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Abstract: Monitoring the activity of elderly individuals in nursing homes is key, as it has been
shown that physical activity leads to significant health improvement. In this work, we introduce
NURSENET, a system that combines an unobtrusive, affordable, and robust piezoelectric floor
sensor with a convolutional neural network algorithm, which aims at measuring elderly physical
activity. Our algorithm is trained using signal embedding based on atoms of a pre-learned dictionary
and focuses the network’s attention on step-related signals. We show that NURSENET is able to avoid
the main limitation of floor sensors by recognizing relevant signals (i.e., signals produced by patients)
and ignoring events related to the medical staff, offering a new tool to monitor elderly activity in
nursing homes efficiently.

Keywords: deep learning; piezoelectric sensor; floor sensor; pressure sensor; activity monitoring;
sparse dictionary learning

1. Introduction

1.1. General Introduction

In the recent years, the notion of frailty has received increased attention from the medical
community as an early sign of significant health deterioration in the elderly population [1,2].
The authors of [1] defined frailty as a clinical syndrome in which three or more criteria are present
among unintentional weight loss, self-reported exhaustion, weak grip strength, slow walking speed,
and low physical activity. The early detection of this syndrome is considered important by the medical
community for prevention purposes, and targeted therapy strategies have been shown to reduce the
consequences of frailty significantly [3].

Nursing home residents are among the most vulnerable when it comes to frailty [4].
Indeed, people living in elderly care facilities are more likely to have disabilities than other elderly
people. They also tend to be more isolated from the rest of the population and do less physical activity
than the general elderly population [5]. The lack of exercise is particularly damaging, as it has been
shown that physical activity reduces muscle weakness, increases mobility, improves neuronal health,
limits frailty, and reduces overall risk of death [6,7]. Even short daily practice such as thirty minutes of
walking is linked with significant improvement [8]. Consequently, the monitoring physical activity
of the elderly in nursing homes is key, particularly as it allows focusing resources on people who are
particularly vulnerable to frailty.

Recently, there has been significant interest in the development of smart systems to monitor
individuals in their daily life [9]. Important aspects of such systems include the intrusiveness,
the reliability, and the ability to perform different tasks. Here, intrusiveness is defined as both
the capacity to be hidden from the patient and the respect of her/his privacy [10]. Some sensors
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relying on technologies such as a camera [11] or microphones [12] have been shown to achieve
great performance in their respective task (counting people, detecting events, etc.) at the cost of
serious privacy issues. Others have used accelerometers, which are less intrusive and provide
reliable signals [13,14], but wearable technology is (A) constrained by individual willingness and
(B) may be rendered ineffective if individuals forget to wear them [15]. Floor sensors on the other
hand resolve these issues by being unobtrusive while still providing exploitable signals. However,
the main drawback of floor sensors is their a priori inability to distinguish between individuals.
This is particularly problematic in nursing homes as most of the activity is generally generated by
medical staff.

To solve this problem, in this paper, we introduce our system named the Non-invasive Unit
Recognition System for the Elderly (NURSENET), which combines a piezoelectric floor sensor and
a deep learning-based algorithm to recognize non-elderly activity with very high accuracy (AUC 0.94).
This paper is organized as follows. Section 2 first gives the settings of our installation in the nursing
home and introduces our algorithm and its training procedure. The performance of NURSENET is
evaluated in Section 3 by computing its accuracy over a database containing multiple types of activity.
Finally, the main advantages and drawbacks of our system are discussed in Section 4.

1.2. Related Work

1.2.1. Gait Sensing

The quantification of gait is hardly new [16-18], and a large variety of sensors has been used
to record walks. Systems can be classified between wearable sensors and non-wearable, the latter
being divided between image-based systems and other systems. The most popular are wearable
sensors, as evidenced by the large literature on the subject [18,19]. These systems are mostly based
on accelerometers, which dominate the field, but also gyroscopes, foot switches, pressure soles, or
combinations of these. Accelerometers are indeed inexpensive sensors that give reliable signals and
are more scalable than foot switches or soles [16].

Concerning non-wearable sensors, video-based systems seem to give good results when
analyzing gait. However, considering the high intrusiveness of these solutions, they are better
suited for clinical applications rather than daily monitoring. Recent works proposed systems based
on WiFi sensing [20,21]. Based on the measurement of the WiFi signal after reflection on objects,
many applications were proposed, but this technology seems to be in its early stages and suffers from
issues such as the difficult availability of the needed metric to perform the sensing and external
interferences [21]. When it comes to floor technologies, various technologies have been used.
Vibration-sensor systems are very easy to install, and previous works have shown that they can
be used to separate individuals with high accuracy [22,23]. However, the signal is subject to variation
according to the device’s location and the size of the sensing area, which may require significant
additional training for each new installation. Floor-covering solutions [10], although requiring more
effort in their deployment, have the advantage of being consistent since the sensing is equivalent at any
location. These systems are mainly made of binary switch sensors [24,25], capacitive sensors [26-28],
and pressure sensors, the latter being either piezoresistive (the material resistance is modified when put
under pressure) [29] or piezoelectric (the material emits a charge or a voltage when stressed) [30,31].
When implemented, these systems have different resolutions, from only one sensor to a grid of
1 cm x 1 cm tiles. However, high resolution leads to implementation issues and higher costs.
Depending on the sensor and resolution, the emitted signals can provide sufficient information
for complex tasks, but can also suffer from external perturbations [10]. Our system is based on a thin
piezoelectric polymer that acts as a pressure sensor and comes in bands. It is unobtrusive and gives
a reliable signal while being relatively easy to install, all at a reduced cost due to precisely the ease
of installation, but also the availability of its components (processing unit, sensors, and flooring) for
large-scale installations and the fact that the system comes as an all-in-one solution.
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1.2.2. Gait Analysis

