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Abstract

Advances in scientific computing have allowed the development of complex models that are being routinely applied to
problems in disease epidemiology, public health and decision making. The utility of these models depends in part on how
well they can reproduce empirical data. However, fitting such models to real world data is greatly hindered both by large
numbers of input and output parameters, and by long run times, such that many modelling studies lack a formal calibration
methodology. We present a novel method that has the potential to improve the calibration of complex infectious disease
models (hereafter called simulators). We present this in the form of a tutorial and a case study where we history match a
dynamic, event-driven, individual-based stochastic HIV simulator, using extensive demographic, behavioural and
epidemiological data available from Uganda. The tutorial describes history matching and emulation. History matching is
an iterative procedure that reduces the simulator’s input space by identifying and discarding areas that are unlikely to
provide a good match to the empirical data. History matching relies on the computational efficiency of a Bayesian
representation of the simulator, known as an emulator. Emulators mimic the simulator’s behaviour, but are often several
orders of magnitude faster to evaluate. In the case study, we use a 22 input simulator, fitting its 18 outputs simultaneously.
After 9 iterations of history matching, a non-implausible region of the simulator input space was identified that was 1011

times smaller than the original input space. Simulator evaluations made within this region were found to have a 65%
probability of fitting all 18 outputs. History matching and emulation are useful additions to the toolbox of infectious disease
modellers. Further research is required to explicitly address the stochastic nature of the simulator as well as to account for
correlations between outputs.
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Introduction

Complex computer models (hereafter called simulators) are now

being used in many scientific disciplines and are becoming

increasingly common in basic science, climate modelling,

communicable and non-communicable disease epidemiology and

public health [1–6]. The simulators’ utility for prediction and

planning relies on how well they are calibrated to empirical data

and how well they can be analysed to assess the validity of their

predictions [7,8].

Simulators can be calibrated using a multitude of approaches.

Simple ‘goodness of fit’ methodologies, such as least squares, are

often used, however these approaches are difficult to apply to high-

dimensional and computationally expensive individual-level sim-

ulators. More rigorous statistical techniques have been developed,

usually based around the concept of a likelihood function. These

techniques are very flexible, and can be used to fit a wide variety of

simulators, ranging in complexity. Nonetheless, implementing

likelihood-based inference techniques for complex simulators is

challenging, particularly when considering large-scale, missing or

partially observed data. Recent advances that have been usefully

applied in the field of dynamic epidemic modelling include

maximum likelihood via iterated filtering [9]; data augmented

and/or reversible-jump Markov chain Monte Carlo (MCMC;

[10–13]) and stochastic differential equations [14]. However, these

systems can sometimes become mathematically or computation-

ally intractable, leading to the development of various approxi-

mation techniques [15,16].

A common theme in approximation methods for dynamic

simulators is to replace dependence on the likelihood with outputs
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from simulator runs, since although a model’s likelihood may be

intractable, running the simulator is straightforward. These

approaches can be implemented in various ways, for example:

embedded in a particle filter [17]; using Approximate Bayesian

Computation [18–20]; or using pseudo-marginal methods [21].

Another technique that could be applied in this field is particle

MCMC [22].

Despite the variety of calibration methods, their application to

the analysis of complex simulators is lacking. A systematic review

of cancer simulators found that of 131 studies only two thirds (87)

provided any information on what methods were employed. Of

these only about a third (27) used a formal goodness of fit measure

(two used likelihood-based methods and 25 distance-based metrics,

such as least squares or chi-square) [23]. The remainder did not

state how the simulators were calibrated or used visual inspection

to assess how well the simulator described the data. Similarly, a

systematic review of simulators of HIV transmission in men who

have sex with men found only 18% of the 115 simulators had been

formally calibrated to data and remarkably that calibration had

become less common over time [24].

One of the key reasons that complex simulator calibration is

uncommon is that most formal methods (including distance-based

and likelihood-based measures) require that simulators are run

many times [25]. This poses a considerable problem for complex

simulators that require several minutes or even hours for the

evaluation of a single scenario, making most of the above

calibration methods utterly impractical. The problem is com-

pounded for stochastic simulators because hundreds or thousands

of realisations are required for each scenario. Current standard

methods for formal sensitivity and uncertainty analysis [26] are

also impractical for complex simulators because of the heavy

computational burden [27]. Simulator simplification, although

desirable, is not appropriate if a complex simulator is required to

satisfactorily address the research question and it increases the

probability of simulator inadequacy [25]. As the number of

simulator parameters increases, the number of runs required for

an adequate exploration of the parameter space increases rapidly.

Robust fitting and uncertainty analysis of complex simulators with

dozens of parameters is often impossible, even with increasing

computer power and advances in parallelisation. Another impor-

tant aspect of the calibration of complex models that remains

unaddressed in the epidemiology literature is that of model

discrepancy [25,28–30]. This represents an upfront acknowledge-

ment of the limitations of the complex model and helps tailor the

search for acceptable input parameters by providing a more

rigorous and realistic definition of match quality between the

model outputs and observed data (see section ‘History matching’).

In this work we present a novel method based on Bayesian

history matching, emulation and model discrepancy, that is

designed to address all of the above issues while simultaneously

avoiding unnecessary complexity. This method has the potential to

greatly improve the calibration of complex infectious disease

simulators. We present this in the form of a tutorial (section

‘Methods’) and a case study where we history match a dynamic,

event-driven, individual-based stochastic HIV simulator, using

extensive demographic, behavioural and epidemiological data

from Uganda (section ‘Results’). The online supplementary

material includes the details required for building an emulator

and a simulation study that demonstrates the performance of

history matching on synthetic data.

Methods

Motivation
A major issue that affects the calibration algorithms discussed so

far arises from simulators that are slow to evaluate. Although

computers are becoming increasingly powerful, running times of

hours or days are not uncommon (as modellers tend to develop

more complex simulators to exploit increased computing power).

This can render any calibration algorithm that relies on a large

number of simulator evaluations utterly impractical. Another issue

is that modern simulators tend to have a large number of inputs

and outputs and the task of matching several outputs while varying

a large number of inputs simultaneously can be very intensive

computationally. Both of these conditions can be addressed with

history matching and emulation.

History matching [28] is designed to identify the set of inputs

that would give rise to acceptable matches between the model

outputs and the observed data. It has three characteristics that

distinguish it from most calibration methods. Firstly, many

calibration algorithms (for example Bayesian MCMC) attempt to

make full probabilistic statements about the input values that are

most likely to match the simulator’s output to the empirical data.

This represents a challenging and computationally intensive task,

involving complex and frequently intractable calculations. Criti-

cally, often such detailed calculations are unwarranted as the

complex model is not thought to be an accurate enough

representation of reality to justify them. History matching instead

provides a more tractable calculation involving expectations and

variances, that is often of primary interest to modellers. Secondly,

history matching works by excluding parts of the input space that

are unlikely to provide a good match. These parts of the space are

known as implausible. The third characteristic is that the

implausible space is not excluded all at once, but in iterations of

the process, known as waves. As a result, the non-implausible space

(i.e. the complement of the implausible space), shrinks at each

iteration of the process.

The above characteristics give some desirable properties to

history matching. First, the calculations involved are far more

efficient and straightforward to implement. Second, the exclusion

of implausible space is possible without considering the full set of

inputs and outputs simultaneously, thus reducing the burden of

high dimensionality. For example, if the simulator fails to match

one output for a particular input value, then this value is

implausible regardless of the other outputs’ behaviour. This should

be compared to fully probabilistic approaches (for example full

Bayesian MCMC or maximum likelihood methods) which attempt

to model how likely an input is, usually using a likelihood function,

thus representing a far more complex calculation that must use all

Author Summary

An increasing number of scientific disciplines, and biology
in particular, rely on complex computational models. The
utility of these models depends on how well they are fitted
to empirical data. Fitting is achieved by searching for
suitable values for the models’ input parameters, in a
process known as calibration. Modern computer models
typically have a large number of input and output
parameters, and long running times, a consequence of
their increasing computational complexity. The above two
things hinder the calibration process. In this work, we
propose a method that can help the calibration of models
with long running times and several inputs and outputs.
We apply this method on an individual based, dynamic
and stochastic HIV model, using HIV data from Uganda.
The final system has a 65% probability of selecting an
input parameter set that fits all 18 model outputs.
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outputs and all observed data and information simultaneously.

