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Diabetic foot ulcer (DFU) is a combination of neuropathy and various degrees of peripheral
vasculopathy in diabetic patients resulting in lower extremity infection, ulcer formation, and
deep-tissue necrosis. The difficulty of wound healing in diabetic patients is caused by a
high glucose environment and various biological factors in the patient. The patients’ skin
local microenvironment changes and immune chemotactic response dysfunction.
Wounds are easy to be damaged and ulcerated repeatedly, but difficult to heal, and
eventually develop into chronic ulcers. DFU is a complex biological process in which many
cells interact with each other. A variety of growth factors released from wounds are
necessary for coordination and promotion of healing. Fibroblast growth factor (FGF) is a
family of cell signaling proteins, which can mediate various processes such as
angiogenesis, wound healing, metabolic regulation and embryonic development
through its specific receptors. FGF can stimulate angiogenesis and proliferation of
fibroblasts, and it is a powerful angiogenesis factor. Twenty-three subtypes have been
identified and divided into seven subfamilies. Traditional treatments for DFU can only
remove necrotic tissue, delay disease progression, and have a limited ability to repair
wounds. In recent years, with the increasing understanding of the function of FGF, more
and more researchers have been applying FGF-1, FGF-2, FGF-4, FGF-7, FGF-21 and
FGF-23 topically to DFU with good therapeutic effects. This review elaborates on the
recently developed FGF family members, outlining their mechanisms of action, and
describing their potential therapeutics in DFU.

Keywords: fibroblast growth factor, diabetic foot ulcers, signaling pathways, wound healing, mechanism
INTRODUCTION

Diabetes is a major health issue that has reached alarming levels. The prevalence of diabetes has been
increasing worldwide for approximately 50 years and has reached epidemic proportions globally and
in China. It is predicted to rise to 10.2% (578 million) by 2030 and 10.9% (700 million) by 2045 (1),
which means that one in ten people have diabetes. Diabetes and its complications have a significantly
economic impact on individuals, families, national economy, and global health system. Health
spending on diabetes is expected to grow to $825 billion by 2030 and to $845 billion by 2045 (2).
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The chronic complications of diabetes vary with the type of
diabetes, onset time and metabolic control degree, and the most
common complications are neuropathy (42.1%), retinopathy
(44%), nephropathy (63.1%) and macroangiopathy (43%) (3).

Peripheral neuropathy and peripheral vascular disease of the
lower limbs can occur in diabetic patients due to their constant
exposure to high glucose (4), but such neuropathy and vascular
disease are often not easily detected. If a wound develops in the
lower limb of a diabetic patient at this time, it can become highly
susceptible to infection, which can lead to foot ulcers and, if not
appropriately treated, can progress to partial or complete
amputation of the lower limb. It is known that about one in
six diabetic patients worldwide will have at least one plantar ulcer
in their lifetime. The probability of foot ulcers in patients with
diabetes 3 – 5 years is estimated to be 2.4 – 2.6%, with a
prevalence of 4 – 10%. In addition, diabetic foot ulcers are
prone to relapse, and the risk of developing DFU is about 2%
per year in most diabetics, but for patients with a history of DFU,
the risk of recurring DFU will increase to 17% -60% in the next
three years (5). Generally speaking, the healing process of a
typical wound includes four stages: hemostasis, inflammation,
proliferation, and remodeling. However, the environment of
continuous hyperglycemia in diabetic patients affects various
processes of routine wound healing. It is reported that diabetic
patients will have hypercoagulable state and skin function
decline during hemostasis (6). During the process of
inflammation, the imbalance of some inflammatory factors and
several growth factors in diabetic patients leads to the long-term
chronic inflammatory reaction of wounds (7), and it is reported
that the reduction of neutrophil function is also one of the
reasons leading to the susceptibility of diabetic wounds (8). Due
to long-term exposure to high sugar, the migration and
proliferation of keratinocytes in diabetic patients decreased,
resulting in insufficient wound re-epithelialization, which
further affected the wound healing process (9). The differential
expression of extracellular matrix produced, assembled and
remodeled by fibroblasts also leads to poor healing of diabetic
wounds (10). DFU not only leads to high medical expenses and
overcrowding in clinics, but also often causes ulcers. Wounds
that are hard to heal bring great physical and mental pain and
torture to patients. As the population ages and the incidence of
diabetes increases, so does the prevalence of DFU in young
people (11). According to studies, the older you are and the
longer you have diabetes, the more likely you are to develop DFU
(12). Therefore, treating DFU is one of the most critical health
problems that urgently need to be addressed in clinical practice.

In recent years, with the in-depth study of wound healing
process, it has been found that many growth factors are closely
related to the repair cells, especially play a key role of wound
repair, among which fibroblast growth factor (FGF) is one of
them (13). Fibroblast growth factor (FGF) is a kind of
polypeptide growth factors with various biological activities,
which widely exists in various organs and tissues. Twenty-three
FGF family members have been found, which are divided into 7
subfamilies (14). Secretory fibroblast growth factor is expressed
in almost all tissues and plays an important role in the early
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stages of embryo development. In adulthood, it acts as a balance
factor in the body and is important for tissue maintenance,
repair, regeneration and metabolism (14). Secreted FGFs fall into
two categories, namely classical FGFs (also known as paracrine
FGFs) and endocrine FGFs. In addition to the typical FGF
function of controlling cell proliferation, differentiation and
survival, endocrine FGF also regulates the metabolism of
phosphate, bile acid, carbohydrate and lipid. Paracrine FGFs
functions include neural development, keratinocyte
organization, angiogenesis, and wound healing processes, and
any functional abnormality leads to a range of developmental
defects. Fibroblast growth factors is a stronger angiogenesis
factors than platelet-derived growth factor (PDGF) and
vascular endothelial growth factor (VEGF). FGFs stimulates
angiogenesis and proliferation of fibroblasts, forming
granulation tissue. In the initial stages of the wound healing
process, tissue fills the space of the wound and the cavity of the
wound (15).