The main families of analyses developed in previous works include: (A) the use of biomechanical
features, such as single/double stance time [32]; (B) the use of descriptors derived from mathematical
models [33]; and more recently, (C) the use of machine learning-based algorithms that perform
end-to-end learning on gait signals [34]. Several walk detection systems rely on gait decomposition
into several phases, trying to detect two to eight phases [16] depending on the sensor and the precision
level needed for their application. These methods can be based on heuristic rules (e.g., thresholds [35]),
signal processing techniques (e.g., Pan-Tompkins peak detection [36]), or probabilistic approaches
(e.g., HMM-based algorithms [37]). However, most methods are designed to characterize gait in
a controlled environment where no challenging type of signal can infer (i.e., signal that may seem
like what is to be detected). Hence, when dealing with daily activities, walk detection becomes
a harder task [38,39]. Another segment of step detection aims at recognizing a step signal as a whole
(i.e., without considering any phase in it) in order to perform walk detection within more challenging
environments or to use walk signals for patient monitoring. These methods are generally based
on machine learning techniques and seem more suited to such tasks [40,41], but to the best of our
knowledge, no previous work has classified activities using a floor piezoelectric sensor combined with
machine learning techniques.

1.2.3. Sparse Coding and Dictionary Learning

In recent years, dictionary learning and sparse coding techniques have been successfully applied
in a wide range of topics, including image classification [42,43], image restoration [44], and signal
processing [45], in particular for one-dimensional signal analysis [46]. The main idea behind these
representations is to learn a dictionary conjointly containing the patterns observed in the signal
and sparse activations that encode the temporal or spatial locations where these patterns occur.
Previous works have applied this method to walk-related problems: Poschadel et al. [47] used
the accelerometer signal reconstructed from sparse coding to perform gait classification between
healthy and movement impaired individuals; Zhang et al. [40] also aimed at gait classification by
applying D-KSVD techniques to produce a dictionary that is both representative and discriminative.
Following the same idea, we use convolutional dictionary learning to build the first layer of NURSENET
in order to construct a relevant representation.

1.2.4. Signal Processing with Deep Learning

Convolutional Neural Networks (CNN) have been successfully used to detect objects in
images [48-52], hence superseding previously existing techniques [53]. Among them, recent networks
such as YOLO [52] and Faster R-CNN [51] have been shown to find and classify multiple objects with
high accuracy in images with a small time cost. However, significantly less attention has been given to
the application of CNN on one-dimensional signals, despite such signals being widely represented in
medical recordings [54]. Previous works generally transformed one-dimensional signals into an image
using spectrograms [55] or directly used CNN without transforming the data [56]. To the authors’
knowledge, this is the first work to combine dictionary learning, transfer learning, and CNN to classify
activities using the floor sensor as the sole input. As shown in Section 2.2, the combination of these
three steps is revealed to be necessary due to the highly-irregular nature of the signal.

2. Materials and Methods

2.1. NURSENET Hardware

In this subsection, we present the floor sensor that was used in NURSENET. The piezoelectric
principle (on which the device was based) is outlined, then the unit is described in more depth.
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2.1.1. The Piezoelectric Principle

The piezoelectric principle, when simplified, can be explained by the relation d = % with d being
the piezoelectric coefficient, Q the charge, and F the force received by the material. A piezoelectric
material emits charges when stressed (or squeezed) and on the contrary can shrink (or expand) when
submitted to a electric field. Such a device can fit multiple purposes such as speakers or motors when
using its deformation under a electric field, to microphones and sensors when using the electric charge
emitted when submitted to a force. Our system was based on the latter use, and the piezoelectric
material acted as a pressure sensor. One significant advantage of this technology is that it does not
need a power supply to generate a signal.

2.1.2. The NURSENET Unit

The sensor itself was a thin (about 1 mmr) polymer that comes in bands of 60 cm wide and placed
directly under the flooring (see Figure 1a). The bands were initially rolls of about 100 m that could be
cut every 30 cm. Once cut, bands can be connected together without limitation in their number before
the signal was recovered by the processing unit (see Figure 1b). In NURSENET, the processing unit had
8 entry channels, allowing each unit to process a large surface by connecting bands. This allows great
flexibility of the system to any scale while keeping a certain ease of installation.

Processing unit

Flooring
Cable s Scnsor
eeessssssssssmmmm Concrete

(a) Sensor location in the floor. . ) .
(b) Example of a system installation with bands

connected in five groups of three to equip
a corridor.

Figure 1. Pressure sensor installed in the floor.