Third, as the volume of non-implausible space shrinks with

consecutive waves, often to a tiny fraction of the original, the

simulator’s behaviour typically becomes more predictable and

smooth, as the range of the inputs is significantly smaller. Once

this point is reached, handling the full set of inputs and outputs is

normally more manageable: at this point more detailed probabi-

listic calibration methods can be employed if necessary (see section

‘Posterior sampling’). Finally, it is possible that a simulator is

incapable of matching the observation data, due to either incorrect

modelling assumptions, poor error specification, or coding errors.

History matching can identify this condition by characterising all

the input parameter space as implausible, whereas alternative

methods will always attempt to return a posterior distribution,

regardless of how well, if at all, the simulator fits the data.

A long established method for handling computationally

expensive simulators is to first construct an emulator: a statistical

model of the simulator that can be used as a surrogate [31]. The

simulator is first run at a manageable number of input values, to

provide training data to build the emulator. The emulator will give

a joint probability distribution of the simulator outputs for any set

of input values, and the distribution can be used both to provide

estimates of the outputs, and quantify uncertainty in the estimates.

Building an emulator will involve some computational effort in

obtaining the training data (the simulator runs) and fitting the

emulator to the data. However, once built, the emulator can

provide estimates (with a quantification of uncertainty) of the

simulator output near instantaneously, even for very large

numbers of inputs. Emulators enable rapid exploration of high

dimensional input spaces, and have been used within fully

probabilistic calibration [25,32,33], including simulators with high

dimensional output [34].

Emulators can be used within history matching if the simulator

is computationally expensive, as is the case in this work. History

matching together with emulation has been successfully applied

across a range of scientific disciplines including galaxy formation

simulations ([35,36] or for an overview see [37]), oil reservoir

models [28,38], systems biology models [39,40], climate models

[41] and rainfall runoff models [30].

History matching is a method designed for reducing the

simulator’s input space but is not designed to make probabilistic

statements about the inputs, such as producing posterior

distributions. Thus, it can be seen as a pre-calibration method

or as a calibration method but in the broader sense. We would

assert that for many situations involving model development and

assessment, the results of a history match are all that are required

by the modeller. When specifying the initial input ranges, we may

have substantial uncertainty about what the acceptable input

values are, so that the acceptable region of the input space (that

would contain say the posterior distribution) is a tiny proportion of

the initially specified input space, and thus hard to discover. The

iterative nature of history matching and the fact that it discards the

implausible space instead of looking for input values that are close

to the empirical data simplify significantly this task. It is also

important to bear in mind that alternative ‘probabilistic’

calibration methods would most likely struggle with a model of

the complexity and input-output dimensionality such as the one

studied here. Therefore, should one wish to probabilistically

calibrate a well tested and accurate simulator, it is still

advantageous to greatly reduce the input space under consider-

ation first, using history matching as a precursor.

We continue this tutorial by describing how history matching is

set up (section ‘History matching’), and we then present the

procedure of history matching (section ‘Procedure’) along with a

toy example that illustrates the fundamental concepts. The tutorial

then proceeds with two more technical sections, one containing

details on how an emulator is built (section ‘Emulation’), and

another describing an essential component of history matching,

the implausibility measure (section ‘Implausibility measure’).

Finally, we present an approximate method for drawing samples

from the simulator’s posterior distribution (section ‘Posterior

sampling’).

History matching
History matching assumes the existence of a physical process y

that is measured through observations z (Fig. 1). The acquisition of

observations z takes place with finite accuracy and introduces

some uncertainty, which we term observation uncertainty (OU).

History matching also assumes the existence of a simulator

(computer model) that attempts to describe the process y. The

simulator has p inputs (parameters) x, assumed to be continuous

x[Rp. We consider a stochastic simulator: a simulator which when

run twice at the same value of x can produce different outputs.

We suppose that the simulator output consists of a vector of r
quantities, which we denote with the vector f (x)~
½f1(x), . . . ,fr(x)�[Rr. To represent the stochastic nature of the

simulator, if we keep the input vector x fixed and run the simulator

K times, we would observe, for the kth run, with k~1, . . . ,K :

fi,k(x)~gi(x)zEi,k, ð1Þ

where gi(x) is the mean value of the ith output (if the simulator

were to be run repeatedly at the same input value x), and Ei,k is a

random variable with expectation 0.

We suppose that the physical process y corresponds, to some

level of accuracy or tolerance, to a realisation of the simulator

output f (x), at some particular input, rather than the mean output

g(x)~½g1(x), . . . ,gr(x)�. In our search for non-implausible inputs,

we need to take into account the variability of E~½E1, . . . ,Er�
around g(x). We refer to this term as Ensemble Variability (EV).

As mentioned earlier, the calibration of complex simulators

can be infeasible if the calibration method depends on a large

number of simulator evaluations that take considerable time to

complete. For this reason, we rely on a statistical model of the

simulator, known as an emulator, which is trained using a

relatively small number of simulator runs and which we use to

provide an estimate of g(x) in a fraction of the time required for a

simulator run. The emulator represents our beliefs about the g(x)
at all, yet to be evaluated inputs x, and our uncertainty about

such values. The fact that the simulator (code) is not evaluated for

every possible value of x, creates another source of uncertainty,

which we term Code Uncertainty (CU) and is quantified via the

emulator.

There is one final source of uncertainty, which is important

though perhaps the most difficult to consider. Due to our

incomplete understanding of the process y and our inability to

model all of its aspects, we do not believe the simulator to be a

perfect representation of reality [28]. This has three implications

for calibration. Firstly, an input that gives a good match to

historical data will not necessarily give a good prediction of future

data; the simulator may be overfitted. Secondly, an input that does

not give a good match to one physical output quantity may still
give a good prediction of another physical output quantity, if the

simulator models some quantities more accurately than others.

Thirdly, if the inputs are physically observable quantities (that

could, in principle, be learnt independently of the simulator),

failing to account for an imperfect simulator can lead to

History Matching of Complex Infectious Disease Models
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overconfident posterior distributions that are centred on the wrong

values [42].

We refer to this final source of uncertainty as Model

Discrepancy (MD) [25]. Incorporating model discrepancy protects

against overfitting, ensures that we do not exclude possible values

of future observations, when the exclusion would be unwarranted,

is necessary for inferring the true values of simulator inputs, when

the notion of a true input value is clearly understood, and is

required for making realistic forecasts ([35,43]).

In summary, we link the observation of the physical process to

the best simulator input, which we denote by x
�

via

z~g(x
�
)zwzEzd, ð2Þ

where w is a vector of errors representing observation uncertainty,

E is a vector of errors representing ensemble variability, d is a

vector of errors representing model discrepancy, and w, E, d and

g(x
�
) are judged to be independent [25].

Procedure
Fig. 2 shows a typical history matching workflow. The first step

is the selection of a number of input values (design points) at which

the simulator is run. The initial inputs are chosen using a maximin

Latin hypercube design [44], which generates uniformly distrib-

uted points, but also aims to fill the entire input space, by

maximising the minimum distance between the points generated.

The number of points n in this initial design depends on the

available computational resources. A very approximate rule of

thumb is to use at least n~10p for training the emulator and

nu~p points for validation [45].

