environmental (i.e., relating to abiotic components of a 
given area) contacts, researchers can examine contact variation and 
the role that social behavior and spatial proximity have in shaping 
disease transmission in study populations (Chen et al., 2013; Dawson 
et al., 2019; Harris, Johnson, McDougald, & George, 2007; Leu, 
Kappeler, & Bull, 2011; Mersch, Crespi, & Keller, 2013; Nagy, Ákos, 
Biro, & Vicsek, 2010; Spiegel et al., 2016). The integration of contact 
data with network analysis has led to increased understanding of the 
drivers of contact and subsequent disease transmission (Silk, Croft, 
Delahay, Hodgson, Boots, et al., 2017; Silk, Croft, Delahay, Hodgson, 
Weber, et al., 2017). Early work by Hamede, Bashford, McCallum, 
and Jones (2009) showed that contact among Tasmanian devils var-
ies between mating and nonmating season, but all members were 
connected in a single component, making the population highly 
susceptible to disease spread. Additional studies have further inves-
tigated types of social behavior and other interactions underlying 
transmission (Blyton, Banks, Peakall, Lindenmayer, & Gordon, 2014; 
Silk, Drewe, Delahay, & Weber, 2018).

Recent advances in RTLS technologies have provided research-
ers with the tools to more easily, accurately, and consistently identify 
when and for how long individuals are in contact with one another 
(Kays et al., 2015; Mersch et al., 2013; Pfeiffer & Stevens, 2015; 
Strandburg-Peshkin, Farine, Couzin, & Crofoot, 2015). Real-time lo-
cation systems based on radio-frequency identification (RFID) and 
global positioning system (GPS) technologies are becoming increas-
ingly accurate, with positional accuracies often <2 m (Chen et al., 
2013; Dawson et al., 2019; King et al., 2012; Schiffner et al., 2018), 
and able to fix individuals' locations over increasingly small tem-
poral intervals (e.g., 1–10 s) (Dawson et al., 2019; Kays et al., 2015; 

Schiffner et al., 2018). Increases in RTLS accuracy and fix intervals 
translate to decreased uncertainty about animals' activities at a 
given time point (Kays et al., 2015; Swain, Wark, & Bishop-Hurley, 
2008). Accompanying researchers' increased ability to draw infer-
ences about animal behavior from RTLS data, use of RTLS data in 
animal contact network modeling is becoming increasingly common 
(Krause et al., 2013; White, Forester, & Craft, 2017). In these network 
models, nodes (e.g., individuals and specific locations) are connected 
to one another by edges (i.e., contacts), which often represent in-
stances when ≥2 nodes were observed within a specified distance 
threshold (SpTh) of one another (e.g., ≤1 m) over a predefined time 
period (Craft, 2015; Farine & Whitehead, 2015; White et al., 2017).

Contact networks are frequently used to evaluate individuals' 
behaviors, resource use, and disease transmission risk in wildlife and 
livestock populations (Croft, Madden, Franks, & James, 2011; Silk, 
Croft, Delahay, Hodgson, Boots, et al., 2017; Silk, Croft, Delahay, 
Hodgson, Weber, et al., 2017), but it is often unclear if proxim-
ity-based network edges are truly representative of real-world 
pathogen transmission opportunities (Craft & Caillard, 2011; Craft, 
2015; Davis, Abbasi, Shah, Telfer, & Begon, 2015). In many cases, 
positional accuracy is a limiting factor when deciding how to define 
contacts, as researchers cannot identify specific interactions be-
tween individuals (e.g., grooming and mating) if spatial accuracy is 
too coarse (Brookes, VanderWaal, & Ward, 2018; Leu et al., 2011). 
As RTLSs only produce point data, even when positional accuracy 
is ≈100% (i.e., approximately all RTLS-reported coordinates corre-
spond to individuals' true geographic locations) RTLS-derived con-
tact networks may represent an incomplete picture of potential 
contacts in a given biological system. For example, point location 
data collected by ear tag- or collar-based tracking devices, which are 
often deployed in livestock- and wildlife-monitoring studies, respec-
tively (Chen et al., 2013; Dawson et al., 2019; Theurer et al., 2012; 
Tsalyuk et al., 2019; Strandburg-Peshkin et al., 2015; Swain et al., 
2008), are not sufficient for describing the space occupied by in-
dividuals' bodies. Therefore, contacts involving areas relatively far 
from the head cannot be captured without introducing substantial 
amounts of noise and uncertainty (Dawson et al., 2019; Figure 1).

Uncertainty related to contact precision within a relatively 
large SpTh leads to epidemiologically (i.e., contacts during which 
pathogens may be transmitted to susceptible individuals) and so-
ciologically relevant interactions (i.e., contacts representative of 
specific behaviors known to indicate significant social relation-
ships) involving body parts not equipped with tags being poten-
tially excluded from contact networks or misidentified as noise 
(Blyton et al., 2014; Dawson et al., 2019). Without this informa-
tion, network modelers may draw incorrect conclusions regarding 
the frequency of interanimal interactions (e.g., attraction or avoid-
ance) and pathogen transmission potential in animal populations. 
Here, we solve this problem by describing how to incorporate an-
imals' physical space at RTLS fix intervals into RTLS-derived ani-
mal contact networks, ensuring that signal capture pertaining to 
the whole of tracked individuals' physical space is maximized. We 
present novel procedures for deriving polygons from RTLS point 
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data while maintaining distances and orientations associated with 
individuals' relocation events (see Section 2.1) and demonstrate 
the versatility of this methodology for network modeling using 
three network creation examples (see Section 2.3). Additionally, 
in creating our networks, we establish a procedure to adjust 
definitions of “contact” to account for RTLS positional accuracy. 
Thus, we ensure that all true contacts in our systems of interest 
are likely captured and represented in generated networks. By in-
troducing these methodologies and providing the means to eas-
ily apply them through the contact R package, we hope to vastly 
improve network-model realism and researchers' ability to draw 
inferences from RTLS data.