Many reports suggest that some FGF subtypes may affect the
healing process of diabetic wounds, such as aFGF, bFGF and FGF
15/19 subfamily, which has become a research hotspot. It has
been found that aFGF significantly increases the number of
capillaries and fibroblasts in ulcer tissue, and enhances the
expression of TGF-ı ́ and PCNA proliferative proteins, thus
promoting the healing of diabetic ulcer (16). Another study
showed that in a diabetic mouse model, by controlling the
release of bFGF, the healing of skin wound was accelerated,
and the rate of epithelial formation increased. In addition,
controlled release of bFGF can induce apoptosis of fibroblasts
and myofibroblasts in the wound area, thus reducing scar
formation during healing (17). Earlier reports have found that
FGF-19 and FGF-21 are abnormally expressed in the serum of
diabetic patients (18, 19), indicating that they regulate major
metabolic processes in an endocrine way, including metabolism
of blood sugar, blood lipids, cholesterol and bile acid. The articles
related to FGFs and DFU were identified by searching major
relevant literature databases including PubMed, Elsevier, China
National Knowledge Infrastructure (CNKI), Chinese VIP
Information (VIP), EMBase, Cochrane Library, Web of
Science, and Wanfang, up to May 2021. The primary objective
of this review was to investigate the possible mechanisms
underlying FGF subtypes and recombinant FGF related to
DFU, and to identify potential therapeutic targets.
DFU PATHOPHYSIOLOGICAL
MECHANISM

The skin barrier defects that has not healed within 3 months, that
is, chronic wound, have become the main treatment challenge
nowadays, and is increasingly associated with an aging
population and the incidence of diabetes, obesity and vascular
disease. Healing of damaged skin involves complex and
interlocking interactions between many cytokines in the skin
barrier (20). Wound healing usually goes through the following
stages: hemostasis, inflammation, proliferation, contraction and
October 2021 | Volume 12 | Article 744868
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remodeling. However, clinical and experimental studies have
found that the healing process of diabetic wounds does not
strictly follow the above-mentioned normal stages of wound
healing, and stagnates at different stages, leading to ulcers and
delaying wound healing.

According to previous studies, the healing of diabetic wounds
can be affected by the following factors: 1. Excessive oxidative
stress: it is in a state of high glucose continuously, and excessive
redox and products affect all stages of wound healing, and inhibit
its healing. At the wound, the generation and removal of reactive
oxygen species (ROS) is necessary to ensure wound healing,
while diabetic wounds present high levels of reactive oxygen
species. High glucose can lead to an increase of substrates for
energy metabolism, thus producing excessive superoxide, and
promoting the increase in oxidative stress and its corresponding
products (21). These products further induce the generation of
advanced glycation end products (22). Decoupling of nitric oxide
synthase leads to the decrease of nitric oxide production (23),
which can make wound healing difficult.

2. Excessive inflammatory reaction: In the inflammatory stage
of a normal wounds, neutrophils and monocytes migrate to the
wound site and release various cytokines and growth factors.
Recent studies have demonstrated that that the diabetic group
has a higher proportion of T cells and more inflammatory cell
clusters such as NK cells, B cells, and mast cells. In contrast, the
DFU group has a higher proportion of endothelial cells and
smooth muscle cells (24). However, it is difficult to transition the
inflammatory stage to the proliferative stage of the wound in
diabetic patients, resulting in a long-term chronic inflammatory
state in patients (25). Studies have found that excessive chronic
inflammation to acute inflammation levels in DFU wounds is the
key to wound healing (26, 27). In fact, a more recent study
suggests that inhibition of FOXM1 leads to an acute to chronic
healing deficit phenotype switch and delays wound healing., In
DFU, FOXM 1 and the interactive proteins promoting wound
healing were down-regulated, indicating that the FOXM 1
pathway was inhibited by pathology (28). When the
inflammatory phase of injured tissues in diabetic patients is in
the late stage, macrophages are still in an inflammatory state,
which cannot be transformed into a repair phenotype, and then
cannot secrete the medium to promote tissue repair, and the
wound cannot transition to the proliferative phase, leading to
chronic inflammation (29). It is also found that excessive
neutrophils release extracellular traps (NETs) in diabetic
wounds, which act ivate NLRP 3 inflammasome in
macrophages and release IL-1b, and inflammatory cytokines
exist in diabetic wounds for much longer time than normal,
which may also be the reason for prolonging the inflammatory
period and inhibiting granulation tissue formation (30).

3. Decreased angiogenesis: Insufficient angiogenesis in the
wounds of diabetic patients mainly affects the proliferative stage
of the wounds. In the proliferative phase of wound healing in
normal subjects, the number of wound blood vessels is much
higher than that in normal skin. It was first shown that in
wounds, macrophages are a major source of vascular endothelial
growth factor (VEGF) and other pro-angiogenic factors (31).
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However, during the inflammatory stage of the wound, the
transformation of macrophages into repair phenotype failed,
which may affect angiogenesis during the proliferative stage.
Secondly, the plasma levels of pigment epithelium-derived factor
(PEDF) were found to be elevated in DFU patients and db/db
mice. Excessive PEDF reduced the angiogenesis of wound skin,
decreased the function and number of endothelial progenitor
cells (EPC) in diabetic mice, and delayed wound healing. On the
other hand, angiopoietin-1 (Ang 1) and angiopoietin-2 (Ang 2)
are important pathways for angiogenesis and maintenance, and
in diabetic wounds, Ang 2 continues to be significantly up-
regulated and the Ang 2/Ang 1 ratio is dysregulated, which
interferes wound angiogenesis (32). Researchers found that the
skin of patients with DFU showed up-regulation of CYP1A and
SLCO2A1 (24). CYP1A is associated with skin barrier function
(33), SLCO2A1 is abundant in vascular endothelial cells (34),
and it was found that inhibiting SLCO2A1 can accelerate diabetic
wound healing (35).