Once the initial design space, D, is specified, the simulator is run

at the selected points x[D. Following the notation set out in

equation 1, we construct r separate emulators: one for the mean of

each output gj(x), with j~1, . . . ,r. For the j-th output, the

training data takes the following form. We choose the training

inputs x1, . . . ,xn and for each input value xi, we run the simulator

K times, to generate observations fj,1(xi), . . . ,fj,K (xi). We then

calculate the sample mean and variance of the simulator runs at

input xi:

ĝgj(xi)~
1

K

XK

k~1

fj,k(xi), ð3Þ

ŝs2
j (xi)~

1

K{1

XK

k~1

(fj,k(xi){ĝgj(xi))
2: ð4Þ

The training data point for input xi is then (xi,ĝgj(xi)), where

ĝgj(xi) is an estimate of gj(xi). The number of runs (K ) per input

point are determined by the simulator’s complexity and the

available computational power. A relatively large number of

repetitions (e.g. Kw25) will ensure that the error in the estimate is

approximately normally distributed with expectation 0 and

variance ŝs2
j (xi)=K even if the individual fj,k(xi) terms are not

normally distributed. Once we have built the jth emulator, we can

efficiently obtain an expected value of gj(x) and variance for any

x, in particular for input values where we have not run the

simulator. We denote this expectation and variance by E�½gj(x)�
and Var�½gj(x)�, where the superscript � indicates that the

expectation and variance refer to code uncertainty: the fact that

Fig. 1. History matching. The physical process y is observed via z and described by the simulator output f (x). The simulator is substituted by the
emulator for computational efficiency. The question marks indicate the various sources of uncertainty present in the system.
doi:10.1371/journal.pcbi.1003968.g001

Fig. 2. History matching workflow. The simulator is evaluated at carefully selected design points. Its output is used to train the emulator, which,
with the help of the implausibility measure, determines the parts of the input space which are non-implausible (NI). The simulator is then evaluated at
set of design points from the non-implausible space and the procedure is repeated until one or more stopping criteria are met.
doi:10.1371/journal.pcbi.1003968.g002

History Matching of Complex Infectious Disease Models
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gj(x) is an uncertain quantity. Other approaches of emulating

separately the simulator’s mean and variance are also possible

[33,39,40]. It should be noted that often some of the outputs are

difficult to emulate in the first few waves, in which case we would

emulate a subset of the r outputs initially, emulating the remaining

outputs in later waves, when the process becomes easier due to the

reduced size of the input space. More detail on emulation is given

in section ‘Emulation’.

Fig. 3(a) shows a simple example of a one dimensional emulator.

The (toy) simulator used is the deterministic function

f (x)~ sin (0:04px). Because the simulator is deterministic, it

holds that g(x):f (x). The value of f (x) is considered unknown

apart from the six points x~f0,10,20,30,45,50g where the

simulator is run and are represented by the black dots in the

figure. The blue line is the emulator’s posterior mean, and the red

lines represent its posterior uncertainty (95% CI). The 3 horizontal

lines represent the empirical data (z~{0:7) and the 95% CI

(+0:06) that we use to history match the simulator.

The next step involves choosing an implausibility measure and

defining its various components. The implausibility is an essential

element of history matching and is a measure that estimates

whether the input x is likely to result in an output that will match

the observations. It essentially weighs the difference between z and

E�½g(x)� with all the uncertainties that are present in the system.

The implausibility is large when the emulator’s posterior mean is

far from the empirical data, relative to the uncertainties present in

the system (observation and code uncertainty in this case). An

analytical description of how the implausibility can be formulated

is provided in section ‘Implausibility measure’.

Fig. 3(b) shows the implausibility for the emulator and empirical

data from Fig. 3(a). The horizontal green line is an implausibility

cut-off, which determines whether an input x is implausible or not.

The implausibility plot shows that a match between the simulator’s

output and the empirical data is unlikely to be found for values of

x smaller than 30 and larger than 45.

With the emulators and the implausibility measure at our

disposal we can then carry out two key functions of history

matching: the first is to sample the non-implausible space and

study its distribution. This can reveal input combinations that can

lead to acceptable matches, correlations between inputs and

Fig. 3. Example emulator and implausibility for toy simulator [f (x)~sin(0:04px)]. Panel (a) shows an emulator of the toy simulator
f (x)~ sin (0:04px) (black dashed line). The value of f (x) is considered unknown apart from six points where the simulator is run and are represented
by the black dots in the figure. The blue line is the emulator’s posterior mean, and the red lines represent its posterior uncertainty (95% CI). The 3
horizontal lines represent the empirical data (mean value and 95% CI) that we use to history match the simulator. Panel (b) shows the implausibility
for the emulator and the empirical data shown in panel (a). The implausibility is large when the emulator’s posterior mean is far from the empirical
data, relatively to the uncertainties present in the system (observation and code uncertainty in this case). The horizontal green line is an implausibility
cut-off, which determines whether an input x is implausible or not.
doi:10.1371/journal.pcbi.1003968.g003

History Matching of Complex Infectious Disease Models
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detailed insight into the model’s structure. The second function is

the creation of a design that is space filling over the current non-

implausible space, which will be used to run the simulator in the

next wave (iteration) of history matching.

The simplest method for sampling the non-implausible space, is

to draw samples uniformly from the entire input space and reject

those that fail the implausibility criteria. This method is

computationally straightforward, but it can become inefficient

when the non-implausible space is a tiny fraction of the original

space, which is often true, especially in later waves. A method for

solving this problem using an evolutionary Monte Carlo algorithm

was proposed in [46]. In this paper, we propose a simpler but also

effective method. Suppose that in wave i we have a number of

non-implausible points x. For each of these, we draw k samples

from a p{variate normal distribution that is centered on the value

of the generating point. The ith wave implausibility is then

evaluated on the new samples and the variance of the normal

distribution is selected so that a small percentage of them (&20%)

are non-implausible. The low acceptance rates should ensure that

the new samples are sufficiently different from the old ones. This

method can efficiently generate an adequate number of data

points that can be used in subsequent waves.

A subset of the non-implausible samples drawn are then used to

run the simulator and repeat another wave of history matching.

The code or emulator uncertainty decreases with each iteration for

the following reasons. At each wave, the emulators are only

constructed over a smaller region of input space compared to the

previous wave, and therefore the mean of the simulator outputs

are usually smoother functions of the input parameters and hence

easier to emulate accurately. Also there is a higher density of

simulator runs in the new reduced input space, which again leads

to improvements due to the Gaussian process part of the emulator

as described in section ‘What is an emulator?’. There may be

additional benefits due to active variable selection as discussed in

[35,37], and new outputs that were previously difficult to emulate

may now become available. A major reason for the power of the

history matching approach described here, is due to the above

improvements to the emulation process at each wave, allowing the

iterative exploration of complex input spaces.

Fig. 4 shows the second wave of history matching for the

running example of this section. The simulator was run for the

non-implausible value of x~36 and this point was included in the

training data. Note how the emulator’s posterior variance has

decreased in the region of interest. Consequently, the non-

implausible region has shrunk dramatically, indicating that a

match can only be found for 30:5 *v x *v 32:5 and 42:5 *v x *v 44:5,

where indeed the function f (x) takes values between 20.8 and 2

0.63.

The procedure can continue with more waves until one or more

stopping criteria are met. One such criterion is when all the input

space is deemed non-implausible, meaning that the simulator

cannot match the observations given the current error specifica-

tions. In this case one would then vary the size of the model

discrepancy to determine how large it would have to be to obtain a

match: a very large model discrepancy would suggest that the

simulator is inadequate as a model for the physical process in

question, and that further model development is required.

Another stopping criterion occurs when the emulators have a

posterior variance smaller than the remaining uncertainties in the

system (the observation uncertainty, model discrepancy and the

ensemble variability), as this condition implies that the non-

implausible space contains acceptable matches and is unlikely to

decrease in size in the next iteration, unless the remaining

uncertainties in the system can be revised and decreased as well.

Here we would check the acceptable matches against any other

outputs that were not used in the emulation process. A final

condition for stopping could be the fact that the simulator runs

obtained in the current wave are close enough to the empirical

data and we do not wish to continue any further. In these two

cases, we would investigate the sensitivity and robustness of the

non-implausible region obtained from the history match, to

alterations in the observation uncertainties and model discrepancy

[47].

