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Abstract

Multidrug-resistant Acinetobacter baumannii infections are increasing at alarming rates.

Therefore, novel antibiotic-sparing treatments to combat these A. baumannii infections are

urgently needed. The development of these interventions would benefit from a better under-

standing of this bacterium’s pathobiology, which remains poorly understood. A. baumannii

is regarded as an extracellular opportunistic pathogen. However, research on Acinetobacter

has largely focused on common lab strains, such as ATCC 19606, that have been isolated

several decades ago. These strains exhibit reduced virulence when compared to recently

isolated clinical strains. In this work, we demonstrate that, unlike ATCC 19606, several mod-

ern A. baumannii clinical isolates, including the recent clinical urinary isolate UPAB1, persist

and replicate inside macrophages within spacious vacuoles. We show that intracellular repli-

cation of UPAB1 is dependent on a functional type I secretion system (T1SS) and pAB5, a

large conjugative plasmid that controls the expression of several chromosomally-encoded

genes. Finally, we show that UPAB1 escapes from the infected macrophages by a lytic pro-

cess. To our knowledge, this is the first report of intracellular growth and replication of A.

baumannii. We suggest that intracellular replication within macrophages may contribute to

evasion of the immune response, dissemination, and antibiotic tolerance of A. baumannii.

Author summary

Acinetobacter baumannii is a nosocomial pathogen that causes multiple types of infection.

This bacterium has an alarming predisposition to acquire multi-drug resistance, and

infections associated with these strains are linked to greater morbidity and mortality.

Therefore, novel antibiotic-sparing treatments to combat these A. baumannii infections

are urgently needed. The development of these interventions would benefit from a better

understanding of the mechanisms employed by A. baumannii to cause infection. A. bau-
mannii is regarded as an extracellular opportunistic pathogen. However, research on
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Acinetobacter has largely focused on common lab strains that have been isolated several

decades ago. These strains exhibit reduced virulence when compared to recently isolated

clinical strains. In this work, we demonstrate that a subset of modern A. baumannii clini-

cal isolates persist and replicate inside macrophages within spacious vacuoles, and identify

bacterial factors involved in the process. We propose that replication inside macrophages

may contribute to the evasion of the immune response and bacterial dissemination. Anti-

biotics cannot penetrate the macrophages, and therefore our findings contribute to

explain the extremely high tolerance of A. baumannii to antibiotics. Our work opens new

avenues for the development of novel therapeutic interventions against this worrisome

human pathogen.

Introduction

Infections caused by the bacterial pathogen Acinetobacter baumannii are a global public health

risk since multidrug resistance (MDR) increasingly limits effective therapeutic interventions

[1,2]. The emerging success of this pathogen has led the World Health Organization (WHO)

and the CDC to categorize carbapenem-resistant A. baumannii as a top priority for the

research and development of new antibiotics[3,4]. However, compared to other opportunistic

pathogens, our knowledge about the pathobiology of Acinetobacter is rather limited.

Research on Acinetobacter has largely focused on common lab strains that have been “lab-

domesticated” over ~50 years. These non-MDR strains exhibit reduced virulence when com-

pared to recently isolated clinical strains, indicating that classical lab strains lack virulence fac-

tors expressed by current-day strains[5,6]. Consequently, little is known about the virulence

factors and molecular pathways governing modern A. baumannii infections. Although A. bau-
mannii is best known as a respiratory pathogen, infection of various anatomical sites is also

common. For example, urinary tract infections (UTI) account for about ~20% of A. baumannii
infections worldwide[5]. We recently developed a murine model of A. baumannii catheter-

associated urinary tract infection (CAUTI)[5]. Using this model, we compared the behavior of

two urinary A. baumannii isolates, ATCC19606 (19606) and UPAB1. 19606 is a urinary isolate

obtained in 1967, and it has been routinely used to study A. baumannii virulence. UPAB1 is a

modern MDR UTI isolate, collected from a female patient in 2016. We demonstrated that,

unlike 19606, which was rapidly cleared from infected mice, UPAB1 was able to establish early

implant and bladder colonization[5]. These findings suggested that “old” and “new” strains

have a different repertoire of virulence or fitness factors, which can influence the outcome of

the infection. Interestingly, UPAB1 carries a large conjugative plasmid (LCP), pAB5, which

controls the expression of multiple virulence factors. Remarkably, pAB5 impacts the pathoge-

nicity of UPAB1 in the CAUTI and acute pneumonia murine models[5].