4. Peripheral neuropathy: Diabetic peripheral neuropathy is
caused by many factors, such as oxidative stress, hypoxia, AGEs,
activation of T lymphocytes and deficiency of nerve growth
factor (NGF). Neuropeptides are neuromodulators that are
involved in a variety of processes, including diabetic wound
healing. Diabetes mellitus leads to autonomic nerve and small
sensory nerve fiber neuropathy, which is characterized by
decreased neuropeptide expression (36). The expression of
neuropeptide Y in the skin of diabetic patients and diabetic
rats decreased. Diabetic neuropathy is a group of heterogeneous
diseases with various clinical manifestations. Up to 50% of
diabetic peripheral neuropathy (DPN) may be asymptomatic,
so early identification and appropriate treatment are necessary,
so it is necessary to explore the significance of neuropeptides in
diabetic wound healing.

5. Abnormal expression of matrix metalloproteinases
(MMPs): When the wound is in the remodeling stage, matrix
metalloproteinases decompose collagen, fibronectin and other
protein components in the extracellular matrix (ECM), which
affects the remodeling of the ECM. MMPs are abnormally active
in the skin of patients with diabetic ulcers and are imbalanced
with their tissue inhibitors of metalloproteinases (TIMPs).
Lobman et al. found that MMP-1, MMP-8, MMP-9 and
activated MMP-2 levels were significantly higher in DFU than
in normal wounds from non-diabetic patients, while the levels of
TIMP-2 were significantly lower than in wounds from non-
diabetic patients. Muller et al. reported that high expression of
MMP-1 in DFU is critical for wound healing, but excess MMP-8
and MMP-9 may delay wound healing, and the MMP-1/TIMP-1
ratio may reflect the proteolytic environment of the wound
(37–39).

6. Abnormal apoptosis: In the process of wound healing,
different cell groups are also facing different stages of clearance,
until apoptosis. In DFU trauma, mitochondrial damage leads to
the up-regulation of pro-apoptotic proteins, while the expression
of anti-apoptotic proteins such as B-cell lymphoma -2 (Bcl-2)
decreases, leading to apoptosis in various cells such as fibroblasts
and vascular smooth muscle cells (Figure 1).
October 2021 | Volume 12 | Article 744868
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Recently, it has been shown that FGF-2 expression is low in
wound cells of diabetic patients, and FGF-2 is related to
fibroblast mitosis and cell viability. APOD, which is associated
with fibroblast regeneration, and CSTB, SMARCA4, and HSPA9
are all expressed at a lower level, which also contributes to the
abnormal apoptosis of fibroblasts (40). It has been found that
inflammatory cells in diabetic mice show delayed apoptosis
during the inflammatory stage of wound healing (41). In the
period of proliferation and remodeling, excessive apoptosis of
effective cells in high glucose state leads to poor structural
recombination, which makes it difficult to generate granulation
tissue and makes the wound susceptible to infection (42).
Oxidative stress under long-term high glucose condition,
accompanied by abnormal glucose and lipid metabolism, leads
to long-term chronic inflammation of wounds throughout all
stages of wound healing. Patients with DFU disease usually have
macroangiopathy, neuropathy and microcirculation
abnormalities, involving multiple cells and molecules, which
interact with each other very complex, restrict and
complement each other.
FGFS OVERVIEW

In 1973, researchers identified the activity of a kind of protein
“fibroblast growth factor” from bovine pituitary extract for the
first time. This kind of protein stimulated the growth of 3T3 cells
at low concentration, which was an established mouse fibroblast
cell line (43). It was partially purified in 1975 and purified to
Frontiers in Endocrinology | www.frontiersin.org 4
homogeneity in 1983 (44), which was called basic fibroblast
growth factor (FGF-2 or bFGF) because of its basic amino acid
composition and isoelectric point of 9.6 (45). In the same year, it
was reported that researchers isolated and purified an active
factor without myelin basic protein fragments from bovine brain,
and identified that it had the second fibroblast growth factor-like
activity, which was called acid fibroblast growth factor (FGF-1 or
aFGF) because of its low isoelectric point (46).

The mammalian fibroblast growth factor family contains 22
genes, 18 of which signal through fibroblast growth factor
tyrosine kinase receptors, and the other four do not secrete or
interact with fibroblast growth factor receptors obviously (47). At
present, FGFs are divided into five paracrine FGF subfamilies (i.
e. FGF 1, FGF 4, FGF 7, FGF 8, and FGF 9 subfamilies), one
endocrine FGF subfamily (i. e. FGF 15/19 subfamily), and one
intracellular FGF subfamily (FGF 11 subfamily, also known as
iFGFs) based on their biochemical function, sequence similarity,
and evolutionary relationship. FGF 15 and FGF 19 may be
homologous genes in vertebrates, which are named FGF-15 in
rodents but FGF-19 in other vertebrates.

The FGF 1 subfamily consists of FGF-1 and FGF-2. FGF-1
and FGF-2 are present in the nucleus of some cells, and although
the mechanism by which FGFs are transported through the cell is
unknown, they need to bind to and activate cell surface tyrosine
kinase FGFRs, with heparin/HS as a co-factor, and interact with
HSP 90 (48). FGF-1 and FGF-2 lack signal peptides, so FGF-1
and FGF-2 are not secreted, but can be released from damaged
cells, or through an exocytic mechanism independent of the ER-
Golgi pathway (49). It has been suggested that potential
FIGURE 1 | Mechanisms of diabetic wound healing difficulties. Wound healing is a complex array of multiple processes, many of which are mediated by growth factors.
Six mechanisms make it difficult for diabetic patients to heal wounds. These include excessive oxidative; neuropathy; chronic inflammation; decreased angiogenesis;
abnormal matrix metalloproteinase and abnormal apoptosis. NO, Nitric oxide; ROS, Reactive oxygen species; AGEs/RAGE, Advanced glycosylated end-products/
glycosylated end product receptor; NPY, Neuropeptide Y; NETs, Extracellular traps; IL-1b, Interleukin-1b; Ang1/Ang2, Angiogenin 1/angiogenin 2; PDGF, Platelet-derived
growth factor; EPCs, endothelial progenitor cells; TIMP, Metalloproteinase inhibitor; MMPs, Matrix metalloproteinases; Bcl-2, B cell lymphoma-2.
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functions of FGF 1 include regulating cell cycle, cell
differentiation, survival and apoptosis (50). More importantly,
FGF-1 is the only one that can activate all FGFR varieties.

