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Abstract: This paper focuses on inspecting the influences of anti-foaming agent (AFA) on the per-
formance of 3D printing cementitious materials (3DPC). The mini-slump, spreading diameter, yield
stress, and strength of 3DPC were evaluated. Additionally, the air-void content, air-void morphology,
and air-void size distribution of mortar with and without 0.05% AFA were assessed through image
analysis. The mechanical performance and air-void structure of 3D printed samples were also in-
vestigated and compared to that of conventionally mould cast samples. Test results show that an
optimal AFA content enables 3DPC to achieve favorable workability and mechanical performance.
The addition of AFA exhibits lower air-void content in 3DPC than that of the sample without the
AFA addition. This reduction in air-void content is further strengthened by the results of strength
analysis. Electron microscope analysis shows that the use of AFA results in the suppressed formation
of large air-voids during the process of fresh 3DPC. Moreover, the air-void morphology substantially
influenced the mechanical performance of hardened 3DPC.

Keywords: 3D printing cementitious materials; cementitious materials; air-void structure; anti-
foaming agent; strength development

1. Introduction

When considering 3D printing concrete technology, an extrusion-based additive con-
struction technique [1] could be used to build complex construction structures layer-by-
layer due to its rapid prototyping. This innovative construction process has recently seen a
rapid development for civil engineering structures due to its distinct advantages, such as
complex manufacturing, increased efficiency, construction automation, and environmental
protection [2–7]. Contour Crafting developed at the University of Southern California
and Concrete Printing developed at Loughborough University have been applied to the
production of complex concrete components [8,9]. There is also significant potential to
construct special hydraulic structures using this technology. The viability of 3D printing
concrete technology for hydraulic buildings with irregular shapes and complex structures,
such as overflow weir surfaces, diversion tunnel entrances and exits, and hydropower
station draft tubes, is now being explored.

While the advantages of 3D printing cementitious materials (3DPC) have been studied
by many researchers [10–14], advanced 3DPC is still under development with various
restrictions, such as unreliable manufacturing processes, weak joints, low mechanical
strength, and anisotropic performance in recent literatures [15–17]. One such obstacle is
unavoidable weak joints between printed layers compared with mould cast cementitious
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materials, which are the weakest links in 3DPC [18,19]. Generally, the mechanical perfor-
mance and durability of hardened 3DPC are controlled by the weakest links [20–22], as
potential flaws can be created between printed layers [23]. The layer-by-layer deposition
process of 3DPC commonly introduces numerous interfaces that are primarily caused by
air-void attendance between the subsequent filaments [1]. The excessive air-void content
has an adverse influence on the performance of 3DPC. Fonseca et al. [24] reported that an
entrained air-void directly influences both the workability and durability of cementitious
materials. Rahul et al. [25] found that the porosity at the interface between the horizontal
and vertical layers was higher than that of mould cast concrete. The air-void between layers
is also likely to weaken the bond strength between filaments, thus influencing the hardened
performance of 3DPC [26]. Microscopic observation has also revealed that the air-voids
and other defects were at the printed concrete layers [27]. A lack of compaction procedure
in layer-by-layer deposition processes results in the presence of excessive air-voids. As a
result, 3DPC exhibits a more extensive air-void structure, which leads to the decrease of
bond strength between the layers [27]. Therefore, the air-voids are significantly crucial in
the context of the mechanical performance of 3DPC. A comprehensive understanding of
the air-void structure is required to enhance the performance of a particular mix.

Air-void content has an adverse influence on the strength and durability of hardened
cementitious materials [28,29]. For instance, the compressive strength of high-strength
concrete reduces about 5% for each 1% increase in air content [30]. In addition, air-void size
distribution strongly affects the performance of cementitious materials [31–37]. Although
many studies have investigated air-voids on the performance of mould cast cementitious
materials, few of them have focused on 3DPC. Existing literature suggests that the 3D
printing process affects air-void parameters of 3DPC, such as the air-void content, air-void
morphology, and air-void size distribution [38]. Thus, it remains a significant challenge
to control the air-void structure. There has been no comprehensive study that has been
published investigating the air-void structure from a sub-micro perspective to the best of
the authors’ knowledge.