A few reports have suggested that classical A. baumannii strains are able to persist within

epithelial cells. It has been suggested that the intracellular bacterial cells are contained by mem-

brane-bound vacuoles, likely of autophagic origin, and subsequently eliminated by the intra-

cellular vesicular pathway[7–10]. In this work, we demonstrate that unlike 19606, several

modern A. baumannii clinical isolates, including UPAB1, persist and, remarkably, replicate

inside macrophages within spacious vacuoles containing up to more than 30 bacteria. We

show that intracellular replication of UPAB1 is dependent on pAB5 and a functional Type I

Secretion System (T1SS). Finally, we also show that UPAB1 escapes from the infected macro-

phages by a lytic process. To the best of our knowledge, this is the first report of intracellular

growth and replication of A. baumannii.
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Results

UPAB1 but not 19606 replicates in spacious intracellular vacuoles within

macrophages

Macrophages play an important role in early host defense against A. baumannii. Indeed, deple-

tion of macrophages enhances sepsis and severity of A. baumannii infection [11]. Macrophages

can efficiently control the replication of A. baumannii and kill the most common lab strains,

such as ATCC 17978 and 19606, which have been isolated more than half a century ago. How-

ever, whether modern clinical isolates can be efficiently phagocytosed and eliminated by mac-

rophages has not been investigated. To this end, we tested the ability of the modern A.

baumannii isolate UPAB1 to resist macrophage-killing. J774A.1 macrophages were infected at

an MOI of 10 and visualized by TEM. We found that UPAB1-infected J774A.1 macrophages

possessed spacious vacuoles containing up to 15 bacteria per vacuole (Fig 1A). Hereafter, we

refer to these structures as A. baumannii-Containing Vacuoles (ACVs). A double membrane

was visible in some of the ACVs, which is compatible with an autophagic origin (Fig 1B, right

panel). This result is in agreement with previous reports showing that A. baumannii lab strains

are contained within autophagic ACVs in epithelial cells [12]. CFU enumeration of intracellu-

lar bacteria (Fig 2A) showed that UPAB1 can replicate intracellularly between 2 to 6 h p.i. In

contrast, the lab strain 19606 was efficiently eliminated and no intracellular replication was

detected (Fig 2A). Visualization of intracellular bacteria by confocal microscopy demonstrated

the presence of small ACVs at 2.5 h p.i and some large ACVs, containing more than 20 bacte-

ria per vacuole, at 5 and 7 h p.i. (Figs 2B and S1). Indeed, the number of bacteria per ACV

Fig 1. UPAB1 resides in spacious vacuoles within macrophages. Transmission electron microscopic images of

J774A.1 macrophages infected with UPAB1 (A) at 5 (left panel) and 7 h p.i. (right panel) Bars: 2 μm. (B) The UPAB1

containing vacuole can have a single (left panel, white arrow) or double membrane (right panel, white arrow). Bars:

500 nm.

https://doi.org/10.1371/journal.ppat.1009802.g001
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increased with time (Figs 2B, 2C and S1 and S2). We were able to detect vacuoles with up to 30

to 40 intracellular UPAB1 between 5 to 7 h p.i. Almost no intracellular bacteria were observed

in macrophages infected with 19606 at similar time points (Figs 2B, right lower panel, and S2).

Together, these experiments demonstrate that UPAB1 is able to infect, persist and replicate

intracellularly in J774A.1 macrophages.

UPAB1 ACVs are LC3-negative

Autophagy is a well-established intracellular mechanism by which the eukaryotic cells elimi-

nate unwanted components, including invading pathogens[13]. However, some intracellular

pathogens are able to grow in vacuoles with autophagic features, like Serratia marcescens and

Coxiella burnetii [14,15]. Several studies employing non-replicative A. baumannii lab strains

have proposed that upon infection, the autophagic pathway is activated in host cells, leading to

an accumulation of LC3-positive vacuoles[8]. Although many alternative molecular pathways

have been described in the autophagic process, one common characteristic of the autophagic

vacuoles is a double membrane and the presence of the protein LC3 in both membranes[16].