According to phylogenetic analysis, the FGF 4 family consists
of FGF-4, FGF-5, and FGF-6 (51). In addition, all members of
this subfamily have cleavable N-terminal signal peptides, which
mediate biological reactions as extracellular proteins by binding
fibroblast growth factor receptors and activating IIIc splicing
variants of FGFR 1-3 and FGFR 4 (52). The FGF 7 subfamily is
composed of FGF-3, FGF-7, FGF-10, and FGF-22, but there is
some controversy about the presence of FGF-3 in this family, and
the concept of an eighth subfamily composed of FGF 3 only has
been proposed (53). The FGF 8 subfamily consists of FGF-8,
FGF-17, and FGF-18. Similarly, these FGFs all contain an N-
terminal cleaved signal peptide. The FGF 9 subfamily is
composed of FGF-9, FGF-16 and FGF-20 although FGF-9 has
high secretion efficiency, there is no classical signal peptide at the
nitrogen terminal. As early as the early 20th century, it was
shown that the hydrophobic region in its structure is key to its
secretion and can be transported to the endoplasmic reticulum
and secreted from cells as a non-cleaving signal (54, 55).

The FGF 15/19 subfamily consists of FGF-15/19, FGF-21, and
FGF-23. Unlike previous FGFs, these FGFs have a very low
affinity for heparin/HS binding, so they act mainly as exerting
endocrine factors and are known as endocrine FGFs. For
endocrine FGFs, they act as cofactors through the Klotho
family of proteins, namely aKlotho, bKlotho, and gKlotho
(also known as Klotho-LPH-associated protein (KLPH) or
lactase-like Klotho (Lctl)), and undergo biological effects after
activation and binding to the FGFR receptor, rather than
heparin/HS. It is also due to the reduced affinity of FGF 19
subfamily for heparin binding that promotes the release of
extracellular matrix (ECM), allowing these FGFs to act as
endocrine factors. Among the above FGFs, FGF-1, FGF-2,
FGF-4, FGF-7, FGF-21, and FGF-23 had an effect on the
treatment of diabetic ulcers (Table 1). Additional FGF-11,
FGF-12, FGF-13, and FGF-14 are uniformly assigned to
intracellular FGFs (iFGFs), also known as the FGF 11
subfamily. IFGFs are neither secreted nor interact with FGFRs,
Frontiers in Endocrinology | www.frontiersin.org 5
but instead interact with the carboxy terminus of the cytosol of
voltage-gated sodium (Nav) channels. Available studies suggest a
broad and important role for iFGFs in controlling excitability
throughout the central nervous system (62).
FGFS-FGFRS SIGNALING PATHWAYS

FGFs mainly regulate a variety of intracellular responses by
binding or activating tyrosine kinase receptors/fibroblast
growth factor receptors (FGFRs) on the cell surface (63). There
are currently four known FGFRs, namely FGFR1, FGFR2,
FGFR3, and FGFR4 (14). Paracrine FGFs and FGFRs bind
outside the cell to dimerize FGFRs, and FGFR intracellular
tyrosine kinase is activated by auto-trans-phosphorylation.

The activated FGFRs regulate the following signaling
pathways in the cell through adaptor proteins (64): 1) Rat
sarcoma (RAS)-MAPK pathway: fibroblast growth factor
receptor substrate 2a (FRS2a) interacts with Crk-like protein
(CRKL) and is phosphorylated by FGFRs kinase. Phosphorylated
FRS2a recruits growth factor receptor-bound protein 2 (GRB2),
then it recruits guanine nucleotide exchange factor SOS.
Furthermore, the recruited SOS activates the RAS GTPase.
Finally, the MAPK pathway is activated (65). MAPK can
activate the negative regulators CBL, SPRY, SEF, and DUSP6
of the FGF signaling pathway. 2) Phosphatidylinositol 3 kinase
(PI3K)-protein kinase B (PKB, AKT): The recruited GRB2
continues to recruit GRB2-associated binding protein 1
(GAB1), then they activate PI3K to phosphorylate AKT (66).
3) Phospholipase Cg (PLCg) pathway: activated FGFRs kinase
recruits and activates the enzyme PLCg to produce inositol
triphosphate (IP3) and diacyl glycerol (DAG). IP3 induces the
release of calcium ions, and DAG activates protein kinase C
(PKC) (67). 4) Signal transducers and activators of transcription
(STAT) pathway: FGFRs kinase also activates STAT1, STAT3,
and STAT5 (68).

Endocrine FGFs need to rely on Klotho to interact with
receptors. The mechanism of action is slightly different from
that of paracrine FGFs. FGF-FGFR-Klotho forms a ternary
TABLE 1 | Summary of FGFs related to diabetic ulcer and their characteristics.

Growth Factor Alternative Symbol Associated Cofactor Receptor Specificity Major effect Family Reference

FGF-1 aFGF HSPGs All FGFRs Mitogenic for fibroblast and endothelial
cells

FGF1 Subfamily (56)

Promotes angiogenesis
FGF-2 bFGF HSPGs FGFR1c,3c,2c,1b,4 Mitogenic for fibroblast and endothelial

cells
FGF1 Subfamily (57)

Induces cells apoptosis
FGF-4 kFGF HSPGs FGFR1c,2c,3c,4 Stimulates matrix metalloproteinases FGF4 Subfamily (58)
FGF-7 KGF HSPGs FGFR1b,2b Mitogenic for keratinocytes FGF7 Subfamily (59)

Promotes epithelialization
FGF-21 bKlotho FGFR1c,3c Reduces inflammation FGF15/19

Subfamily
(60)

Promotes re-epithelialization
FGF-23 aKlotho FGFR1c,3c,4 Improves vascular calcification FGF15/19