The processing unit was designed to process the signal from end to end (from basic filtering to
event detection) and to communicate with servers (sending signal recordings) and the nursing home
(sending information such as activity reports or alarms). When conveyed to the unit, the signal first
passed through an analog charge amplifier and was converted to numerical values before further
processing. The unit was equipped with a 32-bit 500-MHz processor, accompanied with 256 MB of
RAM, and 500 MB of local storage.

It should be noted that compared to the theoretical piezoelectric principle law, the sensor presented
some variability in the piezoelectric coefficient d. Indeed, although d seemed to remain constant when
put under humidity or high temperature (less than 40° Celsius), it could vary depending on where the
impact was located on the floor. A difference of 9% between the max and min value of d was observed
in controlled experiments [57]. Besides, when implemented, the system can suffer perturbations due
to the way sensors, electrodes, and upper layers were installed. These elements that come with the
implementation in real conditions can result in alterations to the resulting signals when compared to
similar devices used in laboratory conditions [10].

2.2. The NURSENET Algorithm

In this subsection, we present our neural network NURSENET, which is used to identify and
characterize activity signals, particularly between medical staff and elderly individuals. This subsection
is organized as follows. First, the structure of NURSENET is introduced. Then, the data embedding used
to encode the signals is described, and finally, the subnetwork used as the first layers of NURSENET is
explained. Most of the strategies developed in the training process aim at circumventing our main
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issues, which are the small Signal-to-Noise Ratio (SNR) (approximately 20 dB in our walking dataset)
and the external alterations of the signal.

2.2.1. General Classifier

This subsection details the architecture of NURSENET and its inner workings. The main idea of
NURSENET is that regardless of the type of activity recorded on the floor sensor, it is very likely to be
mostly made of walks. This is why, as discussed later in this section, a significant part of the training
process aimed at training the network to recognize gait and in particular the gait of the medical staff.
NURSENET is a CNN whose structure is presented in Figure 2. It is a sequential network made of:

®  One 1D convolutional layer with 32 filters of size 60, with a stride of 10, followed by a BatchNorm
layer, with the activation function hyperbolic tangent (tanh).

*  One 1D convolutional layer with 16 filters of size 1, with a stride of 1, followed by a BatchNorm
layer, with the activation function tanh.

*  One 1D convolutional layer with 8 filters of size 1, with a stride of 1, followed by a BatchNorm
layer, with the activation function tanh.

®  One 1D convolutional layer with 1 filter of size 5, with a stride of 1, with the activation function
Rectified Linear Unit (ReLU) [58]. It was followed by a Maxpool layer of size 5.

*  One fully-connected layer, with an output of dimension 64, with activation function ReLU.

¢ One fully-connected layer, with an output of dimension 16, with activation function ReLU.

¢ One fully-connected layer, with an output of dimension 1, with activation function sigmoid.

The output of the network is the probability for a signal to be generated from elderly activity. Note
that the input of NURSENET is not the raw signal, but instead a transformation of it (see Section 2.2.2).

Max-pooling / \
// ™S

/g::if" .
5
Output

Fully-connected
(16 neurons)

Fully-connected
Signal embedding Convolution Convolution Convolution Convolution (64 neurons)
(32 filters, size 60, str 10) (16 filters, size 1,str 1) (8 filters, size 1, str 1) (1 filter, size 5, str 1)
+tanh +tanh +tanh +Relu

Figure 2. Architecture of the overall CNN.

Sub-networks. NURSENET can be seen as the combination of the following two sub-networks.
The first one, named the Step Proposal Network (SPN), is made of the first three
convolutional/BatchNorm layers. SPN is a full CNN inspired by the region proposal network, which
is the first part of the Faster R-CNN algorithm [51]. At the end of this sub-network, the output is
constituted of features computed on each window of the signal embedding. The second part of the
network is made of a convolutional /Maxpool pair of layers, followed by three classical fully-connected
layers. The role of this last part of the network is to use the previously extracted features to classify
signals as staff or elderly.

Training. As mentioned before, the training of NURSENET was rather complex and involved
multiple stages. This was due to the small signal-to-noise ratio, the perturbations discussed in the
previous section, and the limited size of the dataset. The first phase of the training was to learn the
embedding of the data. This is detailed in Section 2.2.2. Then, SPN was trained separately on a different
task, in order to take advantage of the gait structure (see Section 2.2.3). The resulting weights were
used to initialize the first three layers of NURSENET, and these layers were frozen during the rest
of the training process to limit the number of free parameters, henceforth reducing overfitting [59].
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Finally, the rest of the network was initialized using i.i.d. centered Gaussian variables with a standard
deviation of 0.2. For the training phase, regularization was done using dropout [60] (with p = 0.5) after
each fully-connected layer, except the last one. Given X;, the embedding of each signal 1j;, the image of
X; through the network, and y; the corresponding labels (y = 0 if and only if X; is an elderly activity),
the loss function L is the classical binary cross entropy:

L= Zlyizl log(j,) + lyi:(] log(l - yAl) 1)

The weights of NURSENET were optimized using backpropagation and stochastic gradient descent
with a learning rate of 105, decreasing geometrically (x0.9) every 10 epochs, and the momentum
strategy proposed by Nesterov [61]. The learning was stopped using the early stopping principle [62].