One method for modifying cementitious materials is incorporating anti-foaming
agent (AFA)into materials, which can effectively decrease the air-void content [39,40].
Excessive air-voids in 3DPC can also be partly reduced by the addition of AFA. Therefore,
a comprehensive and in-depth investigation of AFA on the strength development of 3DPC
is of great importance. Moreover, the performance of cementitious materials containing
numerous air-void is influenced by the spatial distribution of the air-void [41]. Therefore,
the investigation of the influences of AFA on the air-void distribution in 3DPC is required.
Regarding air-voids, not only is the content and size distribution important, but their
morphology is important as well. The air-void morphology is also an important parameter
that also significantly influences the performance of 3DPC.

In recognition of the importance of air-void, the present work focuses on the mini-
slump, spreading diameter, and yield stress of fresh 3DPC as they are influenced by
AFA dosages. Furthermore, the influences of the air-void parameters, such as air-void
content, air-void morphology, and air-void size distribution, on the strength development
of hardened 3DPC are investigated. The compressive strength and air-void structure of
the mould cast samples are also investigated and compared to that of the counterpart
3D printed samples. The research outcome is a detailed understanding of the potential
application of 3DPC containing AFA for the construction of special structures where
customization is important. The results can be applied to modify the air-void structure of
3DPC, thus improving the performance of the materials.

2. Materials and Methods

All mixtures were produced with Portland cement (PC) (P·I 42.5, China United Cement
Corporation, Qufu, China), limestone powder (LS), Nano-CaCO3 (NC), fine aggregate, tap
water, AFA, high-range water-reducing admixture (HRWRA), and hydroxypropyl methyl-
cellulose (HPMC). All of them (excluding tap water) are commercial products. Table 1
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gives the chemical composition of the Portland cement obtained by X-ray fluorescence
spectrometry (XRF). Portland cement and LS with an average particle diameter of 33.3 µm
were used as binders. LS was added to the cement at 10% of the weight of binders. NC
with a 40 nm average particle diameter was added at a ratio of 1% per the mass of the
binders. Figure 1a,b show scanning electron microscope (SEM) images of the LS and NC,
illustrating the particle size and morphology of two materials. The addition of LS and NC
in cementitious materials significantly increases the structural build-rate [42,43], which is
detrimental in the layer-by-layer deposition of 3DPC. To evaluate the influences of air-voids
on the performance of 3DPC, an AFA was added at ratios of 0, 0.05, 0.1, 0.5, and 1.0% per
the mass of the binders. HRWRA and HPMC were used to modify the flowability and
buildability of fresh state 3DPC, respectively. Fine aggregates were quartz sand with a
particle size in the range of 0.15–2.36 mm, as shown in Figure 2.

Table 1. Chemical composition of Portland cement (% by mass).

SiO2 Al2O3 Fe2O3 CaO MgO SO3 CO2 Na2O K2O TiO2 P2O5 Others

18.46 4.29 3.50 64.24 1.74 3.05 2.72 0.24 0.60 0.35 0.25 0.28
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The investigation involves two types of samples: 3D printed mortar and mould cast
mortar. The mix proportions reported herein are given in Table 2. The mixtures are labeled
with respect to the dosage of AFA. For instance, AFA005 represents a sample with 0.05%
AFA. All mortars were mixed in a planetary-style mixer using a water to binder ratio of
0.40, and a binder to sand ratio of 0.50. PC, LS, NC, and fine aggregate were mixed at
a slow speed for about 60 s. AFA, HRWRA, and HPMC dissolved in water was added
thereafter and mixed at a slow speed for another 60 s. The mixer was then stopped for 90 s
to homogenize the mortar manually. This was followed by mixing at a high speed for 60 s.
Afterward, the mixture was delivered to the 3D printing system to prepare the samples for
strength and air-void structure investigation.