Subfamily
(61)
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complex that promotes the dimerization of monomeric FGFR.
After phosphorylation of FRS2a, it activates signal transduction
pathways (Figure 2).
FGF-1 AND DIABETIC WOUND HEALING

FGF-1 is called acidic fibroblast growth factor (aFGF), which
mainly distributes in organs or tissues, such as heart, brain,
adrenal gland, pituitary gland, nerve tissue, retina and bone.
Since its isolation and purification in 1984, it has been confirmed
that aFGF has the effects of promoting injury repair, promoting
angiogenesis, protecting and nourishing neurons. As early as
1994, it was found that acidic fibroblast cytokines can accelerate
skin wound healing in diabetic mice (69). By comparing the skin
growth factors of diabetic animals with those of non-diabetic
animals, and observing the changes in the expression and
content of the corresponding genes, the researchers found that
the gene expression and content of aFGF and bFGF were indeed
decreased in the early stage of diabetic wound healing, and the
gene expression of aFGF and bFGF was advanced (70). A low
dose FGF-1 injected intraventricular into diabetic mouse model
can produce sustained hypoglycemic effects, and its advantage is
that this effect will not increase the risk of hypoglycemia (71).
The researchers measured serum FGF-1 levels in patients with
T2DM by ELISA for the first time, and the results showed that
body mass index and glycosylated hemoglobin were independent
factors affecting serum FGF-1 levels, serum FGF-1 levels were
significantly associated with T2DM, and FGF-1 blood
concentrations were significantly increased in diabetic
patients (72).

Various studies have shown that FGF-1 is closely related to the
healing of diabetic wounds. Therefore, the effects of FGF-1 on
wound healing were summarized by referring to the literature: 1.
Improving cell proliferation ability: FGF-1, as a mitogen, can
promote the mitosis of mesoderm and ectoderm-derived cells,
promote the proliferation of epidermal epithelial cells, and
Frontiers in Endocrinology | www.frontiersin.org 6
contribute to the epithelialization of wounds (73). It stimulates
the proliferation and migration of fibroblasts and keratinocytes,
causes the migration of inflammatory cells and wound edge cells to
the wound surface, and induces the production of proteases,
collagenases, and various cytokines (74). 2. Promoting synthesis
of extracellular matrix: FGF-1 can regulate the proliferation and
differentiation of collagen, collagen fibers and fibroblasts in
granulation tissue. Then a new extracellular matrix was
synthesized to increase collagen content and stimulate fibroblasts
and endothelial cells to secrete collagenase and proteolytic enzymes.
Finally, plasminogen activator breaks down collagen, and the
synthesis and breakdown of collagen fibers can balance the
collagen content in the wound tissue (75). 3. Promote
angiogenesis, proliferation and differentiation: FGF-1 is also an
extremely potent angiogenic factor, and its pro-angiogenic effect
has long been confirmed, promoting the formation of new
capillaries, increasing the blood supply of the wound, accelerating
granulation growth, and making tissue repair and epidermal
regeneration (76). It has been shown that FGF-1 can protect
blood vessels from oxidative stress in vitro and in vivo (77).
Angiogenesis is mainly mediated by angiogenin and growth
factors. FGF-1 enhances the synthesis of angiogenin and then
promotes angiogenesis (56). FGF-1 can significantly increase the
number of capillaries and fibroblasts in ulcer tissue, and enhance the
expression of transforming growth factor-b and nuclear antigen
proliferating protein (PCNA), thus improving diabetic ulcer
tissue (16).

At present, the development of FGF-1 as a new clinical drug
for the treatment of diabetic ulcer healing is advancing
constantly. NONcNZO10/LTJ mice is a new multi-gene strain,
which can simulate human metabolic syndrome and obesity-
induced type 2 diabetes more realistically. The results of
NONcNZO10/LTJ mouse studies enhance the potential of
aFGF in treating skin wounds in diabetic patients, because
researchers found that when exogenous heparin is not added
in the formula, stable mutant aFGF may obtain similar
therapeutic effects, but it has greater potential safety and cost
A B

FIGURE 2 | FGF signaling pathways. (A) Binding of canonical FGFs to FGFR with HS/HSPG as a cofactor induces the formation of ternary FGF-FGFR-HS complex.
The activated receptor is coupled to intracellular signaling pathways including the RAS-MAPK, PI3K-AKT, PLCn, and STAT pathways. (B) Binding of endocrine FGF
to FGFR with Klotho as a cofactor induces the formation of ternary FGF-FGFR-Klotho complex.
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advantages than wild-type aFGF proteins, and the reconstruction
of fibroblast growth factor -1 (aFGF) is identified as a potential
“second generation” therapy to promote the healing of skin
wounds of diabetes (78). In order to improve the application
limitation of low administration efficiency and short half-life,
transcription protein transactivator (TAT) -aFGF was used for
treatment. The results showed that TAT-aFGF had a good
therapeutic effect on deep subcutaneous tissue injury healing
(79). Another study showed that endothelial progenitor cell-
derived exosomes (EPC-Exos) transplantation can promote the
healing of skin wounds in diabetic rats, and thus promote the
proliferation, migration and tubular formation of vascular
endothelial cells in vitro. The results showed that EPC-Exos
could significantly up-regulate the expression of various key pro-
angiogenic genes such as aFGF by more than 4-fold and actively
regulate the function of vascular endothelial cells to promote
wound healing (80).

Various studies have shown that FGF-1 can enhance diabetic
wound healing and has shown its great potential as a treatment
for diabetic ulcers. Now, researchers should continue to conduct
in-depth research to improve the application limitations of FGF-
1, so that FGF-1 can be used clinically as soon as possible.
FGF-2 AND DIABETIC WOUND HEALING

FGF-2 is also called basic fibroblast growth factor (bFGF). The
expression of bFGF in angiogenesis, neurogenesis and neuron
survival. Many previous studies have shown that the difficulty in
healing diabetic wounds may be related to local hyperglycemia
and accumulation of advanced glycation end products (AGEs) in
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diabetic skin (81). On the other hand, glycosylated bFGF inhibits
the proliferation and angiogenesis of human skin microvascular
endothelial cells (HDMEC) through the RAGE pathway. Further
experiments show that glycosylated basic fibroblast growth factor
shows more negative effects in the process of wound healing,
which may be one of the reasons for slow healing of diabetic
wounds (82).