Emulation
What is an emulator? An emulator represents our beliefs

about the behaviour of an unknown function. In this application,

where the simulator is stochastic, the unknown function is taken to

be the mean of the jth output of the simulator denoted as gj(x).

This function is observed (with error in the stochastic case) only at

a limited number of points, D~fxig for i~1, . . . ,n, known as

design points. An emulator also has a number of parameters h that

determine its characteristics, (e.g. smoothness), the estimation of

which is referred to as training. The emulator provides a

probability distribution for the mean of the simulator’s output at

an untested input point x, conditional on the simulator runs ĝgj(D)

and an estimate of the parameters ĥh, i.e. p(g(x)Dĝgj(D),ĥh).

The emulators we consider in this paper have the form:

gj(x)~
Xq

i~1

hi(x)bizu(x): ð5Þ

The first part is a regression term, where hi(:) are known

deterministic functions of x and the bi are the regression

coefficients. The second part of the emulator is a stochastic

process, known as a Gaussian process, which is stationary, with

zero mean and constant variance [25,48].

For a number of discrete points x, the model of equation 5

implies that gj(x) will follow the joint normal distribution

p(gj(x)Dh)~N (
Xq

i~1

hi(x)bi,s
2c(x,x’)): ð6Þ

The summation term represents the emulator’s mean, s2 is the

variance parameter and c(x,x’) is the correlation function of the

Gaussian process. The emulator’s parameters are the triplet

h~fb,s2,hcg, with hc being some parameters specific to the

correlation function c(x,x’) [49]. Details about the correlation

function and the specifics of building an emulator including

the choices of hi(:) are provided in section ‘Extensions’ and in S1

Text.

Training. One way of training the emulator is by maximising

the likelihood L(ĝgj(D)Dh) to obtain point estimates

ĥh~ arg max
h
L(ĝgj(D)Dh)
� �

: ð7Þ

An alternative method is to define a prior distribution for the

parameters h and marginalise them in the Bayesian sense, either

analytically or numerically. In this work, we marginalise analyt-

ically the parameters b and s2. Since the marginalisation of the

parameters hc is not analytically tractable, we use point estimates,

as the computational simplicity of this approach was found to
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outweigh the benefits of numerical marginalisation. Such use of

point estimates has been successfully applied in [25,35] and for a

discussion see [32]. Another successful approach is not to view the

correlation lengths h as parameters to be estimated or margin-

alised over, but instead to view them as direct prior quantities, the

values of which can be asserted a priori using a variety of heuristic

arguments, as described in [35].

Validation. After training the emulator it is necessary to perform

some diagnostics that ensure that the emulator is sufficiently

accurate. [50] provide a number of such diagnostics, such as the

Mahalanobis distance, the analysis of prediction errors, the

pivoted Cholesky decomposition etc., that can diagnose most

failings of an emulator and suggest possible remedies. In the

present case study we reserved approximately 20 model runs at

each wave which were used to check the emulators’ predictive

performance.

Extensions. What we described above is a basic procedure

for building an emulator. Some useful extensions to the basic

methodology are given below.

Mean and correlation function. The regression functions h(:)
can have a very simple form, such as a constant h(x)~1 or a

simple polynomial hT(x)~½1,x�, with (:)T denoting vector

transpose. However, they can be arbitrarily complicated or have

a form that explains the data best. Examples of more complex

polynomials and relevant selection procedures can be found in

[35]. Similarly, there is a wide variety of correlation functions that

can be used, depending on beliefs about the simulator’s

smoothness and differentiability [48].

Transformations. In many cases, the Gaussian process model of

equation 5 might be better suited to a transformed version of the

simulator’s output. Applying a transformation that makes the

output more Gaussian can benefit the emulation process. Mapping

all the input ranges to the [0,1] range is another common practice

that helps fitting and interpreting the Gaussian process part of the

emulator.

Multiple outputs. The simplest way of emulating a multi-output

simulator is via an array of independent univariate emulators. This

is the approach we take in this paper. However, if one is interested

Fig. 4. Second history matching wave for the toy simulator f (x)~sin(0:04px). Panel (a) shows an emulator of the toy simulator
f (x)~ sin (0:04px) (black dashed line). The value of f (x) is considered unknown apart from seven points where the simulator is run and are
represented by the black dots in the figure. The blue line is the emulator’s posterior mean, and the red lines represent its posterior uncertainty (95%
CI). The 3 horizontal lines represent the empirical data (mean value and 95% CI) that we use to history match the simulator. Panel (b) shows the
implausibility for the emulator and the empirical data shown in panel (a). The implausibility is large when the emulator’s posterior mean is far from
the empirical data, relatively to the uncertainties present in the system (observation and code uncertainty in this case). The horizontal green line is an
implausibility cut-off, which determines whether an input x is implausible or not.
doi:10.1371/journal.pcbi.1003968.g004
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in correlations between outputs, multi-output emulators can take

these into account [34,51–53].

Implausibility measure
One dimensional implausibility. The implausibility mea-

sure is a function of the input x, and returns a large value if it is

unlikely that evaluation of the simulator at input x would result in

an acceptable match between the simulator’s output and the

empirical data, given all current uncertainties. For one output of

the simulator it can be written as

Ij(x)~
Dzj{E�½gj(x)�D

VozVc(x)zVszVm½ �1=2
: ð8Þ

The term Vo represents the variance associated with the

observation uncertainty. The Vc(x) term represents the code

uncertainty as given by the emulator and is hence set to

Vc(x)~Var�½gj(x)�. Vs is the ensemble variability representing

the stochastic nature of the simulator. For simplicity, it can be

assumed to be constant over the input space and set equal to the

mean of the sample variances obtained in the current wave:

ŝs2
j (x1), . . . ,̂ss2

j (xn). In the case study described in section ‘Results’

we make the more conservative choice of setting Vs equal to the

90th percentile of the sample variances. A more advanced but also

more complex method is described in [39,40], whereby the

variance of the simulator is also emulated allowing Vs to be made

an explicit function of x. Finally, the model discrepancy term is

represented by Vm. Ideally, its exact form is elicited from model

experts, who are asked to quantitatively assess the simulator

inaccuracy for different outputs, due for example to known defects,

missing components or insufficient modelling detail [35]. An

alternative approach is to incorporate discrepancy parameters

within the simulator, with the effect that the elicitation task is

broken down into considering individual sources of discrepancy

within the model ([30,54]).

In this work, we take the much simpler approach of considering

it equal to 10% of the variance of the simulator output training

data ĝgj(D) obtained at each wave. This conservative choice is

made for illustrative purposes, so that all of the different sources of

uncertainty will contribute to the final answer. A full analysis

would involve a combination of elicitation and sensitivity analysis

regarding the specific judgements made [47]. It should be noted

that the effect of incorporating any amount of discrepancy is

simply to expand the set of inputs that are classified as non-

implausible. Typically, at the final wave, we will still have a

reasonable proportion of inputs classified in both the implausible

and non-implausible sets, and the simulator user can investigate

the effects of changing the simulator discrepancy variance (or even

setting it to 0) without difficulty [47]. (If, however, all inputs are

classified as non-implausible at the final wave, inflating the

discrepancy variance at this stage would not change the

classification.)

A large value of Ij(x) would indicate that despite the

uncertainties present in the system, our prediction about the

simulator’s output for x is so far from the observed value zj , that

the simulator is very unlikely to match the data at that particular

point. However, we still need to find a value c for Ij(x) that will act

as a cut off, such that all x for which Ij(x)wc will be deemed

implausible. Such a cut off can be provided by Pukelsheim’s 3s
rule [55]. This rule states that any continuous unimodal

distribution contains at least 95% of its probability mass within a

distance of 3s from its mean, where s is its standard deviation: an

extremely powerful and general result. If we consider that for a

fixed x the random quantity zj{E�½gj(x)� has a unimodal

distribution, and suppose that x is an input that matches the

simulator’s output to the empirical data, then according to

Pukelsheim’s rule we would have Ij(x)v3 for at least 95% of the

time. The above argument provides a way of assessing the

magnitude of the one dimensional implausibility, without being

forced into making full distributional assumptions for all quantities

involved in equation 8.