2  | METHODS

2.1 | Generating polygons from RTLS data points

2.1.1 | Steps for polygon derivation

Accounting for objects' physical space in real time involves inter-
polating polygon vertices from RTLS data points. By doing so, we 
create 2-dimensional objects representative of areas covered by 
tracked individuals' bodies from 1-dimensional objects describing 
RTLS tags' point locations. Throughout this section, we refer to an 
example wherein we want to generate polygons covering each indi-
vidual calf whose point locations are reported by a cattle monitor-
ing RTLS (Figure 2). All terms described in Section 2.1 are listed in 
Table 1.

For n tracked individuals, we define a set of planar RTLS data (x, 
y)-coordinate pairs as {loci} for individuals i=1,… ,n, at sequential 
fix intervals t=1,… ,T, where T is the total number of fix intervals 
over the course of the study period. Each polygon vertex, Vitl, is de-
rived from a single RTLS-reported point location contained in {loci}
, locit (i.e., (xlocit, ylocit)) and denotes a specific (x, y)-coordinate pair, 

(xitl, yitl). The variable, l=1,… ,L, identifies unique polyit vertices. Each 
polygon, polyit, represents the area contained within the vertex set 
{Vit}

|| L, where {Vit} = [Vit1,…,VitL], and L is an integer ≥ 3 describing the 
number of vertices in {Vit}. For example, if polyit is defined using four 
vertices, unique vertices in {Vit}

|| L=4 will be represented as Vit1, Vit2, 
Vit3, and Vit4, with respective (x, y)-coordinate pairs (xit1, yit1), (xit2, 
yit2), (xit3, yit3), and (xit4, xit4).

Effectively, we want to transform each unique point location in 
a data set into a unique polygon with L vertices. Before we can de-
rive {Vit}, however, we must first consider where each Vitl is located 
relative to a unique locit on individuals' bodies. In other words, we 
know where tracking devices are located on animals' bodies (e.g., ear 
and neck), but before we can transform these point locations into 
polygon vertices, we must decide where these new points will exist 
on animals' bodies as well (e.g., nose and tail). In our calf example, 
tags are located on the left ear of each individual, and we assume 
animals' sizes and proportions were equivalent and stable over the 
observation period (Figure 2a). We decide a priori where {Vit} will 
be located on planar, polygonal representations of space around of 
animals' bodies, which we refer to as “planar models” (Figure 2b). 
We use the star denotation to distinguish variables in planar models 
from their empirical counterparts (e.g., loc∗

it
 and V∗

itl
). Area described 

by each polyit is restricted to the shape presented in these planar 
models, however, this limitation can be overcome to some extent by 
creating different models for each tracked individual, and/or updat-
ing planar models over time (t).

The steps for deriving {Vit} coordinates while maintaining individ-
uals' orientation at time t are as follows. (a) Create a planar model 
describing {V∗

it
} and loc∗

it
. (b) For a given polygon vertex l, calculate the 

hypotenuse length, distitl, for triangle Δ(x∗
itl
,0)(0,y∗

itl
)loc∗

it
 (i.e., 

distitl=

√
|||
x∗
itl
−x∗

locit

|||

2
+
|||
y∗
itl
−y∗

locit

|||

2
). This is the Euclidian distance be-

tween loc∗
it
 and each V∗

itl
, and is equivalent to the distance between 

locit (i.e., RTLS-reported point location) and Vitl (i.e., desired polygon 

F I G U R E  1   Point location-based 
methods for describing tracked animal 
contacts may not effectively capture 
or characterize commonly observed 
interactions. Tracking devices in this 
example are located on animals' ears
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F I G U R E  2   Steps for deriving polygons representing calf physical space. (a) Describe the physical dimensions of the animal and denote 
where the tracking device point location exists on the individual's body. (b) Describe the location of each vertex in the desired vertex set 
relative to tracking device location. Here, we use vertex 1 as a specific example. (c) Using the relative location information ascribed to each 
vertex in the planar model, interpolate empirical vertex coordinates

TA B L E  1   Glossary of terms used in {polyi} derivation

Notation Definition

{loci} A set containing all (x, y)-coordinate pairs describing real-time locations of individual i observed during the study period.

locit Denotes a single (x, y)-coordinate pair (i.e., (xlocit, ylocit)) within {loci} describing the location of individual i at time t.

i Identifies specific individuals whose locations are presented in a given real-time location data set. Takes values 1 to n.

t Identifies specific time points represented in a given real-time location data set. Takes values 1 to T.

T The total number of unique time points presented in a given real-time location data set.

{Vit} A set containing the (x, y)-coordinate pairs of vertices that define polyit. All vertices within a given {Vit} are derived from a single 
point, locit.

Vitl Denotes a single (x, y)-coordinate pair (i.e., (xitl, yitl)) within {Vit}.

l Identifies unique vertices contained in each {Vit}. Takes values 1 to L.

L An integer ≥ 3 describing the length of {Vit}.

polyit Area contained within vertices described in {Vit}|L.

loci� The most-recent previously reported location for individual i with a different (x, y)-coordinate pair than locit (i.e., �≤ t−1).