Since 1990, studies have shown that treating incisions of diabetic
rat with bFGF can improve epithelialization, granulation and
wound tear strength to levels of non-diabetic mice (83), and
clinical patients have also shown that bFGF can indeed accelerate
the healing of diabetic ulcers (84). bFGF has mitogenic properties
(85), and accelerate the division and proliferation of endothelial
cells, skin fibroblasts and keratinocytes (86). In turn, it affects the
migration of these cells during wound healing, thus promoting the
formation of new blood vessels and epithelia. Studies have shown
that controlled release of bFGF accelerates the healing of skin
wounds and increases the epithelial formation rate in a diabetic
mouse. The angiogenic and mitogenic effects of bFGF significantly
stimulate the proliferation period of wound healing, and induce
apoptosis offibroblasts and myofibroblasts in wound, thus reducing
scar formation during healing (17). In vitro and in vivo studies have
shown that bFGF promotes dermal fibroblast migration in diabetic
patients by independently activating the PI 3K/Akt-Rac 1-JNK
pathway to increase ROS production (57, 87). It has been shown
that the expression level of FGF-2 is decreased in wounds of diabetic
animals, which is related to the significant delay of angiogenesis,
fibrous hyperplasia, and collagen formation. In the later stages of
DFU healing, this delay is manifested by reducing angiogenesis,
fibrous proliferation, and collagen, which is associated with reduced
expression of FGF-2 and sustained expression of TNF-a (88).
FIGURE 3 | Regeneration mechanisms of FGFs related to diabetic wound healing. TNF-b, Tumor necrosis factor-b; PCNA, Proliferating cell nuclear antigen;
VEGFR-1, Vascular endothelial growth factor receptor-1; MMPs, Matrix metalloproteinases.
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As early as 1995, researchers treated patients with diabetic
nerve foot ulcers with topical FGF-2 treatment, but the treatment
results were not satisfactory. The results of the study found that
topical FGF-2 treatment has less improvement in the healing of
diabetic ulcers, and may require a combination of several topical
applications and special growth factors. There is another reason
that cannot be ignored. FGF-2 is locally degraded and/or
absorbed into excipients, thereby losing its efficacy. Adding
FGF-2 to gels or creams may have a significant impact (89).
Subsequently, it has been shown that FGF-2 retained in chitosan
hydrogels is biologically active, from which FGF-2 molecules are
released when the hydrogels are biodegraded in vivo. In db/db
mice, wounds treated with FGF-2 incorporated into chitosan
hydrogel showed significant granulation tissue formation,
capillary formation and epithelial formation (90). In recent
years, an optimized wound healing gel could provide
proteoglycan-4 and FGF-2 to promote diabetic wound healing.
In vitro studies showed that the complex significantly increased
the migration of keratinocytes and fibroblasts. In addition,
combined treatment increased the endocytosis process of FGF-
2, including enhanced recycling of FGF-2 to the cell surface after
ingestion (91). Secretory neuropeptide SN is a kind of angiogenic
neuropeptide. In vitro experiments show that the interaction
between FGF-2 and secreted neuropeptides can play an active
role in angiogenesis, proliferation and apoptosis of cells, and
FGFR 3 is the main receptor mediated by secreted neuropeptide.
The investigators hypothesize that FGF-2 with local SN gene
therapy may treat microvascular dysfunction in DFU patients
(92). Through in-depth study of FGF-2 structure, the researchers
synthesized homodimers of FGF-2 linked at both ends of
polyethylene glycol, and FGF-2-PEG-2k-FGF-2 showed better
activity in the metabolic activity and migration of human
umbilical vein endothelial cells compared with FGF-2, and
promoted angiogenesis in an in vitro co-culture model. FGF-2-
PEG-2k-FGF-2 increased wound granulation tissue and vascular
density, as assessed in an in vivo wound healing model in diabetic
mice (93). In another study on the structural modification of
FGF-2, the researchers developed a more stable basic fibroblast
growth factor (ST-bFGF) to overcome the limitations of
commercial FGF-2 (CA-bFGF), which has a short half-life and
loses its activity after being loaded into the matrix (94). In recent
years, it has become the mainstream to search for potential drugs
for treating delayed healing of diabetic wounds, and FGF-2 has
also become a condition for its evaluation. For example: lupeol, a
triterpenoid compound, is found in many medicinal plants.
Treatment of diabetic skin wounds with lupeol showed that
inflammatory cell infiltration decreased, fibroblast proliferation,
angiogenesis and collagen fiber deposition increased, which led
to the increased expression of FGF-2. Therefore, the evaluation
of lupeol may have therapeutic effects on chronic wounds in
diabetic patients (95). In addition, topical application of a
combination of hydroalcoholic extract of ryegrass (TPEO) and
aloe vera gel (AVGO) significantly increased FGF-2, shortened
the inflammatory phase, and increased cell proliferation and
collagen deposition, thereby accelerating the healing of diabetic
open wounds (96).
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FGF-2 is one of the most widely studied FGFs. In recent years,
several studies have shown that FGF-2 does have a positive effect
on the healing of diabetic ulcers. Therefore, further optimization
of FGF-2 excipients to maximize the therapeutic effect of FGF-2
has become a more concerned issue.
FGF-4 AND WOUND HEALING