As some of the UPAB1-containing vacuoles exhibited a double membrane, we investigated if

these vacuoles contained LC3 (S3 Fig). Uninfected macrophages showed a smooth cytoplasmic

distribution of LC3, characteristic of non-autophagic processes (S3A Fig). Serratia marcescens
RM66262 vacuoles were LC3-positive at 2 h p.i. (S3B Fig), as previously described[14]. How-

ever, no LC3-positive vacuoles (S3C Fig) were visualized in cells infected with UPAB1 at all the

observed time points (1, 2.5 and 5 h p.i.), suggesting that replicative ACVs follow a non-canon-

ical intracellular pathway.

Fig 2. UPAB1 but not 19606 replicates in macrophages. (A) J774A.1 macrophages were infected with the indicated strains, and after phagocytosis, extracellular

bacteria were eliminated with antibiotics. After different time points, total numbers of intracellular CFU were determined. �p< 0.05. (B) Representative images

of infected cells at the indicated time points. Samples were stained for cell nuclei (grey), actin (magenta) and Acinetobacter GFP (cyan). Insets show a higher

magnification of the area indicated by the white box. Individual channels are presented in S3 Fig. Bars: 20 μm. (C) Quantification of bacteria per vacuole at

different times p.i. Each symbol represents an individual vacuole, horizontal line represents the median. At least 200 infected cells were analyzed for each time

point for three independent experiments.

https://doi.org/10.1371/journal.ppat.1009802.g002
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UPAB1 also replicates in THP-1 cells and bone-marrow-derived

macrophages (BMDM)

Large ACVs were also observed in human THP-1 cells (Figs 3, left panel and S4) and, remark-

ably, in murine BMDM (Figs 3, right panel and S2 and S4), indicating that intracellular repli-

cation of UPAB1 is a phenomenon that occurs in multiple host cells and does not depend on a

permissive host cell. For the remainder of the study, we will employ J774A.1 macrophages as

host cells.

A subset of MDR clinical isolates replicate inside macrophages

Lab-domesticated strains generally exhibit reduced virulence in animal models when com-

pared to recently isolated clinical strains, a possible indication that classical lab strains lack vir-

ulence factors expressed by current-day strains[17]. We next tested if other recent MDR

clinical isolates were able to replicate in macrophages (Fig 4). Although at different rates,

many of these clinical isolates also replicated in J774A.1 macrophages (Fig 4A). These strains

were also contained in large ACVs (Figs 4B and S5), demonstrating that intracellular replica-

tion is not a unique feature of UPAB1. We found that AbCAN2[18], a recent bone isolate was

not able to replicate and was quickly eliminated by J774A.1 macrophages. These experiments

demonstrate that a subset of modern clinical isolates replicate within macrophages.

UPAB1 escapes the macrophages by a lytic process

Our results show that intracellular CFUs of UPAB1 in J774A.1 peak at 4–6 h p.i., and then

decrease at later time points (Fig 2A). This decline may be the result of bacterial death inside

the vacuoles. Alternatively, the reduction in the CFUs of intracellular bacteria could reflect the

egress of bacteria from the infected macrophage to the extracellular media. To investigate

these hypotheses, we carried out a modified antibiotic protection assay. In this assay, antibiot-

ics were added 1 h p.i. to eliminate extracellular non-phagocytosed bacteria. At different time

points, the antibiotic-containing medium was replaced by fresh cell culture medium without

antibiotics. After a 20 min incubation, the culture supernatants from each well were recovered

and the number of released bacteria were quantified. The ratio of released bacteria in relation

to the number of intracellular bacteria corresponding to each time interval is shown in Fig 5A.