Table 2. Mix proportions of 3D printing cement mortar.

Mixture PC (%) LS (%) NC (%) AFA (%) HRWRA (%) HPMC (%) Water to Binder Ratio Binder to Sand Ratio

AFA0 90 10 1 0 0.06 0.1 0.40 0.50
AFA005 90 10 1 0.05 0.06 0.1 0.40 0.50
AFA01 90 10 1 0.1 0.06 0.1 0.40 0.50
AFA05 90 10 1 0.5 0.06 0.1 0.40 0.50
AFA1 90 10 1 1.0 0.06 0.1 0.40 0.50

Fluidity is a crucial factor to consider, as it controls the pumpability and extrudability
of the fresh 3DPC [44]. The fluidity of the samples was measured by the drop table test
and mini-slump in this work. The mini-slump mould dimension was 150 mm in height,
100 mm in bottom diameter, and 50 mm in top diameter.

Yield stress is essential for fresh 3DPC since it affects the stiffness of materials during
the 3D printing process. The evolution of yield stress with time is an indicator of the
structural build-up of cementitious materials. In this work, the yield stress of the samples
was evaluated by a Vicat apparatus. The yield stress of the samples can be calculated by
Equation (1) [45]:

τ0 = 3/(2πRh) (1)

where τ0 is the yield stress of the sample, R is the radius of the Vicat plunger, and its value
is 5mm. h is the penetration depth of the Vicat plunger in the sample. Each sample was
tested every 15 min until 90 min.

A gantry concrete 3D printing system (HC-3DPRT/D, Jianyanhua testing (Hangzhou)
Technology Co., Ltd., Hangzhou, China) was used to print 4-layer samples with dimensions
of roughly 40 mm × 40 mm × 160 mm in this study. The printing speed and extrusion rate
were set as 0.19 L/min and 60 cm/min in this paper. The 3D printed samples were cured
in a moist cabinet with a temperature of 20 ± 2 ◦C until testing. The printed samples were
then saw-cut into a prism with a dimension of 40 mm × 40 mm × 160 mm for the flexural
and compressive strength measurements. The flexural strength and compressive strength
of samples were tested according to GB/T 17671-1999 using a loading rate of 50 N/s and
2400 N/s, respectively. Figure 3a,b show the loading direction of the flexural strength and
the compressive strength of 3DPC. The compressive strength of the mould cast prisms with
a dimension of 40 mm × 40 mm × 160 mm was also tested at 7 and 28 days. The ratio
of compressive strength of 3D printed mortar and mould cast mortar, fP/fC, could then
be calculated.

The electron microscope samples were sawed from the 3D printed mortar and the
mould cast mortar that had been cured for 28 days. The samples were then cut to expose a
fresh surface and were polished using silicon carbide paper. Afterward, electron microscopy
images of the samples were captured at ×120 magnification. A modified watershed image
processing technique was then applied to segment the air-voids whose diameter was larger
than 0.1 mm. Additional investigation will be needed to study the influences of air-voids
smaller than 0.1 mm on the performance of 3DPC, which cannot be covered in this paper.
There were 32 fields in each sample that were randomly chosen to calculate the air-void
content, air-void size distribution, and air-void aspect ratio. Air-void morphology was
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quantified using its aspect ratio, a practical and straightforward approach for identifying
its sphericity. The aspect ratio was calculated based on the ratio of a particles’ length to its
width [46,47].
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3. Results and Discussion
3.1. Fluidity