FGF-4 is also known as Kaposi’s sarcoma FGF. In adults, FGF-4
mainly exists in tumors, such as gastric cancer, Kaposi’s sarcoma
and breast cancer, and is not produced under normal
physiological conditions. FGF-4 is the first fibroblast growth
factor defined as an oncogene, which is expressed throughout the
whole embryonic development (97). However, it has been found
that FGF-4 stimulates the expression of matrix metalloproteinase
-9 (MMP-9) and VEGF receptor-1 in mouse skin fibroblasts in
vitro, and its combination with VEGF-A promotes the migration
of fibroblasts and accelerates wound healing in diabetic mice
(58). The findings provide a new idea for the treatment of
diabetic ulcers, but whether it has important clinical
significance remains to be determined, which deserves further
preclinical and clinical research.
FGF-7 AND DIABETIC WOUND HEALING

Keratinocyte growth factor KGF-1 is the seventh structurally
related member of the fibroblast growth factors (FGFs) family
and is named FGF-7. As a paracrine growth factor, it is not
produced by keratinocytes but by various cells (i.e., fibroblasts,
ECs, smooth muscle cells, and dendritic epidermal T cells).
Fibroblast-treated wounds may stimulate keratinocyte
proliferation and accelerate healing through re-epithelialization.
Re-epithelialization depends on the proliferation and migration of
keratinocytes at the wound edge. In fibroblast-treated wounds,
both microscopic keratinocytes in an active proliferation state and
macroscopic re-epithelialization were stimulated, which is
consistent with a significant increase in the level of FGF-7 in the
wound (98). FGF-7 has been shown to stimulate the migration and
proliferation of keratinocytes (59, 99).

Since the early 20th century, it has been proved that although
FGF-7 deficiency does not seem to affect re-epithelialization of skin
wounds in diabetic mice, it can significantly reduce the shrinkage rate
of wound healing by further changing the skin composition of
diabetic mice. Due to the specific targeting of FGF-7 to epithelial
cells, there is further epithelial-intercellular interaction dependent on
FGF-7, which may play an important role in diabetic wound healing
(100). However, another study showed that FGF-7 is a growth factor
and a chemical inducer offibroblasts. As one of themain components
of the epithelium is keratinocytes, FGF-7 accelerates the proliferation
of keratinocyte. The formation of granulation tissue, the promotion of
angiogenesis and epithelization are important treatment methods for
chronic wound healing (101). In addition, new research shows that
cells obtained in dermal connective tissue can be used as
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mesenchymal stem cells, because the reduction and delay of FGF-7
growth factor production in diabetic patients improves with the
improvement of this cell transplantation, and contribute to wound
healing (102). FGF-7 is damaged in diabetic skin wounds, but the
specific regeneration mechanism remains to be proved. The effect of
FGF-7 on foot injury of diabetic patients and its regeneration
mechanism needs to be explored, but this provides a reference for
DFU patients with slow wound healing.
FGF-16 AND DIABETIC WOUND HEALING

In recent years, researchers have continuously explored and
found that miR-144-3 p inhibits high glucose-induced cell
proliferation by inhibiting FGF-16 and MAPK signaling
pathways, suggesting that miR-144-FGF-16 may play a role in
diabetic wound healing (103). However, a large number of
studies and experiments are needed to confirm how miR-144-
FGF-16 inhibits the deeper mechanism of high glucose cells and
explore whether it can be used as a new target for the treatment
of DFU.
FGF-21 AND DIABETIC WOUND HEALING

FGF-21, a member of the FGF 15/19 subfamily, is mainly
expressed in the liver and adipose tissue, secreted in skeletal
muscle, myocardium, pancreas and hypothalamus, and is an
endocrine factor with various functions. According to the
literature records, FGF-21 can regulate glucose and lipid
metabolism, maintain energy balance, and play a role in
regulating blood lipid and resisting oxidation (104), protect the
blood-brain barrier from traumatic brain injury and prevent the
blood-brain barrier leakage in type 2 diabetes mellitus (105, 106),
and promote remyelination and functional recovery of injured
peripheral nerves. FGF-21 plays an important role in the
treatment of type 2 diabetes, while FGF-21 has the advantage of
no obvious side effects, such as edema and hypoglycemia (107).

The main reasons for delayed ulcer healing caused by diabetes
are long-term exposure to high glucose, over-expression of
oxidative stress and inflammatory reaction. It has been
reported that FGF-21 can reduce the oxidative stress and
inflammation of photoreceptors through metabolic regulation,
thereby improving the function of photoreceptors (60). A series
of experiments on diabetic mouse models showed that
recombinant FGF-21 had biological activity, which may
promote skin wound healing, early granulation tissue
formation, uniform collagen deposition and re-epithelialization
by activating the ERK signaling pathway or inhibiting apoptosis.
In the middle and later stages of wound healing, it was also
confirmed that a large amount of collagen type I and type III
were deposited in the wound, which indicated that the formation
of new blood vessels was promoted (108). It has been proved that
FGF-21 can directly inhibit the proliferation and migration of
vascular smooth muscle cells in diabetic mice, leading to
restenosis after injury of vascular smooth muscle cell in
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diabetic mice. In addition, it was found that FGF-21 inhibited
the formation of NLRP 3 inflammatory body in vascular smooth
muscle cells under hyperglycemia stress through FGFR 1, and
inhibit the formation of NLRP 3 inflammatory body in vascular
smooth muscle cells by inhibiting the dephosphorylation of Syk
tyrosine 525 (109). FGF-21 as also been studied to regulate
wound inflammatory response, and FGF-21 can reduce
excessive inflammatory response in rat skin and promote the
transformation of inflammatory phase into proliferative phase by
up-regulating IL-10, down-regulating IL-6, IL-1b and
TNF-a (110).
FGF-23 AND DIABETIC WOUND HEALING

FGF-23 is a new secretory protein produced by bone cells and
osteoblasts, which has been proved to be an important regulator
of calcium and phosphorus metabolism in human (61). Recent
clinical studies have shown that the increase of serum FGF-23
levels is an independent risk factor for lower limb artery disease
in Chinese diabetic patients. Studies have reported decreased
serum Klotho concentrations and increased FGF-23 in patients
with diabetic foot, and importantly, these parameters are
independently associated with diabetic foot ulcers. These
results indicate that the lower the risk of diabetic foot ulcer,
the lower the concentration of serum Klotho and the expression
level of vascular genes, and the lower the risk of diabetic foot
syndrome. These findings indicate a new pathophysiological
pathway that may be related to the delayed healing of diabetic
wounds, but further research is needed to clarify the role of the
FGF-23/Klotho system in the development and progression of
this complication (111).
CURRENT SURGICAL TREATMENT
OF DFU