�it If gyroscopic data are available: the observed angle of movement reported by a gyroscopic measurement device (e.g., gyroscopic 
accelerometer) at time t.

If no gyroscopic data are available: the absolute angle of line loci�locit measured from a horizontal axis intersecting loci�.

loc
∗
it

An (x, y)-coordinate pair in a planar model; indicates the location of locit on individual i at time t.

loc
∗
i�

The planar-model counterpart to loci�; describes an assumed location of loc∗
it
 at time �, and is used to identify the angular orientation 

of the modeled individual.

{V∗
it
} A set containing the (x, y)-coordinate pairs of vertices described in a planar model; indicates where vertices should exist relative to 

loc
∗
it
.

V∗
itl

Denotes a single (x, y)-coordinate pair (i.e., (x∗
itl

, y∗
itl

)) within 
{
V∗
it

}
.

�∗ The planar-model counterpart to �; describes the absolute angle of line loc∗
i�
loc

∗
it
 measured from a horizontal axis intersecting loc∗

i�
.

distitl The Euclidean distance between locit and Vitl.

�∗
l The absolute angle of line V∗

itl
loc

∗
it
 measured from a horizontal axis intersecting loc∗

it
.
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vertex). Once we know the distance between locit and the vertex of 
interest, we can (c) identify (x, y)-coordinate pairs that lie distitl planar 
units (e.g., meters) from locit in a 360◦− (�∗ − (�∗

l
+�it)) counter-clock-

wise direction relative to a horizontal axis intersecting locit 
(Figure 2c). This is the transformation. (d) Repeat steps 2 and 3 for 
each vertex l.

In the above formula, �∗
l
 is the absolute angle of line V∗

itl
loc∗

it
 mea-

sured from a horizontal axis in loc∗
it
. The variable �it is the observed 

angle of movement reported by a gyroscopic measurement device 
(e.g., gyroscopic accelerometer) at time t and allows us to account 
for changes in the orientation of animals' bodies attributed to move-
ment while keeping �∗

l
 fixed. Incorporating this variable into the {Vit} 

derivation formula ensures that {polyi} appropriately represents an-
imals' physical orientation (i.e., what direction they face at time t), 
which may change between times t and t + 1. In many cases, �it may 
be unknown. For example, if gyroscopic and RTLS data were not 
collected concurrently (e.g., animals were outfitted with GPS trans-
mitters, but not gyroscopic accelerometers), researchers would not 
intrinsically know animals' orientations. In these cases, �it can be es-
timated by calculating the absolute angle of line loci�locit measured 
from a horizontal axis intersecting loci�, the most-recent previously 
reported location for individual i with a different (x, y)-coordinate 
pair than locit (i.e., �≤ t−1). The variable �∗ is the planar-model coun-
terpart to �it and describes the shape's original orientation.

2.1.2 | Assumptions and limitations of 
polygon derivation

There are a couple limitations that researchers must take into ac-
count when using this procedure. Firstly, when deriving polygon ver-
tices from RTLS points, researchers must justify how polygons relate 
to real-world physical space by clearly explaining rationales for poly-
gons' shapes, sizes, and behaviors. As previously noted, areas rep-
resented by polygons are rigid and restricted to shapes described in 
planar models. Though these shapes can be updated over time, to el-
evate the likelihood that polygons truly represent real-world spatial 
features, our polygon derivation methodology is best used to model 
space with never-changing or infrequently changing dimensions. For 
example, because the size and shape of a baboon's body frequently 
changes based on its activities (e.g., walking baboons are quadru-
pedal, but they often sit on their haunches when stationary), using 
our methodology to create polygons representative of baboons' 
physical bodies may produce inaccurate results. Conversely, as un-
gulates' body shapes and sizes are generally unchanging over short 
time periods, when modeling these species, we can be relatively 
confident that polygons generated using our methodology consist-
ently reflect real-world physical space. This is not to say that our 
methodology cannot be used to model regularly changing shapes, 
however. In these cases, researchers must utilize multiple planar 
models (i.e., one for each spatial form), determine criteria for switch-
ing between them (e.g., use one model when animals are observed 
moving slower than a specified speed, and another when their speed 

exceeds the stated limit), and accept that the added complexity of 
the system may increase risk of erroneous inference.

Secondly, in the absence of paired gyroscopic data, when �it 
must be estimated, we must make four assumptions to account 
for directionality changes associated with animal movement while 
maintaining positional relationships between 

{
Vit

}
 and locit. First 

and foremost, (a) we assume that RTLS fix intervals are sufficiently 
small and allow RTLSs to capture all changes in animals' movement 
direction (i.e., animals do not face unknown directions in-between 
fix intervals). The minimum required temporal resolution will vary 
based on the system being modeled. For example, if modeling an an-
imal that is largely sessile and slow moving, we may assume that 10-
min fix intervals are sufficient for capturing movement directions. 
When modeling frequently moving animals, however, sub-minute 
fix intervals are likely required to capture all directional changes. 
Additionally, (b) because we rely on observed animal movements to 
define �it, we cannot know which direction animals are facing until 
the first relocation event occurs. Thus, we cannot create polygons 
representative of animals' physical orientations at the first time 
point, or any time points before relocations occur (i.e., in polyit, t≥2). 
Furthermore, (c) we assume that individuals only move forward and 
in a straight line, as is common practice when calculating many path-
based movement metrics (e.g., angle of movement and step length; 
Miller, 2015). Finally, (d) when creating polygons representative of 
space occupied by animals' bodies, we assume that when the length 
of line loci(t−1)locit is below a certain threshold (e.g., 0.1 m), individu-
als' physical locations and orientations remain unchanged. This im-
mobility threshold allows us to discount orientation changes due to 
observed movements so miniscule that the majority of the modeled 
physical space is likely unaffected (e.g., head shaking), or movements 
caused by inaccurate RTLS reporting.