The 3D printing of cementitious materials is an extrusion-based process. Thus, fresh
3DPC should have a favorable fluidity at the pumping and extrusion stage [48–51]. The
influence of various dosages of AFA on mini-slump and spreading diameter is shown in
Figure 4a,b, respectively. It can be seen from this figure that the mini-slump and spread-
ing diameter of all of the samples was approximately 40 mm and 170 mm, respectively.
Preliminary test results showed that all samples had appropriate workability that could
be continuously extruded from the printing nozzle. As seen in Figure 4a, the mini-slump
initially increases up to an AFA content of 0.05% and then decreases with higher contents
of AFA. Increasing the contents of AFA from 0 to 0.05% resulted in about a 17.5% enhance-
ment of the mini-slump, while increasing the contents of AFA from 0.05% to 1.0% resulted
in a 1.05% reduction of the mini-slump. It can be seen from Figure 4b that the 3DPC
spreading diameter exhibits similar behavior to that of the mini-slump, which also shows a
parabolic tendency. Compared to that of the control sample (AFA0), mixtures containing
0.05% and 0.1% AFA increased the spreading diameter by 0.3% and 1.4%, respectively,
while mixtures containing 0.5% and 1.0% AFA decreased the spreading diameter by 1.7%
and 8.1%. Therefore, the optimal AFA content is about 0.05%, as it achieved a favorable
spreading diameter of fresh 3DPC. It can be noted that the optimal AFA content enables
the fresh 3DPC to achieve the desired fluidity.
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3.2. Evolution of Yield Stress

The workability of 3DPC is related to its rheological property and, more particularly,
to its yield stress. From a rheological perspective, fresh 3DPC must possess a low viscosity
while inside the nozzle. However, high yield stress is essential to resist deformation once
it is extruded [52]. Therefore, the evolution of yield stress is an essential indicator of the
build-up structure of 3DPC [53]. Figure 5 illustrates the evolution of the yield stress of
samples from the time of mixing to 90 min. The yield stress of all of the samples increased
with time, which could be associated with the hydration of the cement particles. In addition,
the yield stress increased with the increased dosage of AFA over the same time interval.
For instance, the yield stress of AFA005, AFA01, AFA05, and AFA1 is 2548, 2810, 3133,
and 15,924 Pa at 30 min, respectively. Moreover, the yield stress of fresh 3DPC exhibited a
parabolic tendency over the same time interval. Compared to the AFA0 (reference mixture),
AFA005 demonstrated a lower yield stress value at all times. However, the yield stress
value of AFA01 was always higher than that of the reference mixture except for at 75 min.
For instance, increasing the content of AFA from 0 to 0.05% resulted in about an 11.0%
reduction of the yield stress at 60 min, while increasing the content of AFA from 0.05% to
0.1% resulted in a 21.7% enhancement of the yield stress at 60 min. The addition of more
than 0.5% AFA significantly increased the yield stress of the samples. In the case of AFA05
and AFA1, there was a sudden increase in yield stress after 45 min and 15 min, respectively.
However, the excessive dosage increased the stiffness of fresh state 3DPC sharply, which
may result in poor extrudability. The evolution of yield stress can be ascribed to the
development of the cement paste structure, which is dominated by cement hydration
products, such as C-S-H and CH. The components in AFA may alter the hydration behavior
of the cement, resulting in the variation in the yield stress of fresh 3DPC.
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28 days than that of the control sample without the addition of AFA. The flexural strength
of the samples incorporating 0.05–1% AFA achieved 16.5–25.6% and 24.3–30.4% at 7 and
28 days, respectively. The compressive strength of the samples incorporating 0.05–1% AFA
achieved 4.1–34.0% and 45.6–67.9% at 7 and 28 days, respectively. These results indicate
that AFA can significantly improve the flexural and compressive strength of 3DPC, which
can be attributed to the decrease of the air-void content, as discussed later. It was worth
noting that the flexural strength of 3DPC at 28 days initially increased to an AFA content of
0.05% and then increased slowly with higher contents of AFA. The compressive strength of
3DPC at 28 days also exhibited similar behavior to that of the flexural strength. Hence, the
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optimal amount of AFA in 3DPC is about 0.05%, at which the mini-slump and spreading
diameter of the designed 3DPC can be the largest, as shown in Figure 4.
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Figure 6c shows the compressive strength ratio of 3D printed mortar and mould cast
mortar at 7 and 28 days. It can be seen from this figure that all samples at 28 days exhibited
a higher compressive strength ratio than that at 7 days. Furthermore, adding 0.05–1% AFA
significantly improved the compressive strength ratio at 28 days, where about an 8–30.7%
improvement was observed. Among AFA contents, the 0.05% AFA exhibited the highest
compressive strength ratio at 28 days. From the results obtained in this work, it is apparent
that adding AFA is effective in compensating for the low compressive strength of 3DPC.
Additionally, the compressive strength variation between 3D printed samples and mould
cast samples can be explained by the interface between the 3D printed layers. The large
air-voids at the interface reduce the interface bond area of the 3D printed layers, leading to
the reduction of the mechanical strength of the 3DPC.