Our data suggests that intracellular UPAB1 cells egress from the macrophages. To confirm this

result, we inspected the infected macrophages with UPAB1-GFP through live-video

Fig 3. UPAB1 replicates in multiple host cell lines. Representative images of infected THP-1 (left panels) or BMDM (right panels) cells at 5 h p.i. Samples were stained

for cell nuclei (grey), actin (magenta) and UPAB1 GFP (cyan). Insets show a higher magnification of the area indicated by the white box. Individual channels are

presented in S4 Fig. Bars: 20 μm.

https://doi.org/10.1371/journal.ppat.1009802.g003
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Fig 4. Recent clinical isolates replicate in macrophages. (A) J774A.1 macrophages were infected with the indicated

strains and, after phagocytosis, extracellular bacteria were eliminated with antibiotics. After different time points, total

numbers of intracellular CFU were determined. Data represent mean and standard deviation values for 3 independent

experiments. (B) Representative images of infected cells with the indicated strains. Samples were stained for cell nuclei

(grey), actin (magenta) and Acinetobacter GFP (cyan). Insets show a higher magnification of the area indicated by the

white box. Individual channels are presented in S5 Fig. Bars: 20 μm.

https://doi.org/10.1371/journal.ppat.1009802.g004
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microscopy. We observed bacteria egressing the macrophages through a process that lysed the

host cells (Fig 5B). Lactate dehydrogenase (LDH), a soluble cytosolic enzyme present in

eukaryotic cells, is released into the culture medium upon damage to the plasma membrane

[19]. The increase of LDH activity in culture supernatant is proportional to the number of

damaged cells. No LDH activity was detected at 8 or 12 h p.i. However, we detected a signifi-

cant increase in LDH activity in macrophages infected with UPAB1 at 24 h p.i. compared to

non-infected macrophages (Fig 5C). Together, these results indicate that UPAB1 can survive

and replicate inside macrophages and then escape from these cells through a lytic process.

Although the mechanism for these processes will require further studies, it is tempting to spec-

ulate that UPAB1, like other bacteria that replicate and escape from the vacuole, manipulates

the host cell through the activity of secreted proteins.

UPAB1 replication in macrophages relies on pAB5

LCPs are a family of large conjugative plasmids present in many A. baumannii strains[20]. In

previous work, we showed that pAB5, the LCP carried by UPAB1, greatly impacts virulence as

its presence is required for the establishment of infection in a CAUTI model but detrimental

for virulence in an acute respiratory murine model[5]. Thus, we investigated if the presence of

pAB5 also impacts the ability of UPAB1 to replicate in macrophages. The strain cured of its

plasmid (UPAB1p-) was unable to replicate in J774A.1 macrophages (Fig 6A), and intracellular

Fig 5. UPAB1 escapes the macrophages by a lytic process. J774A.1 macrophages were infected with UPAB1. (A) At

different time points, antibiotic containing medium was replaced by antibiotic-free medium. CFU in supernatants

were determined and the ratio of released to intracellular bacteria was calculated. Data represent mean and standard

deviation values for 3 independent experiments. (B) Images from time-lapse microscopy showing UPAB1 egress from

the invaded macrophages. J774A.1 cells were infected with UPAB1 GFP (green fluorescence). At 7 h p.i. images were

taken every 10 min and analyzed with ImageJ software. The white arrow indicates the infected cell. Bars: 20 μm. (C)

LDH activity in the supernatant of infected macrophages was measured at 24 h p.i. Percentage of cytotoxicity was

calculated as the activity of released LDH relative to total LDH activity. The mean ± S.D. for two independent

experiments is shown. ���� p< 0.0001.

https://doi.org/10.1371/journal.ppat.1009802.g005
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Fig 6. pAB5 and T1SS are required for UPAB1 intracellular replication. (A) J774A.1 macrophages were infected

with the indicated strains. UPAB1p-, UPAB1pAB3+ and UPAB1pAB5Δh-ns strains were not able to replicate. Data

represents mean and standard deviation values for 3 independent experiments. �p< 0.05. (B) Genetic organization of

the T1SSa and T1SSb loci. (C) Individual and double T1SS mutants have a defect in intracellular replication in J774A.1

macrophages. Data represents mean and standard deviation values, for 3 independent experiments. �p< 0.05.