2.2 | Network creation

2.2.1 | Data sets

In the following subsections, we generate direct contact (see 
Section 2.3.3) and visual contact (see Section 2.3.4) networks using 
two previously published RTLS-generated data sets, which we refer 
to as calves and baboons. Neither of these data sets include any gy-
roscopic information about animals' movements. Therefore, as part 
of the polygon derivation procedure, we estimated �it values using 
the previously described calculation and accepted the associated as-
sumptions and limitations.

In a previous paper (Dawson et al., 2019), we published the calves 
data set, which contains RTLS data for n = 70 beef cattle (Bos tau-
rus) calves confined in a feedlot pen. Calves were approximately 
1.5 years old with estimated 1.5-m nose-to-tail lengths and 0.5-m 
shoulder widths. Data were obtained using a radio telemetry-based 
RTLS, where 90% of points fell within ±0.5 m of individuals' true lo-
cations, at a temporal resolution of 5–10 s (i.e., fixes for each individ-
ual were obtained every 5–10 s) on 2 May 2016. To standardize the 
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temporal resolution of this data set at 10 s, we smoothed individuals' 
movement paths (i.e., observed consecutive relocations) using the 
methodology we previously described in Dawson et al. (2019), and 
by doing so we obtained (x, y) coordinates representative of individ-
uals' average location at each 10-s interval in the study period.

The baboons data set, collected by Strandburg-Peshkin et al. 
(2015) and made publicly available in the Movebank Data Repository 
(Crofoot, Kays, & Wikelski, 2015), contains geographic locations (i.e., 
longitude and latitude coordinate pairs) of n = 26 olive baboons 
(Papio anubis) living in a single troop of 46 individuals. Data were 
collected between 1 August and 14 August 2012 during daytime 
hours (i.e., between 03:00:00 and 14:59:59 UTC) using GPS collars, 
with ≈1-s fix intervals and a reported average accuracy of 0.26 m 
(Strandburg-Peshkin et al., 2015). To remove baboon capture- and 
handling-induced influences from the data, we removed the first 
and last days of data in baboons. Additionally, we removed the first 
and last hours from each day in the data set (i.e., 03:00:00–03:59:59 
UTC and 14:00:00–14:59:59 UTC). We did this because the num-
ber of individuals observed during each second of these hours was 
highly variable, an effect potentially caused by tracking devices 
powering on/off at different rates during these periods. Finally, we 
standardized the temporal resolution of our subset at 1-s fix inter-
vals by smoothing individuals' daily movement paths (Dawson et al., 
2019). Thus, we were able to create a baboons subset containing 23 
animals' geographic locations at 1-s fix intervals between 04:00:00 
and 13:59:59 UTC from 2 August to 13 August 2012. We used this 
subset for polygon derivation and subsequent network creation. As 
our polygon derivation methodology requires animals' locations to 
be expressed as planar coordinates, we transformed the data using 
an azimuthal equidistant projection centered on the data centroid 
(Barmore, 1991).

2.2.2 | Processing software

To simplify polygon derivation and network creation, we devel-
oped the contact package for R (v. 3.6.0, R Foundation for Statistical 
Computing). This package is available for download on the CRAN 
repository and was specifically built to process spatiotemporal data 
into point- or polygon-based contact and social networks (Figure 3). 
It contains 20 + functions for cleaning, interpolating, randomizing, 
and creating networks from spatiotemporal data, and the principal 
functions are briefly described in Table 2. All RTLS data processing 
was carried out in R using RStudio (v. 1.1.463, RStudio Team), utilized 
contact functions, and is described in Appendices S1 and S2.

2.2.3 | Direct contact network creation

We know that in animal populations, social interactions can in-
crease the risk of pathogen transmission within dyads (Drewe, 
2010; Blyton et al., 2014). In animal production systems, enteric 
pathogens (e.g., E. coli and Salmonella spp.) are often present on 
animals' hides, where they can be directly transmitted to hosts 
during social interactions or bumping (Keen & Elder, 2002; 
Nastasijivec, Mitrovic, & Buncic, 2013; Villarreal-Silva et al., 
2016). Because social relationships between cattle frequently in-
volve increased physical contacts between dyad members (e.g., 
grooming, mounting, and butting; Gibbons, Lawrence, & Haskell, 
2009; Horvath & Miller-Coushon, 2019; MacKay, Turner, Hyslop, 
Deag, & Haskell, 2013), there is likely an increased risk for hide-
to-hide or hide-to-mouth pathogen transfer between socially 
interacting individuals (Blyton et al., 2014). We aimed to create 
networks representative of direct contacts between calves (i) 

F I G U R E  3   Pipeline to create time-aggregated contact and social networks using the contact package. Blue ovals describe necessary 
actions and relevant package functions. Red rectangles indicate function output
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through which a bacterial pathogen (e.g., E. coli) may be trans-
mitted from the hide of one individual to the mouth of another 
during the 24-hr study period. Nodes in our contact networks 
are representative of physical spaces occupied by animals at any 
given time (t). Polygons delineating physical space occupancy of 
calves' heads (0.333 m × 0.333 m), anterior bodies (1 m × 1 m), 
and posterior bodies (1 m × 1 m), respectively, represented by the 

terms: {PolyHit
}, {PolyAit

}, and {PolyPit}, were derived from RFID lo-
cations and joined together to create calf polygons, {PolyCalfit} (i.e., 
PolyCalfit =PolyHit