3.4. Air-Void Content

Figure 7 shows the air-void content in samples incorporating 0 and 0.05% AFA at
28 days. As expected, both the mould cast samples and the 3D printed samples incorpo-
rating 0.05% AFA exhibited lower air-void contents than those without the addition of
AFA. When 0.05% AFA was added, the mould cast sample and the 3D printed sample
reduced the air-void content by 47.1% and 27.2%, respectively. The higher strength of
the cementitious materials can be achieved by reducing air bubbles [54–56]. Therefore,
increasing the AFA content from 0 to 0.05% densifies the microstructure of the cementitious
materials and significantly improves the flexural and compressive strength. In addition, the
air-void content in the 3D printed samples were higher than those of the mould cast sample
counterparts. For instance, the air-void in the 3D printed sample with 0.05% AFA was
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57.5% higher than that of the mould cast samples with 0.05% AFA. This can be attributed
to the layer-by-layer 3DPC construction process without vibration. The increased air-void
results in the decrease of the compactness of the 3DPC, therefore causing lower strength,
as shown in Figure 6c.
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3.5. Air-Void Size Distribution

The air-void distribution of the mould cast samples and 3D printed samples at 28 days,
observed by electron microscopy with a magnification of ×120, is shown in Figure 8a,b.
The relationship between pore volume and pore diameter in the range of 0.1–2.6 mm was
determined. These air-voids affect the strength and durability of cementitious materials
because of their large size. It can be seen from this figure that the air-voids with a diameter
larger than 2.0 mm both in the mould cast samples and the 3D printed samples were
eliminated by the addition of 0.05% AFA, indicating that the presence of AFA is beneficial
for air-void modification. The largest air-void size was reduced from 2.2 mm to 1.8 mm in
the 3D printed mortar and from 2.6 mm to 2.0 mm in the mould cast mortar. AFA decreased
the coarse air-voids with a diameter bigger than 2.0 mm in the hardened cementitious ma-
terials, which played a positive role in optimizing the air-void structure and in improving
mechanical strength. These results confirm a dense structure of the cementitious materials
containing 0.05% AFA, which agrees with the air-void content analyses. In addition, the
results showed that the air-voids with a particle size of 0.1–0.4 mm in the 3D printed sam-
ples with 0.05% AFA were decreased, while air-voids larger than 0.4 mm were increased.
A similar phenomenon can also be observed in the mould cast mortars. This may be due
to the fact that some of the air-voids smaller than 0.4 mm in the 3D printed cementitious
materials have been broken down into smaller air-voids that cannot be observed by the
electron microscope at this magnification. The active components in AFA replace surfactant
molecules of air bubbles, thus destabilizing the lamella wall built on surfactant, resulting
in the fracture of bubbles [57,58]. The AFA mechanism also indicates that the large bubbles
in 3DPC decompose into small bubbles. Air-voids smaller than 0.1 mm will be further
investigated by backscattered electron image analysis in the future.
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3.6. Electron Microscope Analysis