Multi-dimensional implausibility. In the case of a multi-

output simulator, the simplest approach is to construct one

implausibility per output, i.e. Ij(x), for j~1, . . . ,r and consider the

maximum implausibility at x

IM (x)~ arg max
j

Ij(x): ð9Þ

Considering the second (I2M (x)) or third (I3M (x)) highest

implausibility for each x and applying appropriate cut-off values to

each measure is another option, as is implemented in [35].

The implausibility also comes in a multivariate form which is

given by

I(x)~(z{E�½g(x)�)T VozVc(x)zVszVmð Þ{1
(z{E�½g(x)�)ð10Þ

where z and E�½g(x)� are vectors of length r, and the quantities Vo,

Vc(x), Vs and Vm are all now covariance matrices of dimension

r|r. Often it can be difficult both to specify the full covariance

structure for Vo and Vm, and to calculate it for Vc(x) and Vs

(which would require more advanced multivariate emulators). A

common approach is to assume the outputs are uncorrelated and

hence that Vo, Vc(x), Vs and Vm are all diagonal matrices, with

the univariate variance that corresponds to the jth simulator

output (given in the denominator of equation 8) being placed in

the jth position in the diagonal. Cut-off values for I(x) can be

found for example from a suitably high percentile (e.g. 95%, 99%)

of the chi-squared distribution with r degrees of freedom, as I(x)
can be seen as a squared sum of variance normalised random

variables (see [35]).

Let us finally note that the above forms of implausibility (e.g.

IM ,I2M ,I ) along with their appropriately chosen cutoffs, can be

used simultaneously, and require a point x to have a low score in

all the above measures so as to be considered non-implausible.

Posterior sampling
By design, history matching excludes parts of the input space

that produce poor fits to the empirical data and leads to, where

possible, the generation of a large number of runs that give

acceptable fits to the observed data. Often this is sufficient for

model analysis, e.g. to help understand the biological or

epidemiological mechanisms underlying the physical system, and

model development to determine the next improvement to the

mathematical model and hence the next extension to the

computer code. However, history matching does not provide full

Bayesian posterior distributions for the uncertain quantities of

interest (for example, the input parameters). Were it the case that

full posterior distributions are required, for say a highly accurate,

well tested and well understood epidemiology model, we now show

how the results of history matching, specifically the identification

of the final non-implausible region of input space (which should

enclose the posterior distribution), can be used to obtain samples

from the posterior. Such information from the posterior can be
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used for many tasks such as comparing competing models, and

also when making forecasts into the future (a typical use of

epidemic models).

Let fxnig be the non-implausible samples from the last wave of

history matching. We formulate the following proposal distribu-

tion

P(x)~N (x; m̂m,kŜS) ð11Þ

which is a multivariate normal distribution, with mean chosen to

be the sample mean m̂m of the non-implausible samples fxnig and

with variance chosen to be k multiplied by the sample variance-

covariance matrix ŜS of the non-implausible samples. The constant

k is used to inflate the variance of the non-implausible samples, so

that the method explores a larger part of the input space, as this

was found to improve the sampling process. We define the

approximate likelihood of the input parameters x with observed

data z as

L(x) ~ p(zDx) ~ N (z; E
�
½g(x)�,V (x)) ð12Þ

with V (x)~VozVc(x)zVszVm. This follows from equation 2

combined with the additional assumptions that the observation

error w, model discrepancy E, ensemble variability d and the

emulator representation of g(x
�
) are all normally distributed. Such

normality assumptions for w and E are very common (see for

example [25]), and for the emulator this is simply equivalent to

having sufficient runs to ensure the emulator’s t-distribution can be

viewed as approximately normal, as is described in S1 Text. The

assumption of normality of the ensemble variability (which is

directly analogous to the assumptions made in standard regression)

may not be justified in some cases, however the above

approximations can still be accurate when Vs is smaller that the

other variance components so that their total V (x) can still be

considered approximately normal. More detailed modelling of Vs

is of course possible [39,40], and more complex distributions can

be specified, however this would only be warranted if the

epidemiology model was judged to be a sufficiently accurate

mimic of reality that the details of the distribution of its ensemble

variability were physically meaningful. In the case study described

in section ‘Results’, this was definitely not thought to be the case.

We assume that the prior p(x) is constant over the final non-

implausible region found from the history match. This is in many

cases reasonable as the volume of this region is often many orders

of magnitude smaller that the original input space, and hence any

prior that was not strongly informative would likely be approx-

imately constant over such a small space. Note however, that the

algorithm below can be easily adapted for any prior, by a suitable

scaling of the weights.

The algorithm proceeds as follows: we first use the proposal

distribution P(x) to generate a number of samples f~xxg. We then

calculate a weight for each sample as w(x)~L(x)=P(x). Finally,

we draw the desired number of posterior samples xp from the set

of f~xxg, with a probability defined by the weights w(x). Provided

the weights are reasonably well behaved, this will generate direct

draws from the approximate posterior p(xDz)!L(x)p(x).

Results

Simulator and empirical data
This case study was based on a research project that explored

the effects of partnership concurrency (overlapping sexual

partnerships) on HIV transmission in Uganda [56]. The simulator

used in the research study, named Mukwano, was a dynamic,

stochastic, individual based computer model that simulates

heterosexual sexual partnerships and HIV transmission. In an

individual based micro simulation model, the life histories of

hypothetical individuals are simulated over time in a computer

program. Each individual is represented by a number of

characteristics, of which some remain constant during simulated

life (e.g. gender and date of birth), whereas others change (e.g.

HIV status). Changes in personal characteristics result from events

such as the start and the end of sexual relationships. These events

are stochastic: if and when an event occurs is determined by

Monte-Carlo sampling from probability distributions. To generate

model outcomes for a simulated population, the characteristics of

the simulated individuals are aggregated. The simulator had been

fitted to empirical data in a number of scenarios by eye and by

changing the values of inputs, which control various demographic,

behavioural and epidemiologic characteristics of the simulated

population [56].

Births, deaths, partnership formation and dissolution and HIV

transmission were modelled using time-dependent rates. At birth,

simulated individuals were assigned to one of two sexual activity

groups (‘high activity’ and ‘low activity’) and to one of two

concurrency groups (‘high concurrency’ and ‘low concurrency’).

Each sexual activity group had associated male and female sexual

contact rates, which determined the rate at which individuals

formed new partnerships, which were of two types (‘short duration’

and ‘long duration’).

For the present case study, we apply our history matching and

emulation methodology to the primary baseline scenario from

[56], rather than fitting ‘by-eye’. Twenty behavioural and two

epidemiologic inputs were varied, including a mixing parameter,

which determines the tendency for individuals to preferentially

form partnerships with people in their own activity group, and an

input which determines the duration of the long and short

duration partnerships. The behavioural inputs are permitted to

take different values in each of three calendar time periods. This

enables sexual behaviour to vary over time. The full list of the 22

simulator inputs and their original plausible ranges is shown in

Table 1.

The simulator was history matched using 18 demographic,

behavioural and epidemiologic outputs that include male and

female population sizes, and male and female HIV prevalences at

three time points. They also include a number of outputs that

ensure that the prevalence and incidence of monogamous and

concurrent sexual partnerships in the simulator closely matched

the data from the empirical population. The empirical data were

collected from a rural general population cohort in South-West

Uganda. The cohort was established in 1989 and currently consists

of the residents of 25 villages [57–59]. Every year, demographic

information on the cohort is updated, the population was tested for

HIV, and a behavioural questionnaire was conducted. In 2008,

this included questions that allowed the prevalence of monoga-

mous and concurrent short duration and long duration partner-

ships to be calculated. All 18 simulator outputs and their

calibration targets are shown in table 2. The intervals given for

each of the outputs represent the limits for an acceptable match,

and we consider them as 95% confidence intervals. Therefore,

their mean value is used to define the value of the observed data z,

and their difference is chosen to represent 4 times the square root

of the observation error Vo.