∪PolyAit
∪PolyPit ) (Figure 4a). We set an immobil-

ity threshold of 0.1 m (i.e., if the data indicated individuals moved 
<0.1 m, their associated polygons' positions remained unchanged). 
We set an immobility threshold of 0.1 m (i.e., if the data indicated 
individuals moved <0.1 m, their associated polygons' positions 

TA B L E  2   Selected contact function descriptions. Functions followed by ellipses have multiple variants referenced in text

Function Description

Confine Confinement filter; remove relocation events observed outside a specified area.

dup Duplicate filter; remove duplicated relocation events.

mps Meters-per-second filter; remove relocation events that suggest impossible/unlikely movement speeds.

tempAggregate Interpolate tracked individuals' locations at specified temporal intervals.

contactDur… Identify when and for how long individuals were within a specified distance threshold of one another (contactDur.all) 
or fixed locations (contactDur.area).

dist2… Calculate planar or great-circle distances between individual pairs (dist2All), or fixed locations (dist2Area) at every 
time point. Locations may be represented as points OR polygons.

findDistThresha  Sample from a multivariate normal distribution to create "in-contact" point pairs based on RTLS accuracy, and 
generate a distribution describing average distances between point pairs.

randomizePaths Generate randomized movement paths over defined temporal intervals for each individual according to methods 
described by Spiegel et al. (2016).

referencePoint2Polygona  Generate a set of polygon vertices for each point location in a data set while maintaining individuals' angular 
orientation (i.e., what direction individuals are facing) at each time step.

repositionReferencePointa  Translates planar point locations to a different location fixed distances away, given a known angular offset, while 
maintaining angular orientations of movements. This function is the basis for polygon derivation from point 
locations, as it allows for vertex placement around planar models.

contactTest Compare empirical contact distributions to null models using various testing methods (e.g., χ2 goodness-of-fit, 
Mantel, 1967) to evaluate if observed contacts occur more or less frequently than would be expected at random, 
respectively.

aIndicates functions based on novel procedures described within this manuscript. 

F I G U R E  4   Planar models used to derive calf and baboon polygons. (a) Model of polygons representative of calves' body sections. (b) 
Model of polygons representing baboons' binocular visual fields up to 100 m. (c) Representation of baboon visual contacts. Orange circles 
represent point locations of troop members
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remained unchanged) to account for head-shaking events, while 
allowing likely true relocation events to remain unaltered.

We recognize that given the positional accuracy of the calves 
data set (i.e., 90% of points within ±0.5 m of true locations), ob-
served contacts may not be wholly representative of “true contact 
events” (i.e., contacts that truly happened) between individuals, as 
observed point locations may be erroneous (Figure 5). Assuming 
that RTLS errors are independent and normally distributed, we can 
simulate intercalf contact events by drawing x and y coordinates of 
hypothetical “in-contact” point location pairs, [x1, y1, x2, y2], from a 
multivariate normal distribution. This distribution is parameterized 
such that coordinate means are [0, 0, 0, SpTh] and covariance is de-
scribed by the identity function (�∕z)2I, where � is the radius within 
which RTLS points may be located around animals' true locations 
assuming no correlation exists between x and y coordinates (e.g., 
0.5 m), and z is the z-score associated with the probability of points 
falling within � distance of true locations (e.g., for 90% of points, 
z = 1.64). Effectively, this means that given no deviation from the 
mean (i.e., SD = 0), all sampled point location pairs (i.e., [x1, y1] and [x2, 
y2]) will be located SpTh distance units apart from one another. Thus, 
paired locations in this case can be considered to be “in-contact” 
with any additional distance between them resulting in cessation of 
contact. Introducing variation based on RTLS accuracy to multivari-
ate sampling allows us to estimate how far apart “in-contact” animals 
likely were from one another and ultimately adjust SpTh values to 
ensure that true contacts are likely captured and included in RTLS-
derived contact networks.

Though this is a procedure for adjusting proximity-based contact 
definitions, by setting an initial SpTh value of 0, we can generate a 
conservative estimate of interpolygon distances required to capture 
true instances polygon intersections at single points. In an effort 
to account for the positional accuracy of the calves data set when 
defining polygonal contacts, we calculated the expected distances 
between 1,000,000 point location pairs with coordinates randomly 
sampled from a multivariate distribution,  [[0,0,0,0],(0.5∕1.64)2I]. 
We then calculated the upper 99% CI for the resulting expected dis-
tance distribution to be used as our adjusted SpTh value for contact 

network creation. In this way, we estimated that a SpTh of 0.56 m 
likely captures ≥99% of contacts, as previously defined (i.e., polygon 
intersections).