The electron microscope observations on the mould cast mortar and 3D printed mortar
with and without the addition of AFA were conducted to examine the pore morphology.
Typical electron microscope images of the 3D printed mortar and the mould cast mortar
are shown in Figure 9. The air-void and fine aggregate in the images can be identified. In
the images, A and P represent the fine aggregate and the air-void, respectively. Figure 9c
shows the large air-voids along with the layer orientation in the printed samples, and this
type of air-void is minimized by the addition of AFA, as shown in Figure 9d. The presence
of large air-voids can be explained by the layer-by-layer deposition process of 3DPC. It is
clearly seen that the mould cast sample with 0.05% AFA has very few air-voids than that of
the mould cast sample without AFA, which indicates that the mould cast mortar modified
by AFA is denser than that of the control mortar without AFA. A similar phenomenon can
also be observed in 3D printed mortars. Therefore, the use of AFA leads to a compact 3D
printed mortar with a significant reduction of air-voids.

The electron microscope images also represent the air-void morphology. It can be
observed that the change in air-void morphology was significant between the 3D printed
samples and the mould cast samples. The air-voids in the mould cast samples were mostly
elliptical, while the air-voids in the 3D printed samples were mostly stripped with sharp
edges. Peng et al. [59] also found parallel strips in 3DPC through microscopic observation,
leading to an orthotropic behavior. Sharp edges could increase stress concentration and
could then decrease the mechanical stress of the cementitious materials [60]. This is one
of the main reasons why the strength of 3D printed samples is lower than that of mould
cast samples.

Figure 10 shows the aspect ratio of the air-void in cementitious materials with and
without AFA at 28 days. It can be seen from the figure that the aspect ratio of the air-void
in the samples with 0.05% AFA revealed a slightly higher increase than that of the samples
without AFA. Incorporating 0.05% AFA in the 3D printed samples and the mould cast
samples led to a 3.4% and 5.3% improvement in the aspect ratio, respectively. Results also
showed that the aspect ratio of the air-void in the 3D printed mortar with and without AFA
was higher than that of the counterpart mould cast samples. In the 3D printed mortars
with and without AFA, the air-void ratio improved by 32.4% and 34.8%, respectively.
The increase in the air-void aspect ratio can be attributed to the layer-by-layer deposition
process for the 3D printing of cementitious materials. It is noted that increasing the aspect
ratio of the air-void will increase the anisotropy of the stress, which means high stress
assemblies along the printing direction as the aspect ratio increases. Thus, the compressive
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strength of the 3D printed mortar is lower than that of the mould cast mortar, as discussed
previously. These findings confirm that the morphology of the air-void has substantial
influences on the strength of cementitious materials [30,61].
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4. Conclusions

In this paper, the fluidity, yield stress, mechanical strength, and air-void structure of
3DPC with different AFA dosages were investigated. Based on the obtained results, the
following conclusions can be reached:

(1) The mini-slump and spreading diameter of fresh state 3DPC with 0.05% AFA
increased by 17.5% and 0.3% compared to samples without AFA, respectively.

(2) The yield stress could be well controlled by the introduction of 0.05–0.1% AFA into
fresh state 3DPC.

(3) The flexural strength and compressive strength of the 3D printed samples with
0.05–1% AFA increased by 24.3–30.4% and 45.6–67.9% relative to the 3D printed samples
without AFA at 28 days, respectively.

(4) The air-void content of the 3D printed mortar with 0.05% AFA decreased by 47.1%
relative to their counterparts without AFA. The sharp reduction of the air-void content
leads to a significant increase in the mechanical strength of the 3D printed mortar.

(5) The strength of 3DPC was lower than that of the counterpart mould cast mortar,
which can be attributed to its higher air-void content and larger air-void aspect ratio. The
compressive ratio of the samples with 0.05% AFA improved by 30.7% compared to the
samples without AFA at 28 days. Thus, the addition of AFA is effective in compensating
for the low compressive strength of 3DPC.

(6) The air-voids in the 3D printed samples were mostly striped with sharp edges,
which induced stress concentration. However, no significant change of air-void morphology
was found between the 3D printed samples with and without AFA.
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