The simulator was run on a high performance cluster with 240

nodes. The run time for a single simulation varied between

10 minutes and 3 hours. One emulator evaluation on a standard

laptop took approximately 10{4 seconds, a speed ratio in the
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Table 1. Simulator input parameter description and ranges.

Number Input description Abbr. Min. Max.

1 Proportion of men in the high sexual activity group mhag 0.01 0.5

2 Proportion of women in the high sexual activity group whag 0.01 0.5

3 Mixing by activity group [E] mag 0 1

4 High activity contact rate (risk behaviour 1) [partners/yr]* hacr1 0 10

5 Low activity contact rate (risk behaviour 1) [partners/yr]* lacr1 0 2

6 Start year for risk behaviour 2 sy2 1986 1992

7 High activity contact rate (risk behaviour 2) [partners/yr]* hacr2 0 10

8 Low activity contact rate (risk behaviour 2) [partners/yr]* lacr2 0 2

9 Start year for risk behaviour 3 sy3 1998 2002

10 High activity contact rate (risk behaviour 3) [partners/yr]* hacr3 0 10

11 Low activity contact rate (risk behaviour 3) [partners/yr]* lacr3 0 2

12 Mean HIV transmission probability per sex act during primary stage of infection (mean of male to female and
female to male transmission probabilities)

atp 0 1

13 Ratio of male to female/female to male transmission probabilities rtp 1 3

14 Proportion of low activity men in high concurrency group lmhc 0 1

15 Proportion of low activity women in high concurrency group lwhc 0 1

16 Male concurrency parameter in high concurrency group (risk behaviour 1) mchc1 0 1

17 Female concurrency parameter in high concurrency group (risk behaviour 1) fchc1 0 1

18 Male concurrency parameter in high concurrency group (risk behaviour 2) mchc2 0 1

19 Female concurrency parameter in high concurrency group (risk behaviour 2) fchc2 0 1

20 Male concurrency parameter in high concurrency group (risk behaviour 3) mchc3 0 1

21 Female concurrency parameter in high concurrency group (risk behaviour 3) fchc3 0 1

22 Duration of long-duration partnerships [years] dlp 5 20

These define the input parameter space over which the history match search is performed.
*The simulator input parameters that codetermine partnership formation. The actual rate of partnership formation in the simulator will vary from this due to adjustment
for concurrency and partnership balancing.
doi:10.1371/journal.pcbi.1003968.t001

Table 2. Description of simulator outputs and limits defined as an acceptable match.

Number Output description Abbr. Min. Max.

1 Population size in 2008 (male) psm 2986 3650

2 Population size in 2008 (female) psf 3374 4124

3 Average male partnership incidence in 2008 (partners/year) ampi 0.4 0.489

4 HIV prevalence in 1992 (male) p92m 0.084 0.112

5 HIV prevalence in 1992 (female) p92f 0.096 0.124

6 HIV prevalence in 2001 (male) p01m 0.07 0.09

7 HIV prevalence in 2001 (female) p01f 0.083 0.107

8 HIV prevalence in 2007 (male) p07m 0.06 0.084

9 HIV prevalence in 2007 (female) p07f 0.093 0.119

10 Point prevalence of men with 1 long duration partnership in 2008 (%) m1l 34.62 42.31

11 Point prevalence of men with 1 short duration partnership in 2008 (%) m1s 10.86 13.27

12 Point prevalence of men with 1 partnership (either type) in 2008 (%) m1 37.83 46.24

13 Point prevalence of men with 2+ long duration partnerships in 2008 (%) m2l 3.38 4.13

14 Point prevalence of men with 2+ short duration partnerships in 2008 (%) m2s 1.69 2.07

15 Point prevalence of men with 2+ partnerships (any combination) in 2008 (%) m2 8.66 10.59

16 Point prevalence of women with 2+ long duration partnerships in 2008 (%) w2l 0.85 1.03

17 Point prevalence of women with 2+ short duration partnerships in 2008 (%) w2s 0.42 0.52

18 Point prevalence of women with 2+ partnerships (any combination) in 2008 (%) w2 2.17 2.65

doi:10.1371/journal.pcbi.1003968.t002
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order of 107{109. A simulation study with synthetic data and a

smaller version of Mukwano, which demonstrates the validity of

history matching is included in the online supplementary material.

Wave 1
The first wave of emulators was trained using a 220 point

maximin Latin hypercube design [60]. A separate 20 point Latin

hypercube was used for generating the validation data. The

simulator was run K~100 times at each design point, to allow the

estimation of ĝgj(xi) and ŝs2
j (xi) with sufficient accuracy, for

subsequent use as plug-in estimates.

Univariate emulators were built and successfully passed the

validation tests mentioned in section ‘What is an emulator?’ for 16

out of the 18 outputs. The emulators used a third order

polynomial mean function (h(x)~½1,x,x2,x3�) and the Matérn

correlation function. If a more complex set of polynomials h(x)
was used, various linear model selection methods can be employed

as in [35,38]. The logit transformation was used for the outputs

that by definition lay in the [0,1] interval. Similarly, all inputs were

mapped to the [0,1] (unit interval) to facilitate the interpretation of

the hc parameters. Emulators for outputs 8, 9 did not validate in

the first attempt and rectifying this would have involved further

efforts such as generating more design points, or using more

detailed mean functions. These two outputs were left out of the

first wave analysis, but this poses no problem to history matching,

because the exclusion of non-implausible space does not require

considering all outputs at once (unlike a likelihood based

approach). All we require is a subset of outputs that will sufficiently

reduce the non-implausible space at the current wave. In

subsequent waves, the behaviour of these two outputs became

more regular, and they were included in the analysis.

Drawing a large ensemble of non-implausible points for

studying their distribution and for proposing the design for wave

2 was the next step in the analysis. 5:5:108 points were drawn from

a 22 dimensional uniform distribution in [0,1] and the implau-

sibility was evaluated for each one of them. The implausibility

used in the first wave was the maximum implausibility (equation 9)

with the uncertainties specified as described in section ‘One

dimensional implausibility’. On a regular laptop, the evaluation

would have taken approximately 5 hours. However, since the

whole process was very easy to parallelise, the evaluation was done

on a 240 node cluster, and was completed in less than 5 minutes.

Without the use of emulators and considering that the simulator

was around 106 times slower, and it was evaluated 100 times for

each scenario, this procedure would have taken around 1000

years! From the proposed samples only 21644 passed the

implausibility test, implying that the volume of non-implausible

space at this wave is &4:10{5 of the original input space.

Visualising the distribution of the non-implausible points is

conveniently done via minimum implausibility and optical depth

plots [35], such as the ones shown in Fig. 5. To construct the

minimum implausibility points, two inputs (i,j) are first selected

and a rectangular grid covering their range is formed. The non-

implausible points are placed in the respective bin of this grid,

according to the value of their (i,j)th element. The plot shows the

minimum implausibility value among all points in a given bin.

Assuming a sufficiently large number of non-implausible samples,

this kind of plot provides an empirical estimate of the minimum

implausibility that can be expected if we were to fix inputs (i,j) to a

particular value, and hence shows locations in (i,j) space that can

be ruled out as implausible, irrespective of the choices of all the 20

other inputs. The optical depth plots are constructed in the same

fashion, but instead of displaying the minimum implausibility per

grid point, they display an empirical estimate of the probability of

encountering a non-implausible point for a given set of values for

inputs (i,j). This estimate can be obtained from the ratio of non-

implausible to total drawn points per bin. They therefore provide

an estimate of the (higher-dimensional) depth of the non-

implausible region, conditioned on the inputs (i,j).