To demonstrate differences resulting from differing contact 
definitions, we created two distinct categories of contact net-
work sets. In the “precise” set, contacts were said to occur when 
polygons intersected (i.e., SpTh = 0; Figure 6), and in the “ex-
pected” set contacts occurred when polygon edges were within 
0.56 m of one another. The “expected” set can also be considered 
to have been created using relatively large polygons compared 
to the “precise” set (Figure 7). Each network set contained three 
time-aggregated, undirected contact networks: (a) the “fullBody” 
contact network describing any instance of polygon intersection 
(i.e., 

∑n

i=1
{PolyCalfit}∩{PolyCalf}) or interpolygon distances ≤ 0.56 m, 

(b) a “head.head” bipartite contact network describing instances 
when head polygons intersect (i.e., 

∑n

i=1
{PolyHit

}∩{PolyH}), or are 
≤0.56 m from one another, and (c) a “head.posterior” bipartite con-
tact network describing instances when head polygons intersected 
(i.e., 

∑n

i=1
{PolyHit

}∩{PolyP}) or were within 0.56 m of posterior 
polygons. In each of these networks, edge formation was limited to 
polygons describing different individuals (i) (e.g., no polygon-based 
intersection can exist between PolyHit

 and PolyAit
). Network edges as-

sociated with each dyad were weighted by contact frequency over 
the 24-hr study period. We used Welch's ANOVAs (Welch, 1947) 
and post hoc Games–Howell tests (Games & Howell, 1976) to eval-
uate differences in mean node degree, contact duration (i.e., num-
ber of consecutive time points edges existed between node pairs), 
and per-capita sum contacts between all networks. Additionally, we 
used two-sided Mantel tests (Mantel, 1967) to evaluate correlations 
between intra-set contact matrices (i.e., “precise” and “expected” 
sets were evaluated separately). Mantel tests were each based on 
10,000 graph permutations, and for all statistical analyses we set an 
α-level of 0.05. We did not evaluate correlations between “precise” 
and “expected” matrices because contact definitions are mutually 
exclusive and would not be concurrently implemented when model-
ing real-world systems. Code for polygon and network creation can 
be found in Appendix S1.

F I G U R E  5   Implications for real-time 
location system accuracy on proximity-
based contact determination. Reported 
point locations (dark blue) may not 
necessarily represent true locations, 
but rather, will fall within a certain true 
location range (beige). As such, in-contact 
points like those shown in the inset figure 
may misrepresent interactions within 
the tracked population, if true locations 
actually fall outside of contact-threshold 
distances (light blue) from one another
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2.2.4 | Visual contact network creation

Primate social behaviors are often driven by visual cues (Bielert & Van 
der Walt, 1982; Janson & Di Bitetti, 1997). Recent research utilizing 
baboon-tracking RTLS data has indicated that in these populations, in-
dividuals make decisions about how to move based on the movement of 
nearby individuals (Strandburg-Peshkin et al., 2015), but it is unclear to 
what extent specific visual triggers drive these behaviors. By evaluating 

what behavioral cues may exist within animals' visual fields, researchers 
can better understand what drives decision making in study populations.

We generated a directed, time-aggregated, bipartite visual con-
tact network, showing when baboons were observed within the visual 
fields of others over the study period (Figure 4c). To do so, we first 
created a visual field polygon for each individual at each 1-s timestep 
(t). This polygon set, {PolyVIS}, was comprised of inverted triangles 
originating from GPS neck collar locations, with 100-m heights, and 
angles of 120°, 30°, and 30° (Figure 4b). Vertex angles were based 
on those of human binocular visual fields (Karmakar, Pal, Majumdar, 
& Majumdar, 2012), as we could not identify analogous information 
for olive baboons. We assume all movement recorded by GPS neck 
collars equate to movement of associated visual field polygons. As 
relatively small movements may have been indicative baboon head 
movements potentially changing the position of their visual fields, we 
set an immobility threshold of 0.0 m (i.e., every observed movement, 
no matter how small, shifted polygons' spatial positioning).

We initially defined “contact” as occurring when a GPS point, 
locit, intersected a polygon, PolyVISit (i.e., distance between locit and 
PolyVISit equaled 0). We adjusted this SpTh to account for accuracy of 
the baboons data set (i.e., approximately 100% of points fall within 
±0.26 m from true locations) using the methodology described in 
Section 2.3.3. By sampling 1,000,000 in-contact point location pairs 
from the multivariate distribution  [[0,0,0,0],(0.26∕3.89)2I], we de-
termined that a SpTh value of 0.109 m likely captures ≥ 99% of con-
tacts, as previously described. Edges in this bipartite network, with 
independent node sets {PolyVIS} and {loc}, were weighted by con-
tact frequency over the study period. We report the mean per-cap-
ita number of expected contacts per second, as well as the mean 
observed duration of contacts and daily node degree (i.e., number 
of baboons within individuals' visual fields). Code for visual contact 
network creation and summarization can be found in Appendix S2.

3  | RESULTS AND DISCUSSION

3.1 | Calf networks

All ANOVA results indicated that differences in network metrics 
existed, with p-values < 2.2e−16, and post hoc Games–Howell test 

F I G U R E  6   Potential interpretations 
of calf-polygon intersections. (a) Head-
polygon intersections may be indicative 
of grooming or butting events. (b) 
Body-polygon intersections may indicate 
intercalf bumping. (c) Concurrent 
intersections of multiple body sections 
may suggest mounting behavior. 
These interpretations are not wholly 
representative of all interaction types that 
may exist in the tracked population and 
are not mutually exclusive

F I G U R E  7   Extended 0.56-m contact thresholds around calf-head 
and calf-posterior polygons. In “expected” contact networks, contacts 
occur when polygon edges are within 0.56-m of one another
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results are shown in Table 3. On average, “expected” contact net-
works consistently had greater contact durations and per-capita sum 
contacts than their “precise” counterparts, highlighting the effect of 
relatively large SpTh values on network realization. Our results sug-
gest that these metrics scale with polygon size. That is to say, just as 
increasing SpTh values lead to inflated contact frequency in point-
based proximity contact networks (Dawson et al., 2019), our work 
here suggests that the presence of larger polygons translates to 
increased probability that polygons intersect, and therefore more-
frequent and longer-duration contact events. Average node degree 
generally followed the same trend, but all graphs aside from the 
precise-set “head.head” one were nearly complete.