2.2.2. Data Embedding

The first step of our classification algorithm was the data embedding, which consisted successively
of preprocessing the data and encoding the resulting signal using convolution with atoms of
a pre-learned dictionary. The preprocessing phase was made of a classical tool that aimed at denoising
and cleaning the data. However, our approach of data embedding is rather new: while we used
convolutional sparse coding to learn the custom dictionary, a standard approach since sparsity has
been shown to produce more relevant atoms (see [63] and the references therein), the actual embedding
of the data was done with (non-sparse) convolution.

The reasoning behind this approach is as follows. It has been shown that the first layers of a CNN
tend to learn general feature extractors: for example, in image processing, the first layers usually
exhibit features similar to Gabor filters and color blobs [64]. The aim of our data embedding phase
was to replace the first layers of the CNN with some already trained filters, here the atoms of the
dictionary. Since the training was done on a small dataset, reducing the number of layers in the
network may improve the results. Hence, in order to mimic the behavior of the first layers of the CNN,
regular convolution was used instead of convolutional sparse coding. All data embedding details
were given below.

Preprocessing. It has been shown that preprocessing improves the performance of CNN
networks [65], particularly when dealing with a small labeled dataset. The preprocessing of data
was done as follows. Let (CF)T_; denote the signal produced by the channel k (1 < k < K = 5),
wheret =1,..., T represent the data points recorded with a frequency of 100 Hz.

1. Eachchannel (Cf)T_, was filtered with a low-pass Butterworth filter with a 10-Hz cutoff frequency,
fifth order, and zero lag. This step aimed to limit the amount of electronic noise present in the
signal, as the 10-Hz cutoff frequency is the reference in gait-related signals [66].

2. The linear trend of each channel was removed using a least squares model.

3. Each channel whose signal maximum amplitude was small was then set to zero, as the channel
was assumed to only account for noise.

4.  The resulting signal s was obtained as the sum of all the channels:

s = (Ct)t = ( i Cf)t

k=1

Figure 3 shows an example of the resulting signal.

Signal embedding. Data augmentation is a key part of training complex neural networks,
particularly when only small labeled datasets are available [67]. However, these techniques are difficult
to apply in our setting, as it is unclear that commonly-used transformations would preserve the nature
and structure of the data. For instance, a re-scaled step signal may be confused with a fall signal, as the
amplitude of the applied force is the main difference between the two signals (see [68]). In our case,
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we are dealing with a small dataset, which is composed of complex signals, thus making end-to-end
learning a difficult task. To circumvent this difficulty, the data were first transformed using convolution
with atoms learned from Convolutional Dictionary Learning (CDL) in order to extract key elements
and features of the signal. This first phase was intended to improve the quality of the CNN input to
balance out the limited amount of available data.

400 Preprocessed Signal

200

Canal Signal
Signal
o

—200

—400

3 3
Time (s) Time (s)

Figure 3. Example of raw (left) and preprocessed (right) signals resulting from medical staff walking
on the sensor. In this case, no channel was set to zero during Step 3.

Convolutional dictionary learning. CDL is defined as the learning of a set of atoms to best
represent data (e.g., images or one-dimensional signals) while insuring a sparse representation.
Given a vector s that contains data to be represented, the objective is to find atoms d;; and activation
signals x,; such that the reconstruction is accurate, i.e., s = }_,, Xy * djy;. Solving CDL generally uses
the following objective function, referred to as convolutional basis pursuit denoising [46]:

o1
argm1n§||2xm*dm—s||§+)\2\|xm\|1 ()
m m

Xm,Am

Previous works have shown that many walk alterations can be detected and quantified by
studying the characteristics and variety of steps [69]. Following this idea, CDL has been successfully
used to quantify and evaluate gait [47]. However, it is worth noting that CDL is generally used on
signals derived from accelerometers, which have been proven to be a robust and reliable way to record
walks. In our setting, the recording was of lower quality, and nearly-identical steps, such as the ones
produced by the walking of young healthy individual [70], were recorded with significant variations
between them (see Figure 3). Besides, a large number of signals in the dataset contained elements
that were not related to steps (e.g., pushing a wheelchair or a cart). Finding a suitable dictionary was
therefore significantly more challenging, and this is why atoms were created by selecting signals that
were almost entirely walk related.

Learning step atoms. As previously said, in order to learn atoms relevant to our step description
process, we used a CDL approach on a subset of the walk signals, to guide the learning towards
step-related atoms. Equation (2) shows that when learning a dictionary, we learn at the same time the
dictionary and sparse representations of input signals. The standard procedure of dictionary learning is
to alternate between a sparse coding step (i.e., updating the sparse representation of the data according
to the current dictionary) and a dictionary update (i.e., updating the dictionary according to the current
sparse representation). This means that (2) is solved successively with d,, fixed (sparse coding) or
X fixed (dictionary update). We used the method of Garcia-Cardona and Wohlberg [71], which is
derived from the Alternating Direction Method of Multipliers (ADMM). Proposed by Boyd et al. [72],
ADMM solves problems of the form:

argmin f(x) + ¢(y) suchthat Ax+By=c 3)
XYy

By using the augmented Lagrangian multipliers. Adapted to sparse coding and dictionary
update with a specific coupling between the two steps (named consensus), this method proved
to be efficient among the existing ones [46]. We used the implementation of Wohlberg [73] of the
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algorithm, available in a Python package named SPORCO (SParse Optimization Research COde).
The number of atoms m was considered a hyperparameter of our CDL problem, and we chose it using
cross-validation. Our experiments showed that m = 3 achieved the best trade-off between the quality
of the reconstruction of the training set and the one of the validation set, while maintaining the sparsity
of the representation. Using less atoms led to either poor reconstruction or non-sparse representation
of the training set, whereas using more atoms significantly decreased the reconstruction quality of
the validation set. These three atoms were 0.7 s long, which corresponded to an upper bound of the
duration of a step in the walking of a healthy young individual [74]. They were obtained with A =5
and 2000 iterations during the optimization process. Figure 4 shows the resulting dictionary.

0.4 —— Atom O
— Atom 1
2
0 —— Atom 2
T 0.0
c
(@)}
n—0.2
-0.4
-0.6
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Time (s)

Figure 4. Dictionary learned using Equation (2). The amplitude of the atoms is small compared to the
signal because they are normalized.

Convolutional dictionary embedding. As discussed above, while we used a sparsity constraint
on the dictionary learning process, the actual embedding of the input data s into S¥ was done with
standard convolution:

st = (s *dm) )

1<m<3

Resulting in a three-channel encoding of the signal. Figure 5 shows an example of the data
encoding process.

15000 — Activation Atom 0 F‘ —— Convolution Atom 0 i
Activation Atom 1 [ 1000 Convolution Atom 1 H

100001 —— Activation Atom 2 I —— Convolution Atom 2
p ‘

I Ao
5000 | H 500 N

Il
|
Il

Activation
Activation

| \
—5000 | —500 \ | f |

~10000 |
-1000

Time (s) Time (s)

Figure 5. (Left) Convolutional sparse decomposition of the signal of Figure 3. Note that for this
individual, only Atom 0 is used. (Right) Convolution of the same signal with each atom. For this signal,
only Atom 0 was used in the sparse coding solution, but this differs in other signals. Moreover, it is
interesting to note that since Atom 0 is mildly similar to a Gaussian kernel, the result of the convolution
of the signal with Atom 0 is close to a smoothed version of the original signal.
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2.2.3. Pre Training Weights with Step Detection

This subsection discusses the idea behind the first sub-network of NURSENET and presents its
dedicated training process.

As discussed before, this sub-network is inspired by the Region Proposal Network (RPN). The idea
behind RPN is to help the main network of Faster R-CNN [51] focus only on interesting parts of
an image. To this end, a sliding window was passed on a feature map of the input image. On this
sliding window, boxes of different scales and ratios (in total K) were used as region proposals, and these
regions were evaluated through two layers. The first one output the probability of a box to be an object
and the other, one gave corrected coordinates of the box. This method allowed reducing the number of
false examples that may mislead the training process and greatly accelerated the item search. In our
case, since we were dealing with one-dimensional signals (hence significantly smaller than images),
we were not especially seeking high speed execution. However in this approach, steps were considered
as a key element to distinguish between medical staff and elderly activities. Therefore, by training
a network to identify and characterize steps, the idea was to ensure that most of the information that
was passed to the second sub-network of NURSENET was relevant. Moreover, as this step recognition
part brought a separate training, it added a constraint to the overall model, hence reducing the chances
of overfitting (see [75] for a discussion related to constraints and overfitting).

The architecture of the CNN used to train the first sub-network of NURSENET is presented in
Figure 6. This CNN was made of:

®  One 1D convolutional layer with 32 filters of size 60, with a stride of 10, followed by a BatchNorm
layer, with the activation function hyperbolic tangent (tanh).

*  One 1D convolutional layer with 16 filters of size 1, with a stride of 1, followed by a BatchNorm
layer, with the activation function tanh.

*  One 1D convolutional layer with 8 filters of size 1, with a stride of 1, followed by a BatchNorm
layer, with the activation function tanh.

* One 1D convolutional layer with 3 filters of size 1, with a stride of 1, with the activation
function sigmoid.

Input signal

Signal embedding Convolution Convolution Convolution Convolution
(32 filters, size 60, str 10) (16 filters, size 1, str 1) (8 filters, size 1, str 1) (3 filters, size 1, str 1)
+tanh +tanh +tanh + sigmoid

Figure 6. Architecture of the first part of the CNN, the SPN. Note that the last layer, which gives the
output, is not present in the general NURSENET algorithm (Figure 2).