Fig. 5 shows the minimum implausibility and depth plots for the

percentage of men in high sexual activity group (mhag) and the

contact rate for high activity group in the first period (hacr1). This

figure shows that a match was unlikely to be found if both inputs

take a large value. Fig. 6(a) shows the implausibility and depth

plots for 8 of the most active inputs in wave 1. It is noticeable that

the contact rates for the low activity groups in the first two periods

(lacr1, lacr2), only lead to matches when they take a relatively

small value (v0:24). Finally, correlation patterns appear to

Fig. 5. Minimum implausibility (a) and optical depth (b) plots for inputs 1 and 4 in wave 1. Minimum implausibility plots show an estimate
of the minimum implausibility for different values of pairs of inputs. Optical depth plots show an estimate of the log10 probability of encountering a
non-implausible point for different values of pairs of inputs.
doi:10.1371/journal.pcbi.1003968.g005
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emerge between a few input pairs, such as between inputs mhag
and hacr1, and mhag and hacr3.

Waves 2–10
The design for wave 2 can be obtained by uniformly drawing n

points from the non-implausible space of wave 1. To ensure that

these points are sufficiently separated from each other, several n-

point designs were drawn and we then chose the one with the

maximum minimum (maximin) distance between its points. The

simulator was run at the selected design points and the whole

process was repeated up to the end of wave 9, where it was decided

to stop as 50% of the wave 9 simulator runs were non-implausible

(see section ‘Implausibility of the simulator runs’). A further 500

wave 10 runs were carried out to provide us with an estimate of

the probability that a wave 9 non-implausible point would actually

result in an non-implausible simulator run. This estimate was 65%

(see section ‘Implausibility of the simulator runs’).

During the course of the 9 waves, some modifications were

made to the history matching apparatus, which are described

below: for the first three waves only the maximum implausibility

was used, with a cut-off value of 3. Due to reduced rejection rates,

from wave 4 onwards an input x was deemed non-implausible if it

passed all 3 tests: IM (x)v3, I3M (x)v2:6 and I(x)v30. The latter

cut off was chosen as it approximately represents the 95% critical

value of a chi squared distribution with 18 degrees of freedom. For

the first 2 waves, Vm was set to a tenth of the simulator output

variability as described in section ‘One dimensional implausibility’.

The minimum between this value and 3 times the observation

uncertainty was chosen for waves 3{9, an illustrative choice,

thought to be conservative with respect to the opinion of the

Fig. 6. Minimum implausibility (below and left of diagonal) and optical depth plots (above and right of diagonal) for 10 key inputs
for waves 1,4,7,9. Minimum implausibility plots show an estimate of the minimum implausibility for different values of pairs of inputs. Optical
depth plots show an estimate of the log10 probability of encountering a non-implausible point for different values of pairs of inputs.
doi:10.1371/journal.pcbi.1003968.g006
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expert, which resulted in further increases in the rejection rates at

each wave. Finally, as the emulator uncertainty was fairly large in

the first 3 waves, it was decided from wave 4 onwards, to have 500

simulator runs per wave and also include in the training of the

emulators any simulator runs from previous waves that were

deemed as non-implausible.

Table 3 shows the acceptance rates for all 9 waves. The acceptance

rate for wave k is defined as the proportion of non-implausible

samples in wave k{1 that remain non-implausible in wave k,

multiplied by the acceptance rate of the (k{1)th wave. Thus, the

acceptance rates are a measure of the original input space shrinkage,

since they represent the proportion of points drawn at random from

the original input space that will be non-implausible after k waves.

At wave 9, the non-implausible region is a tiny fraction (10{11)

of the original input space, implying that we have learnt a large

amount from the history matching process.

For the first 5 waves, direct sampling from the input space and

evaluation of the various implausibilities could generate sufficient

numbers of non-implausible samples at a reasonable computa-

tional cost. The exclusion of large portions of inputs lacr1, lacr2,
hacr3, lacr3 from as early as the first few waves (e.g. see Fig. 6(b))

helped speed up the sampling process. From wave 6 onwards

however, this direct sampling method was proving inadequate. To

overcome this problem and as discussed in section ‘Procedure’,

10000 non-implausible samples from wave 5 were perturbed to

generate 20 samples each using a zero mean multivariate normal

distribution. The distribution’s variance was chosen such that the

rejection rate of the new samples using the wave 5 implausibility

was around 80%. These samples were then subjected to the wave

6 implausibility, which resulted in approximately 10000 wave 6

non-implausible samples. The same procedure was followed for

the subsequent waves. The implausibility plots for waves 4, 7, 9 are

shown in Figs. 6(b–d), which visualise the reduction of the non-

implausible space in successive waves.

Apart from visualising the non-implausible space, implausibility

plots can also reveal correlations that can exist between inputs:

Fig. 6(d) shows that for the proportion of men in the high activity

group (mhag) and for the high activity group contact rate in the

third period (hacr3), non-implausible runs are unlikely to be found

outside a narrow range of values. This is because if both are high

(or low), the average male partnership incidence in 2008 will be

unacceptably high (or low). It is only when one takes a high value

and the other a low one, or both take intermediate values, that the

partnership incidence output will fall within the acceptable limits.

A similar, although less correlated, relationship can be seen

between the proportion of men in the high activity group (mhag)

and the high activity group contact rates in the first and second

periods (hacr1, hacr2). In these cases, when either both inputs are

high or both are low, then the sexual behaviour outputs and the

trend in HIV prevalence outputs cannot be fitted simultaneously.

This is because if both are high then the very high levels of sexual

activity during earlier years necessitate a very low HIV transmission

probability in order to fit the earlier HIV prevalence output(s),

which results in either the later HIV prevalence output(s) being too

low, and/or the partnership incidence in 2008 being too high. A

similar argument applies if both are inputs are low. It should be

stressed that such insight into the model’s structure and the required

trade-offs between sets of inputs, can be readily obtained from a

history match analysis, without the need for a more detailed study.

Sensitivity of the implausibility measure
At the end of a history match, it is possible to experiment by

reducing the uncertainty terms in the implausibility measure and re-

evaluate the non-implausible space. This exercise can indicate

which terms are most dominant. It is important to note however,

that increasing the uncertainty terms at a latter wave is not possible,

as the space that would have been retained at earlier waves had we

used larger values for them cannot be recovered and the results will

be inaccurate: one would have to start all over again. For this reason

it is important to start history matching using our largest estimates

for the uncertainties we believe are present in the system, as these

can be reduced later but they cannot be increased.

Table 4 shows what percentage of the input space calculated as

non-implausible would be found as implausible if the respective

uncertainties were to be decreased by the percentages shown in the

first column. Improving the EV estimates could increase the

rejection rates, as it is shown in the 4th column of the table. We

should note however, that, unlike the other terms, EV cannot

become arbitrarily small, as it represents the stochastic variability

in the simulator’s output. Revising the observation errors could

also help rejecting more space, followed by building more precise

emulators (i.e. less CU) and revising the model discrepancy term.

Implausibility of the simulator runs
In this section we examine the fit of the simulator output to the

empirical data in successive waves. We first define the implausi-

bility for one output of the actual simulator runs as

IR
i (x)~

Dzi{ĝgj(xi)D

(VozVmzŝs2
j (xi))

1=2
, ð13Þ

with ĝgj(xi) and ŝs2
j (xi) the run sample mean and variance as

defined in equations 3 and 4. We also define the maximum

implausibility of a run at input x as IR
M (x)~ arg maxi (IR

i (x)).

Note that this version of the implausibility does not include code

uncertainty, as the simulator has been evaluated at x and that the

ensemble variability is estimated directly from the simulator run

(and so we may now describe runs as ‘acceptable’ if their

implausibility is low). Fig. 7 shows the implausibility of the

simulator runs in successive waves. In wave 9, 50% of the runs

were non-implausible while in wave 10, the non-implausible (or

acceptable) runs were 65% of the total number of runs, all coming

from a region that is a tiny fraction (10{11) of the original input

space. As we were then in a position to generate large numbers of

Table 3. Acceptance rates for the 9 waves, expressing the
probability that an input x drawn at random from the original

input space passes the nth wave’s implausibility test.