We also observed strong correlations between intra-set graphs 
(Figure 8). Mantel tests suggested that all intra-set matrices were 
related, with a p-value < .001. We found that “fullBody” graphs were 
consistently moderately to highly correlated with others, which 
is not surprising given that the “head.head” and “head.posterier” 
graphs were subsets of the former. Furthermore, in the case of the 
expected-set “head.head” and “head.posterier” graphs, when graphs 
were not subsets of one another but polygons involved in contacts 
overlapped (Figure 7), we observed a relatively high correlation 
value.

The presence of a moderate correlation between the precise-set 
“head.head” and “head.posterier” graphs, which did not overlap, is 
especially interesting. Though we did not examine specific dyadic 
relationships and potential correlations at the dyad level, our find-
ings suggest that animals with more head-to-head contacts will likely 
report increased head-to-posterior contacts as well. This means that 
when modeling social relationships in cattle populations, it may be 
sufficient to use head-to-head interactions alone to identify dyads 
with high social affinity. On the other hand, this is not necessarily the 
case for modeling pathogen transmission. Assuming that our “pre-
cise” and “expected” networks reflect true interactions at least to 
some extent and that observed contacts are not solely a function of 
differences in polygon sizes, our results suggest that head-to-head 
contacts occur less frequently than head-to-posterior contacts, but 
the two contact types are inter-related in this system. Presumably 

then, under the assumption that probability of transmission given 
contact is stable, RTLS-derived direct pathogen transmission mod-
els of similar systems wherein only head-to-head contacts are effec-
tively represented (Chen, Ilany, White, Sanderson, & Lanzas, 2015; 
Dawson et al., 2019) likely under-represent dyadic interactions 
where pathogens may be transferred from the posterior of one ani-
mal to the mouth of the other, or vice versa.

We must note here that these findings are based on analyses 
of data collected over a single day and therefore may not be wholly 
reflective of contact patterns in this population. That said, we have 
demonstrated that transforming point locations into bodily poly-
gons (e.g., animal heads, and posteriors) allows us to characterize 
observed contact events based on what polygons intersect (e.g., 
head-to-head). By doing so, we gain the ability to assess how dif-
ferent modes of contact, which may be indicative of different social 
behaviors (Figure 6), may affect pathogen transmission. Thus, con-
tacts involving RTLS-derived polygons can provide insight into both 
physical contact-mediated direct pathogen transmission events, 
which are difficult, if not impossible, to observe in many field studies 
(Blyton et al., 2014).

3.2 | Baboon network

We found that, on average, baboons observed 5.39 (SD = 1.02) other 
tagged individuals at any given second and visual contacts lasted an 
average of 3.67 (SD = 4.95) seconds. The maximum duration of a 
visual contact was 701 s (i.e., ≈12 min), and the average daily degree 
was 18.13 (SD = 1.74). It is necessary to note that, though we defined 
“visual contacts” as instances when baboon points were observed 
within visual field polygons, in actuality, observers may not have 
necessarily been actively watching “contacted” individuals during 
these time points (e.g., observers' eyes may have been closed, they 
may have been otherwise focused on other objects). Furthermore, 
we assumed that baboons' views were unobstructed and viewing 
distances were stable during the study period, which is almost cer-
tainly an oversimplification of real-life vision. Future studies may 

TA B L E  3   Mean network connectivity metrics for contact networks with and without RTLS accuracy adjustment (i.e., “expected” and 
“precise” network sets, respectively)

Contact networks Network density Node degreea  Contact durationa 
Per-capita sum 
contactsa 

Precise

fullBody 1.00 68.86a (0.43) 54.28a (123.08) 3,737.23a (1,291.51)

head.head 0.88 61.06b (4.24) 7.01b (15.00) 428.11b (4.24)

head.posterior 0.99 68.42c (0.88) 27.44c (88.23) 1,877.51c (0.88)

Expected

fullBody 1.00 68.97a (0.17) 132.40d (220.5) 9,131.97d (2,782.42)

head.head 1.00 68.80a (0.50) 40.33e (88.75) 2,774.80e (0.50)

head.posterior 1.00 68.97a (0.17) 111.30f (203.26) 7,676.43f (0.17)

aMeans followed by different letters differ (p ≤ .05) from other values within the same column according to post hoc Games–Howell tests. Standard 
deviations are reported in parentheses. 
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incorporate remote-sensing, or other geospatial data into visual field 
polygon generation procedures to better assess potential visual field 
obstruction. For example, recent work has demonstrated that LiDAR 
technology can be used to delineate the size and shape of individual 
trees in a forest (Schendryk, Broich, Tulbure, & Alexandrov, 2016). 
By overlaying visual field polygons onto 3D surfaces such as those 
described by Schendryk et al. (2016), it may be possible to introduce 
visual field obstruction by area vegetation in visual contact evalu-
ation and analysis. With that in mind, however, our current results 
suggest baboons may closely monitor a large proportion of troop 
members without focusing too long on specific individuals, an act 
which would greatly assist with making the collective-movement de-
cisions described in previous work (Strandburg-Peshkin et al., 2015).