Training set. The training of this CNN was done as follows. For this task, we selected a subset
of signals that only included easily-identifiable walks of the medical staff. Each of these signals was
manually segmented by an expert using external sensor information, such as the video recordings of
the equipped area. More precisely, boxes (denoted b;) were manually labeled for each step of each
embedded signal. Figure 7 gives an example of step delimiting boxes. The purpose of the SPN is to
produce boxes b with a large Intersection over Union (IoU) score:

R b;Nb
I10U(b) = max [bj Nl

= (5)
] |bj U b|
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i.e., boxes that are nearly equal to at least one of the ground-truth boxes. More precisely, the output
of the network is a matrix W € RT*K, with T being the signal length and K the number of different
box sizes. Here, WY is interpreted as the probability that the box b¥ starting at time ¢ and of size 20, 30,
or 40 (for resp. k =1, 2, or 3) has a large I0U score. Those durations are chosen according to typical
step durations of young healthy individuals. In line with [51], we define positive instances of boxes,
ie., b’t‘ such that IDU(b’t‘ ) > V0.7, and negative instances, i.e., bf such that IOU(b’t‘ ) < v/0.3. Tt should be
noted that in the original paper, authors used 0.7 (resp. 0.3) for the upper threshold (resp. the lower
threshold). However, in their case, I0U was computed between 2D boxes, instead of 1D in our case.
All other boxes were considered neutral boxes and did not participate in the training process. The loss
function L is then defined as:

L= ;k [Z Lrou(eh) Flog(Wt) IUU(bf)<\/ﬁlog(1_wtk)' (6)
€1,23]

200 N

Signal

| V
—200 ‘ | ¥ | H v

| I
—400 M

0 100 200 300 400 500 600
Time (s)

Figure 7. Example of the boxes” delimiting steps in a walk signal. Only parts of the signal that can be
undoubtedly connected to a step are labeled.

Training process. The weights of each layer were initialized using i.i.d. centered Gaussian
variables with a standard deviation of 0.2. Regularization was done using dropout (with p = 0.5) after
each BatchNorm layer. Equation (6) was optimized using stochastic gradient descent with a learning
rate of 107>, decreasing geometrically (x0.9) every 10 epochs, and the Nesterov momentum strategy.
The learning was stopped using the early stopping principle.

Remark. After its training, SPN achieved good, but lower than the state-of-the-art performance: for
an IoU threshold of 0.7 (resp 0.9), it achieved an Average Precision (AP) of 85.2% (resp. 55.3%).

2.3. Data Collection

The objective of NURSENET was to provide an unobtrusive tool to monitor physical activity
of elderly individuals in a nursing home. To this end, a partner retirement house was chosen to
collect the signals using the following setting. A corridor and a nearby common room were equipped
with the system (Figure 8), and signals were recorded and labeled (event types and step boxes for
the signals concerned) by an expert using two cameras. The areas, a corridor and a common room,
were chosen for their accessibility (i.e., ease of installation of the system and event labeling) and the
great frequency of people passing through. Indeed, the corridor is surrounded by the dining room,
a caregiver office, and another corridor to another aisle of the nursing home, making it an important
crossing point. Data were labeled according to the type of event (walking, rolling a cart, pushing
a chair, etc.), the status of the person (patient or caregiver), and the number of persons on the floor.
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- Areas equipped with sensor

Common room

Dining

Corridor
room

Figure 8. System installation in the nursing home.

The final database contained 93 labeled signals with a labeling resolution of 1 s for event labels
(e.g walk, rolling a cart, etc.) and 10 ms for the steps of the concerned signals. Table 1 shows
the number of events of each main class. It should be noted that the majority of signals are from
caregivers. Consequently, it is crucial to identify them as accurately as possible in order not to alter
a potential elderly activity monitoring system. Figure 9 shows two examples of signals recorded in the
nursing home.

Table 1. Number of instances in the dataset. Signals have an average duration of 10 s. Note that in the
walking, >1 person category, all the walkers were either all elderly or all medical staff.

Event Number of Instances
Walking, 1 person, staff 42
Walking, 1 person, elderly 16
Walking, >1 person 11
Wheelchair 9
Wheelchair pushed by another 5
Walking with a cart 5
Other events 5

200

200 100

Signal
o

Signal
o

—200 -100

-200

—400

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 0.0 15 3.0 4.5 6.0 7.5 9.0 10.5
Time (s) Time (s)

(a) Walking of a staff member (SNR ~ 23 dB). (b) Walking of an elderly person (SNR ~ 18 dB).

Figure 9. Example of signal of a young healthy person from the staff (a) and an elderly (b). The first
observation is that the signal generated by the elderly footsteps has a significantly smaller amplitude,
leading to a lower signal-to-noise ratio. We recognize some similarities between these signals as step
patterns, as can be seen in (b). However as a whole, the (b) signal seems less repeatable than (a). This is
probably due to the fact that the walking of an elderly can be less regular and less pronounced than
a young healthy person whose feet leave and hit the floor at a regular pace.

3. Results

In this section, we thoroughly evaluate the performance and behavior of NURSENET on multiple
types of signals. First, the accuracy of NURSENET is studied over each subgroup of our database,
and we take a closer look at misclassified signals. Then, a complete ablation analysis is done to show
the relative improvement added by each part of the algorithm, and our approach is compared to
a another robust off-the-shelf classification algorithm. The algorithm was tested and run with a Python
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implementation on a laptop with a 2.4-GHz Intel Core i7 processor. The training of the several stages
(i.e., CDL, SPN, and NURSENET) took a few hours. However, the complete inference process was very
fast (nearly instantaneous for a 10-s signal).