https://doi.org/10.1371/journal.ppat.1009802.g006
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CFUs quickly decreased after phagocytosis, indicating that UPAB1p- is efficiently eliminated

by macrophages. We have previously shown that LCP controls the expression of the type VI

secretion system (T6SS) [21]. We also found that pAB5 modulates the expression of other

chromosomally-encoded factors. For example, pAB5 represses the synthesis of poly-N-acetyl-

β-(1–6)-glucosamine (PNAG), a surface polysaccharide that plays an important role in biofilm

formation in vitro, and reduces the expression of two chaperone-usher pili, CUP1 and CUP2,

which are required for adhesion to fibrinogen and possibly other host receptors during infec-

tion[5]. We have recently showed that a pAB5-encoded H-NS transcriptional regulator

represses the synthesis of the exopolysaccharide PNAG and other cell surface components

[22]. Unlike pAB5, the closely related plasmid pAB3, does not repress PNAG synthesis [5].

Thus, to gain further insight about the roles of LCPs in UPAB1 replication, we tested the

strains UPAB1 carrying pAB3 (UPAB1pAB3+) and UPAB1pAB5Δh-ns. Both strains were

incapable of replicating inside J774A.1 macrophages and were quickly eliminated by the host.

These results demonstrate that pAB5 enables intracellular replication of UPAB1 in a H-NS-

dependent manner.

Most bacteria that are able to survive and replicate inside macrophages secrete proteins via

secretion systems, commonly T3SS, T4SS, T6SS, or T7SS[23]. These effectors allow the bacteria

to manipulate host signaling and trafficking pathways to create a replicative niche within the

macrophage. Acinetobacter spp. do not encode T3SS or T4SS, but carry T1SS, T2SS and T6SSs

[24]. However, the T6SS in Acinetobacter appears to be only involved in interbacterial compe-

tition, as many recent clinical isolates do not carry a functional T6SS[18]. Our previous proteo-

mic and RNAseq experiments showed that pAB5 increases the expression of a T1SS-secreted

agglutinin RTX toxin (D1G37_00080), and an adjacently-encoded protein, OmpA[5]. This

observation prompted us to investigate a possible role for the T1SS in the intracellular replica-

tion of UPAB1.

T1SS is required for UPAB1 intracellular replication

The T1SS is a highly conserved secretion system employed by pathogenic Gram-negative bac-

teria. This secretion machinery is composed of an ATP-binding cassette transporter anchored

in the inner membrane (HlyB), a periplasmic adaptor protein (HlyD) and a third component

localized in the outer membrane (TolC). Together, these elements act to facilitate the secretion

of unfolded effectors from the cytoplasm to the extracellular milieu[25]. UPAB1 encodes two

T1SS clusters, which we named T1SSa and T1SSb (Fig 6B). We generated ΔT1SSa, ΔT1SSb

and ΔT1SSab mutant strains and analyzed their replication within macrophages. We found

that all three T1SS deficient strains were unable to replicate inside J774A.1 macrophages (Fig

6C).

To identify putative T1SS-dependent effectors involved in survival and replication within

macrophages, we employed a differential proteomics approach. A comparative secretome

analysis between WT UPAB1 and the T1SSa and T1SSb mutant strains was performed.

Table 1 lists the secreted proteins diminished in ΔT1SSa and ΔT1SSb compared to WT. We

were able to identify multiple T1SS effector candidates. T1SS effectors BapA and RTX2, two

common T1SS effectors, were repressed in ΔT1SSa. Neither of these proteins were repressed

in ΔT1SSb, suggesting that T1SSa is the preferred secretion system employed for the export of

these two proteins. Our analysis also identified additional potential T1SS effectors, including

proteases, phosphatases, glycosidases, and a putative invasin (Table 1). In other bacteria,

orthologs of this invasin are required to induce bacterial entry and simultaneously to block the

generation of reactive oxygen species (ROS) by host monocytes and macrophages[26].

Although the identification of the T1SS effectors directly involved in intracellular replication is
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beyond the scope of this work, our experiments demonstrate that T1SSs play a role in the pro-

cess, and our MS analysis identified several interesting candidates that will be the subject of

future studies.