We did not examine when resources (e.g., food and water) or 
observed interactions (e.g., interbaboon contacts) occurred within 
individuals' visual fields, but our methods can easily be used to do 
so. Furthermore, visual contact networks, like the one demonstrated 
here, can provide researchers with the means to evaluate visual cues 
preceding animal behaviors. By utilizing procedures for creating con-
tact networks from RTLS data in conjunction with methodologies for 
analyzing animal movement patterns (Liu et al., 2015; Strandburg-
Peshkin et al., 2015; Chakravarty, Cozzi, Ozgul, & Aminian, 2019) or 
distance sampling procedures (Thomas et al., 2010), researchers can 
test hypotheses pertaining to animals' reactions to, or awareness of, 
visual stimuli.

3.3 | Data processing considerations

Previous work has described in detail how difficult defining animal 
interactions from RTLS point data can be, as “contact” definitions 
must be specific to the system researchers are attempting to model 
(Craft, 2015; Farine & Whitehead, 2015; White et al., 2017). When 
defining point-based contacts, researchers must clearly describe 
their rationale for selecting contact definitions, and because each 
definition inherently makes a number of assumptions (e.g., animals 
outside a given distance threshold do not pose an infection risk), 
network modelers must also acknowledge these unique assump-
tions and associated limitations in their work (Dawson et al., 2019). 
Defining polygon-based contacts is less ambiguous, as interactions 

occur when spatial objects (i.e., points, lines, or polygons) intersect 
(Mersch et al., 2013). As we have demonstrated, however, much like 
when defining a SpTh for point location-based contact events, re-
searchers must take care to appropriately define the desired shape 
and size of desired polygons, as polygon areas likely influence down-
stream contact network metrics. Unfortunately, just as when defin-
ing point-based contacts from RTLS (Dawson et al., 2019) there is no 
definitively “correct” polygon size and shape parameters that we can 
recommend. Without some kind of confirmation that contacts oc-
curred (e.g., visual confirmation and genetic similarity), researchers 
must rely on assumed interactions to inform their models. In these 
cases, researchers must take care to ensure that their assumptions 
are reasonable and explicitly stated.

That said, one thing that researchers can control to some extent 
is the probability of capturing true contact events involving tracked 
individuals. The ability of RTLS data, polygon or otherwise, to de-
scribe animal contacts is ultimately constrained by RTLS accuracy. 
If RTLSs are 100% accurate (i.e., all reported fixes fall within ±0.0 m 
of true locations), researchers can be confident that observed edges 
in contact networks actually represent real-world contacts. When 
RTLS accuracy is <100%, however, we cannot be completely sure if 
contacts truly occurred. In the case of the baboons RTLS, for exam-
ple, in which points fall within ±0.26 m of true locations (Strandburg-
Peshkin et al., 2015), individuals reported to be occupying the same 
locit may actually have been up to 0.52 m apart. To account for this 
inherent variability, we developed the multivariate location-sam-
pling procedure described in Section 2.3.3. By modulating SpTh 
values or polygon areas for point- and polygon-based contact net-
work generation, respectively, researchers can adjust contact defi-
nitions to ensure a majority of true contact events are captured and 
modeled. Increasing the SpTh/polygon area using our procedure 
will likely introduce noise into the system (Dawson et al., 2019), but 
without doing so, researchers cannot be confident that a majority of 
real-world contacts are truly represented in generated contact net-
works. Luckily, animal tracking technologies (e.g., global positioning 
system and radio telemetry tags) are advancing rapidly, becoming 
increasingly lightweight and accurate (Kays et al., 2015; Thomson 
et al., 2017). As these technologies advance, and newer devices are 
deployed, the need to inflate SpTh values will decrease, and resulting 
contact networks will better reflect real-world interactions.

F I G U R E  8   Calf network comparisons. 
(a) Correlation plot describing the sign 
and magnitude of correlations between 
“precise” networks. (b) Correlation 
plot describing the sign and magnitude 
of correlations between “expected” 
networks



     |  4713FARTHING eT Al.

Aside from the aforementioned nuanced difference in how 
contacts are defined, polygon data can be stored and processed 
in much the same ways as point location data (e.g., network data 
can be stored as adjacency lists, and edge lists). One process that 
necessitates additional consideration for polygon-based networks, 
however, is network randomization. Network randomization pro-
cedures traditionally involve randomizing point locations prior to 
contact network creation, generating null models wherein contacts 
occur at random, then comparing null and empirical models to test 
hypotheses about contact occurrence (Farine & Whitehead, 2015; 
Spiegel et al., 2016; Farine, 2017). Polygons derived from point 
locations can also be randomized to create null models using the 
same methodologies, but researchers must decide a priori if ran-
domization procedures will be implemented before or after polygon 
generation.

If polygons are to be oriented using gyroscopic data rather 
than RTLS data (i.e., if researchers do not rely on observed animal 
movements to define �it values), there would be no difference in 
randomization outcomes regardless of the chosen order. If polygon 
orientations are to be calculated using point location data alone, 
however, randomizing point locations prior to polygon derivation 
will also randomize subsequently calculated polygon orientations. 
Alternatively, if randomization procedures were to be implemented 
following polygon creation in this example (i.e., polygon locations 
themselves are randomized), polygon orientations will reflect those 
described in the empirical data set. Either randomization protocol 
described herein can be a useful tool for hypothesis testing and can 
be easily implemented through the “randomizePaths” function in our 
contact package.

4  | CONCLUSION

Using the methods described herein and the associated contact 
package for R, researchers can derive polygons from RTLS points. 
We have demonstrated these polygons are highly versatile for con-
tact network creation and can be used to answer a wide variety of 
epidemiological, ethological, and sociological research questions. 
We hope that by utilizing our methods and the tools provided, re-
searchers can vastly improve network-model realism and increase 
their abilities to draw inferences from RTLS data sets.
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