3.1. Performance Evaluation

The algorithm was evaluated by performing a stratified split of the dataset into training and
testing sets (70 and 30%), resulting in similar distributions of data in both sets. The hyperparameters of
CDL, SPN, and NURSENET were chosen using cross-validation on the training set. The separation was
done using stratified random sampling along the three labels single walk, where one individual was
walking on the sensor, multiple walks, where strictly more than one individual was walking at the same
time on the sensor, and others, where one non-walk-related event occurred (e.g., pushing a wheelchair
or a cart). The signals were labelled as staff if all the persons involved were parts of the medical staff
and elderly otherwise. The demographics are detailed in Table 2.

Table 2. Quantity and nature of the signals contained in our dataset. Data were split into training and
test using stratified random sampling along the classes single walk, multiple walks and other.

Label Staff Elderly
Single Walk 40 18
Multiple Walks 8 3
Other 7 17

NURSENET achieved a global AUC of 0.94(+0.02) on the test set for the classification between
staff and non-staff activities. This high performance was evenly distributed on all the labels, as shown
by Figure 10. Additionally, it should be noted that the accuracy of NURSENET was similar for both the
test set and the entire dataset, which highlights the generalizability of our approach. Table 3 presents
two examples of classification obtained by NURSENET for different thresholds, and Figure 11 shows
examples of misclassified signals.

Total Dataset Test set
1.0 1.0

’_,_|—r ———

[
0.8 J 0.8
206 206
2 2
E=} E=}
@ @
o o
Q Q
o o
2 2
o4 Foa4
0.2 0.2
—— Single Walks AUC 0.99 —— Single Walks AUC 0.96
N Multiple Walks AUC 0.83 Multiple Walks AUC 1.00
—— Others AUC 0.92 —— Others AUC 0.92
I~ —— Global AUC 0.95 —— Global AUC 0.94
0.0 . . . 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False positive False positive

Figure 10. ROC obtained when classifying between medical staff and elderly individuals for different
activities (single individual walk, multiple individuals walks, other) using NURSENET on (left) the
entire dataset and (right) the test set. Performances are similar in both cases.
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Figure 11. Examples of signals misclassified by NURSENET. (Left) Nurse pushing a wheelchair.
Note that the signal is irregular. (Right) Elderly walking. Contrary to the previous example (Figure 9),
this signal presents higher periodicity and amplitude, and the recorded individual is healthier.

Table 3. Confusion matrix for different thresholds 7, i.e., activity is classified as staff if the network
produces an output greater than or equal to 7. Note that the staff activities that are confused by the
networks are essentially the nurse pushing medical material such as wheelchairs or carts on the sensor.

Staff Elderly
Single Walk ~ Multiple Walks Other Single Walk  Multiple Walks  Other
T=02
Test  Classified Staff 13 3 1 2 0 0
Classified Elderly 0 0 1 4 1 6
All  Classified Staff 40 7 5 4 1 1
Classified Elderly 0 1 2 14 2 16
T=04
Test  Classified Staff 12 2 1 1 0 0
Classified Elderly 1 1 1 5 1 6
All  Classified Staff 39 3 3 1 0 1
Classified Elderly 1 5 4 17 3 16

3.2. Ablation Analysis

This subsection aims to perform an ablation analysis on NURSENET and compare it to non-deep
learning-based approaches. To achieve this result, a version of NURSENET was trained without the
SPN pre-training part. In other words, the network was trained from scratch on the final classification
task. Another version of NURSENET was trained, in which there was neither dictionary embedding
nor SPN pre-training, i.e., it used directly the raw signal as an input, and the whole CNN was trained
on the classification task. Finally, NURSENET was compared to a Random Forest (RF) algorithm,
which is known to provide good results. The RF features were 10-s padded signals decomposed using
dictionary embedding and the atoms learned in Section 2.2.2. Results are presented in Figure 12.

It is important to notice that while all the previously-described algorithms achieved good
performance on the entire dataset (which includes the training set), their AUCs significantly dropped
on the test set, hence suggesting significant overfitting. This was particularly true for RF, whose
AUC was only 0.72(10.04) on the test set, highlighting the advantage of a CNN-based approach in
our setting. Additionally, NURSENET significantly outperformed both its simplified versions, which
illustrates the advantages of our training method. Finally, it should be noted that NURSENET without
embedding, which is a CNN directly applied to the raw signal, achieved the surprisingly high AUC of
0.84(+0.03).
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1.0 1.0

0.8 0.8

o
o
True positive

True positive

o
IS

0.2 0.2

—— NurseNet, AUC = 0.94
NurseNet without SPN, AUC = 0.80
NurseNet without Embedding, AUC = 0.84

—— RF with Embedding, AUC = 0.72

—— NurseNet, AUC = 0.95
NurseNet without SPN, AUC = 0.89
NurseNet without Embedding, AUC = 0.91

—— RF with Embedding, AUC = 0.88

0.0 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False positive False positive

Figure 12. ROC obtained when classifying staff/elderly activities using the different variants of
NURSENET and RF on (left) the entire dataset and (right) the test set. The corresponding AUCs are
displayed in the figure legend. Note that NURSENET outperformed all the other algorithms in both
cases. It also generalized well, as it had consistent performances between the test set and the entire
dataset, contrary to the others.