Discussion

Although intracellular survival of A. baumannii inside vacuoles has been reported, the capacity

of this bacterium to replicate intracellularly has not been documented. Here, we show that

modern clinical isolates, such as UPAB1, can replicate inside spacious vacuoles within macro-

phages. Previous reports have shown that non-replicating A. baumannii can induce autophagy

in epithelial cells and macrophages and indicated that autophagy is required for clearance of

intracellular bacteria[7–10]. TEM predominantly exhibited double-membrane enclosed vacu-

oles, which is indicative of an autophagic origin for the ACV. However, we found that ACVs

formed by UPAB1 are LC3-negative, suggesting that these replicative ACVs do not follow a

canonical autophagy pathway. It remains to be determined whether these observations are the

result of LC3 degradation induced by UPAB1 or an indication that UPAB1 evades the canoni-

cal autophagy pathway before LC3 is recruited to the autophagosome. For example, in fibro-

blasts double membrane vacuoles can be formed without recruitment of the ATG conjugation

system, leading to a complete absence of LC3 recruitment to the vacuole[27]. Moreover,

Table 1. Putative T1SS-dependent effectors.

T-test Difference mut_WT Locus tag Predicted function

ΔT1SSa

-10.5 D1G37_01945 BapA

-9.1 D1G37_04720 OmpA

-5.7 D1G37_05375 PilY1

-5.4 D1G37_18005 Hypothetical protein

-5.2 D1G37_15450 Phosphodiester glycosidase family protein

-5.0 D1G37_13335 Gly zipper domain/ toxic amyloid oligomer

-4.7 D1G37_05180 Secreted serine peptidase

-4.2 D1G37_05495 type IV pilus secretin PilQ

-4.0 D1G37_12590 Curli production component

-3.9 D1G37_01055 Colicin synthesis protein, bactericidal

-3.8 D1G37_10435 Bacteriocin resistance protein, peptidase

-3.8 D1G37_03120 RTX2

-3.8 D1G37_16210 Phosphatase

-3.4 D1G37_05480 Pili operon hypothetical protein

-3.3 D1G37_12980 Hypothetical protein, exported

ΔT1SSb

-9.9 D1G37_05375 PilY1

-8.0 D1G37_05445 PilA

-3.9 D1G37_04400 invasin/ igG like

-3.7 D1G37_00110 Cell surface protein Ata

-3.6 D1G37_10430 FilA

-3.4 D1G37_11695 Transferrin binding protein

-3.4 D1G37_00700 Hypothetical protein

Cut-off was defined at -3 by a student T-test difference between mutant and WT. Protein localization prediction was

performed employing PSORT and presence of a signal peptide was analyzed by SignalP.

https://doi.org/10.1371/journal.ppat.1009802.t001
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intracellular pathogens manipulate the canonical host vesicular pathways, including autop-

hagy, to create unique replicative niches[28]. The complete characterization of the replicative

ACV will be the subject of future studies.

During the revision of this work, the Salcedo group reported that a subset of modern clini-

cal isolates replicates within non-autophagic ACVs in epithelial cells[29]. In agreement with

our results, large ACVs containing up to 50 bacteria were visualized in multiple non-phago-

cytic cells. However, some apparent differences between the ACVs formed in epithelial cells

and macrophages were detected. Mainly, the replicating Acinetobacter strains were contained

in single membrane vacuoles and were observed after 24 h p.i. It remains to be elucidated if

these discrepancies are due to the use of different host cells and/or the particular bacterial

strains tested.

Several MDR A. baumannii strains carry LCPs. These plasmids control the expression of

diverse chromosomally-encoded genes. Specifically, pAB5, the LCP of UPAB1, differentially

regulates the expression of various features, such as PNAG synthesis and CUP pili, directly

impacting host virulence. We found that UPAB1p-, UPAB1pAB5Δh-ns, and UPAB1pAB3

+ are unable to replicate within macrophages, suggesting that genetic elements regulated by

pAB5 are likely involved in facilitating intracellular replication. We previously reported that

pAB5 upregulates putative T1SS effectors[5]. UPAB1 carries two T1SS loci, and our data

revealed that mutants in both systems are defective in intracellular replication. Although the