Wave 1 4:0:10{05

Wave 2 1:5:10{06

Wave 3 4:1:10{08

Wave 4 2:2:10{09

Wave 5 2:5:10{10

Wave 6 8:6:10{11

Wave 7 5:2:10{11

Wave 8 2:0:10{11

Wave 9 1:3:10{11

At wave 9, the non-implausible region is a tiny fraction (10211) of the original
input space, implying that we have learnt a large amount from the history
matching process.
doi:10.1371/journal.pcbi.1003968.t003
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acceptable runs from the non-implausible region with a 65%

acceptance rate, the history match was concluded.

Fig. 8 shows the time evolution of male and female HIV

prevalence from simulator runs from four different waves. The

empirical data are the male and female HIV prevalences in 1992,

2001 and 2007. The crosses represent the average observed values

for each year and the credible ranges (error bars) represent 2

standard deviations calculated from the sum of the observation

uncertainty and the model discrepancy for wave 9. Since we

assume that the physical process y is one realisation of the

simulator (barring the model discrepancy) and not its mean

output, Fig. 8 shows the run of each scenario x that best matched

the empirical data. Note the wave 1 runs entirely miss the targets

and that the majority of the wave 10 runs pass through them.

Finally, Fig. 9 shows all 18 simulator outputs in waves 1, 4, 7 and

10 and their convergence to the empirical data.

Posterior samples
In this section we present the results of the method described in

section ‘Posterior sampling’ for drawing approximate posterior

samples from the model. The non-implausible samples at the end

of wave 9 were fitted with a multivariate normal distribution. Its

covariance matrix was then inflated by a factor of k~2 and this

formed the proposal distribution P(x). The model likelihood L(x)
was defined as described in section ‘Posterior sampling’. Using

P(x), 200000 samples were proposed and their weights were

calculated from the ratio L(x)=P(x). From this set of 200000

samples, 10000 samples were chosen with probability defined by

their respective weights. The results are shown in Fig. 10, where

the shrinkage of the input space and the particular shape the

approximate posterior distribution takes for different simulator

inputs is evident.

Fig. 10 also shows that the model is over-parameterised with

flat posteriors over the permissible input ranges for 9 of the

inputs, implying that the available empirical data were not

informative for all the input parameters. Complex mechanistic

simulators, such as the one studied in this paper are not designed

to help us analyse a particular data set, but rather to help us

understand a real world system. As such, they can include

processes that we consider important for the understanding the

physical system, which however, may not be identifiable from the

available data. History matching helps with identifiability

problems, rather than covering them up: it allows us to quantify

Table 4. Percentage of the non-implausible space at wave 9 that would be calculated as implausible if the uncertainty shown in
the first row was reduced by the amount shown in the first column.

OE CU MD EV

% 19.8 11.8 10.7 54.8

% 45.4 24.9 21.9 91.4

doi:10.1371/journal.pcbi.1003968.t004

Fig. 7. Cumulative distribution function of simulator run implausibility IR
M (x) by waves. Each line represents the percentage of each

wave’s simulator runs with an IR
M (x) less than the value indicated by the x-axis.

doi:10.1371/journal.pcbi.1003968.g007
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how much information is in the data regarding the simulator’s

parameters and gives guidance as to what fresh data might be

needed to improve our system understanding. Furthermore, it is

unaffected by multiple modes or correlation ridges in the

posterior, which are typical manifestations of identifiability issues

and plague other calibration methods, such as those based on

MCMC.

In models of the complexity and the dimensionality such as the

one studied here, we would argue against reporting a single best

estimate of the parameters, as there is always likely to be some

uncertainty, that will be missed out by a single best estimate.

Additionally, lack of identifiability does not imply that a history

matched model is not useful. When using the history matched

model to make a prediction, we would run it at a range of inputs

Fig. 8. Simulator output (male and female HIV prevalence) in waves 1, 4, 7 and 10. The black lines show the average observed HIV
prevalence with 95% credible ranges.
doi:10.1371/journal.pcbi.1003968.g008

Fig. 9. Convergence of the simulator’s output to the empirical data with successive waves of history matching. Each of the 18 panels
shows the range of the target data (horizontal region) and the simulator’s output in waves 1 (red), 4 (yellow), 7 (blue) and 10 (green) (left to right
along the x-axis).
doi:10.1371/journal.pcbi.1003968.g009
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over the non-implausible space, to get a range of output values.

This range may still be informative (e.g. lead to the same decision).

Finally, if the non-implausible set leads to an unhelpfully wide

range of output values, we might then consider whether there are

other calibration data available, and whether these data could be

informative. The last point can be verified by looking at the related

model outputs over the corresponding set of non-implausible

inputs: the more the output values vary, the more informative new

calibration data will be.

Discussion

In this paper we presented a tutorial on history matching and

emulation. History matching is an iterative procedure that reduces

the simulator’s input space by identifying areas that are unlikely to

provide a good match to the empirical data. History matching

relies on the efficiency of emulators, which are a Bayesian

representation of the complex simulator and are parameterised

iteratively during history matching.

We presented a case study where we history matched a 22 input

simulator known as Mukwano, simultaneously fitting its 18

outputs. After 9 iterations of history matching, the non-implausible

input space was reduced by a factor of 1011. While evaluating the

entire input space, the final system had a 65% probability of

selecting a parameter set that fitted all 18 outputs, a percentage

that could have been improved further had we continued with

more iterations. This approach therefore, provides a method to

generate large numbers of runs that give acceptable matches to the

calibration targets, while at the same time dramatically shrinks the

non-implausible input space. The Mukwano model was found to

be in agreement with the observed data, various features of its

structure were discussed and the region of input space corre-

sponding to all acceptable matches was identified. A simulation

study, which used a smaller version of Mukwano for validating the

performance of history matching, is included in the online

supplementary material.

When employing this method, Bayesian emulator construction

has to be carefully implemented as otherwise the implausible space

rejection rate can be small, especially if the simulator’s output is

not a relatively smooth function of its inputs. This condition can

cause the code uncertainty (emulator’s posterior variance) to be

large and make it harder for the implausibility measure to reject

particular input values. A more careful emulator construction, e.g.

by using more detailed mean functions and more training points

should increase the input space rejection rate.

History matching is thematically linked to calibration methods

such as ABC or Bayesian model calibration, but has the important

conceptual difference of discarding implausible areas of the input

space as opposed to attempting to make probabilistic statements

about the most likely input values given the empirical data. The

latter methods could fail if they were applied to a large input space

of a multi-input multi-output simulator. However, their applica-

tion on the reduced space that is the output of history matching,

could produce hybrid methods that combine the strengths of both

approaches.

The method we proposed in this paper, deals with stochastic

simulators assuming that the uncertainty introduced by the

stochasticity of the outputs is constant at each wave with respect

to the value of the inputs. This may not be the case, and

knowledge of how the stochastic output variability changes with

the inputs can increase the space reduction rate [39,40].

Additionally, multi-output simulators very often exhibit correlation

between their outputs, which was ignored in this work. Taking

output correlation into account would improve the emulation

process and subsequently the performance of history matching,

Fig. 10. Posterior samples drawn with the importance sampling method described in section ‘Posterior Sampling’. Each panel shows
the samples drawn for one of the 22 simulator inputs. Their full names and descriptions can be found in Table 1.
doi:10.1371/journal.pcbi.1003968.g010
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but would require far more sophisticated emulators, as well as

more detailed observation uncertainty and model discrepancy

specifications, and hence we leave this to future work.

We conclude that history matching and emulation are useful

additions to the toolbox of infectious disease modellers. Further

research is required to explicitly address the stochastic nature of

the simulator as well as to account for correlations between

outputs.
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