4. Discussion

Classification across all labels. It is interesting to note that NURSENET performed well across all
labels described in Table 2. This might seem counter-intuitive at first as the algorithm was pretrained
toward detecting steps and some signals contained non-gait-related activities (e.g., pushing a cart).
A possible explanation comes from the fact that all signals contained some elements of walks. In the
example where a nurse was pushing a cart, while not obvious to the untrained eye, it was possible
that some characteristics of the medical staff walk were encoded in the signal. Therefore, the features
learned by the SPN could be relevant to correctly assess the signals.

Multiple training. Interestingly, the CNN without the dictionary encoding, nor SPN pre-trainings
performed significantly better than the CNN with the sole dictionary encoding. This may be explained
as follows. Both the dictionary encoding and the SPN are two complementary stages of step detection:
the dictionary extracted features linked to step characteristics, and the SPN was trained to use these
features to segment the signal into steps. On the one hand, when the CNN was used with only
dictionary embedding, the training task became more complex as the network had to learn how to use
these features to recognize steps while trying to classify these signals. On the other hand, the regular
CNN algorithm could use any non-step-related features to perform the classification. Consequently,
its objective function was significantly less constrained and had a larger number of reasonable local
minima, making it easier to train. However, it should be noted that when properly guided toward
a step-related solution (NURSENET), the CNN appeared to perform even better, which emphasized the
interest of our approach.

NURSENET vs. shallow. On this classification task, the random forest model gave reasonable
performance on the test set (AUC 0.72). However, it was significantly lower than its overall
performance (AUC 0.88), which indicates that it was overfitting. We observed similar behavior
for most off-the-shelf algorithms (e.g., SVM). This may be explained by the complex nature of the
signal: while NURSENET (as well as other deep network algorithms) can learn relevant features to
describe the signal, shallow algorithms tackle a significantly harder task. It is the authors belief that
with properly-designed features, RF may achieve performance similar to CNN. However, due to
the very good AUC obtained by NURSENET, we chose not to push further into the manual feature
engineering, as it is always possible to use features learned from NURSENET to improve the results of
other algorithms.
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In-depth classification. As seen in Section 3, NURSENET was able to separate medical staff
and elderly activities with very high accuracy (AUC 0.94). Future work will focus on separating
different categories of activity as each one of them entails different indicators regarding elderly activity
monitoring. However, this task requires a significantly larger dataset, and therefore, the installation of
NURSENET on multiple locations.

Signal Quality. Serra et al. [10] used a similar sensor to NURSENET and showed examples of
footstep recordings that proved to be very reliable in their interpretability. For instance, different phases
of a footstep could be seen: heel, toe, weight transfer, and foot removal. Moreover, these footsteps
were recorded multiple times with different persons, showing that the generated signal was repeatable,
illustrating it with a superimposition of several footsteps of one person (see Figure 13). However, in our
application, the output was of significantly lower quality. There were multiple factors that may account
for this difference. The authors of [10] recorded their signals in a controlled environment: a single
band was directly linked to an acquisition unit dedicated to laboratory prototyping. These laboratory
conditions lead to high-quality output signals, and events such as walks could be easily decomposed.
However, in our setting and due to scale and cost issues, the signal was collected on multiple
large surfaces and sent through a processing unit designed to perform multiple tasks including
the amplification of the signal, which may alter the quality of the data. Moreover, in addition to
the previously-acknowledged limitations (i.e., non-homogeneousness piezoelectric coefficient across
space), the system appeared to be sensitive to humidity. Indeed, in this setting, the signal was collected
through crimps hooked to the sensor and linked to a printed circuit. This connection was vulnerable to
humidity that may be in the surfaces in contact with the system (e.g., adjacent walls), which may even
lead to corrosion. Besides, this humidity may enter in contact with the edges of the sensor, thus creating
an additional resistance between the two sides of the device. Depending on the characteristics of the
humidity, these two phenomenons may significantly alter the output of the unit. Future improvement
of the sensor would aim to reduce these effects.

L
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. \..._!v\‘».......m-....‘ u
\u
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I \‘
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[l “ \\ !
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(a) Example of footsteps recording  (b) Superimposition of 100 steps  (c) Example of a signal of a walk of
in the laboratory environment. ~ from the same person recorded in a young healthy person in the
Experiments were done such that the laboratory environment. nursing home.
each event is only one step on
the sensor.
Figure 13. When considering signals recorded in laboratory conditions (a,b), we notice a certain
regularity and good repeatability of events that are not of the same quality when looking at signals
taken in the nursing home (c). Figure (a,b) were taken with the author’s agreement.

Individual identification. While NURSENET achieved very high accuracy for classifying the
elderly and medical staff, it is not able at the moment to recognize individuals. This is due to the
fact that the dataset used only included a handful of signals for each individual. However, it is the
authors’ belief that with significantly more data, NURSENET can be improved to distinguish between
individuals, albeit at a lower accuracy than the staff/elderly separation. Future work will aim at
improving NURSENET in that regard. It should also be noted that despite this limitation, it was already
possible to assign the activity to a person with reasonable accuracy using external information, using
for instance the location of the system (e.g., if the system is installed near or inside a person’s room).
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SPN Step Proposal Network

RPN Region Proposal Network

CNN Convolutional Neural Network

CDL Convolutional Dictionary Learning

RF Random Forest
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