DFU can lead to the development of chronic wounds, which
usually leads to amputation. Effective and timely treatment
intervention can control wound infection, promote healing and
reduce the amputation rate. Up to now, various classifications
have been used to evaluate the severity of diabetic foot diseases.
The most commonly used classification is Wagner’s 6-grade
classification: (1) Grade 0: It is a high-risk foot with no obvious
ulcer in the clinic. (2) Grade 1: Superficial ulcer without exposed
tendon joints (3) Grade 2: Relatively deep penetrating ulcers,
often accompanied by cellulitis, without abscess or bone
infection, and special bacteria exist in the ulcer site. (4) Grade
3: Deep skin ulceration, often involving bone tissue,
accompanied by abscess or osteomyelitis. (5) Grade 4: Ischemic
ulcer, local or digital gangrene, and gangrene without pain
indicate neuropathy. (6) Grade 5, most or all of the feet are
gangrenous. The characteristics of the ulcer are well described to
make a treatment plan.

At this stage, local adjuvant therapy is usually used for wound
treatment of DFU. There are several methods of local auxiliary
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treatment: 1. Antibiotics can be used alone or in combination to
minimize drug resistance and adverse reactions. 2. Hyperbaric
oxygen shows good therapeutic prospects in the treatment of
severe nonunion DFU disease. Hyperbaric oxygen therapy has
been shown to sensitize macrophages and release FGF-2 and
epidermal growth factor, thus promoting angiogenesis.
Hyperbaric oxygen therapy promotes wound healing by
increasing oxygen supply and distribution to damaged tissues,
stimulating angiogenesis, reducing inflammation and increasing
nitrite levels. The elevation of Nrf 2 level can temporarily
regulate the expression of angiogenesis genes in wound
biopsies, which may lead to accelerated healing of chronic
wounds (112). 3.Electrical stimulation therapy is an effective
adjunctive therapy for diabetic foot ulcers (113), but more
experimental and clinical studies are needed to elucidate its
mechanism affecting chronic wound regeneration. 4. For a long
time, debridement has been proved to be the most important
treatment step to close the diabetic foot wound and reduce the
amputation rate (114). 5. Selection of appropriate excipients that
can promote wound healing, such as the addition of silver ions to
hydrogel dressings has potential in the treatment of diabetic foot
ulcers (115). Our previous research showed that asiaticoside NO
gel may promote diabetic cutaneous ulcers wound healing by
regulating Wnt/b-Catenin signaling pathway (116). Our next
goal is to continue to study more suitable dressing according to
the etiology of DFU, location, depth and exudate of the wound
bed. 6. Tissue engineered skin substitutes are widely used in the
treatment of chronic wound healing (117). However, the
application of tissue-engineered skin is still limited due to
peripheral ischemia. 7. Negative pressure wound therapy
(NPWT) has been successfully applied to DFU (118). 8.
Biotherapy: FGF helps patients with type 1 and type 2 diabetes
to heal wounds caused by DFU through parenteral evaluation
applied to ulcer surface (alone or loaded in dressing matrix) or
directly penetrating into wounds (94, 119). 9. Surgical treatment:
According to the condition of the wound and the patient’s
physical condition, debridement or skin grafting can effectively
remove necrotic tissue.
CURRENT RESEARCH PROGRESS AND
LIMITATIONS OF FGFS IN THE
TREATMENT OF DFU

Delayed wound healing is one of the main reasons for lower limb
amputation in diabetic patients (120). A variety of growth
factors, such as fibroblast growth factor (FGF) (Figure 3),
platelet-derived growth factor (PDGF), vascular endothelial
growth factor (VEGF) and insulin-like growth factor (IGF),
change in patients with DFU. Therefore, the healing process of
diabetic wounds can be accelerated by regulating the level of
growth factor (15).

Previous experiments showed that 48% of 61 patients treated
with recombinant human platelet-derived growth factor PDGF-
BB were completely healed, while 25% of 57 patients treated with
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placebo were completely healed (121). PDGF is currently
approved by the US Food and Drug Administration (FDA) for
the treatment of diabetic neuropathic ulcers of the lower
extremities (122, 123). In 2000, the American Food and Drug
Administration of China approved the use of recombinant
human basic fibroblast growth factor (rb-FGF 2) to treat
chronic wounds, including ulcers, bedsores and burns. The
researchers reported the application of FGF 2 eye drops in the
treatment of mechanical superficial corneal abrasions (124);
Subsequently, the researchers also observed the therapeutic
effect of Rb-FGF 2 on the feet of early diabetic patients. In
2005, recombinant human acidic fibroblast growth factor (rh-
FGF 1) was developed by Chinese scientists and approved by the
China Food and Drug Administration as the first marketed FGF-
1 drug in the world (125). In 2006, rh-FGF 1 was marketed for
the treatment of diabetic ulcers (126).

However, FGFs have some limitations for the treatment of
DFU wound healing, since growth factors generally have a short
half-life, require repeated administration, and chronic wounds
have a high and constant proteolytic environment, these growth
factors can be easily degraded.
FUTURE RESEARCH DIRECTIONS
OF FGFS

In general, experiments have shown that multiple FGFs
mentioned above are closely related to diabetic wound healing.
However, the limitations of FGFs have largely hindered the
application of FGFs. In order for FGFs to be a potential choice
for the treatment of DFUs, improved carriers or delivery
methods, such as novel dressings, must be developed, as well
as the combination of skin substitutes manufactured by tissue
engineering with FGFs for DFUs (127). In addition, whether the
long-term single use of FGFs to treat diabetic ulcers produces
other systemic side effects remains to be further studied.
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