T3SS, T4SS, and T6SS are most commonly involved in manipulation of intracellular pathways,

the T1SS is involved in invasion and intracellular replication in other bacterial pathogens, such

as Legionella pneumophila, Ehrlichia chaffeensis, Francisella novicida and Orientia tsutsugamu-
shi[30–33]. Our proteomic analysis identified several proteins whose secretion is significantly

reduced in the individual T1SS mutants. However, since deletion of the T1SS in A. nosocomia-
lis resulted in the downregulation of other secretion systems[34], the assignment of these pro-

teins as T1SS effectors awaits further validation. Nevertheless, these experiments uncover

several interesting, secreted proteins that may play a role in intracellular replication of UPAB1.

Future work will focus on investigating these putative effectors and their possible role in the

intracellular lifestyle of A. baumannii.
Depletion of macrophages enhances sepsis and severity of disease, demonstrating that mac-

rophages play an important role in eradicating A. baumannii infection[11]. Therefore, survival

and replication of A. baumannii in this type of cells may be a previously underappreciated and

important feature of this bacterium. We have also shown that UPAB1 can escape the macro-

phages by a lytic mechanism. A. baumannii could subsequently be phagocytosed by other mac-

rophages and re-start the infection process. Thus, we propose that by replicating inside

vacuoles in macrophages, A. baumannii evades the immune response and disseminates, result-

ing in hypervirulent phenotypes. Furthermore, it is tempting to speculate that antibiotics can-

not reach the lumen of the ACV, which may contribute to tolerance of A. baumannii to

antibiotics. Identifying the bacterial factors involved in the intracellular cycle of MDR A. bau-
mannii may enable the design of new therapies to combat this pathogen.

Materials and methods

Bacterial strains and culture conditions

The bacterial strains used in this study are listed in S1 Table. Unless otherwise noted, strains

were grown in lysogeny broth (LB) liquid medium under shaking conditions (200 rpm), or in

LB-agar at 37˚C. When required, antibiotics were used at the following concentrations: zeocin

50 μg/ml, kanamycin 30 μg/ml, gentamicin 15 μg/ml, and chloramphenicol 15 μg/ml.
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DNA manipulation

DNA manipulations were performed according to standard techniques. PCR reactions were

performed using Phusion High Fidelity DNA polymerase (New England Biolabs), according

to the manufacturer’s instructions. Genetic manipulations were carried out in Escherichia coli
Stellar competent cells (Clontech). Primers and plasmids used in this study are listed in S2 and

S3 Tables, respectively.

The gfp gene was PCR amplified from pBAV1K-t5-gfp[35] and cloned into pUC18T-mini-

Tn7T-Zeo by In-Fusion Cloning (Takara). The pUC18T-mini-Tn7T-Zeo-GFP vector was con-

jugated to Acinetobacter as previously described[36]. All transconjugant strains were con-

firmed by PCR analysis and fluorescence microscopy.

Construction of A. baumannii mutant strains

Mutants were constructed as described previously[37]. Briefly, a FRT site-flanked zeocin resis-

tance cassette was amplified from a variant of pKD4[38] with primers harboring 18–25 nucleo-

tides of homology to the flanking regions of the targeted gene to delete. Upstream and

downstream flanking regions were also amplified, and fragments were assembled by overlap

extension PCR. This PCR product was electroporated into competent UPAB1 carrying

pAT04, which expresses the RecAB recombinase[37]. Mutants were selected with zeocin, and

integration of the resistance marker was confirmed by PCR. To remove the zeocin resistance

cassette, electrocompetent mutants were transformed with pAT03 plasmid, which expresses

the FLP recombinase. Zeocin-sensitive clones of clean deletion mutants were obtained. All

mutant strains were confirmed by antibiotic resistance profile, PCR, and sequencing.

Cell culture conditions

J774A.1 (ATCC TIB-67) mouse macrophage cell line was cultured in Dulbecco’s Modified

Eagle Medium (DMEM) High Glucose (Hyclone, SH30022.01) supplemented with 10% inacti-

vated Fetal Bovine Serum (FBS, Corning) at 37˚C and 5% CO2. THP-1 (ATCC TIB-202)

human monocyte cell line was cultured in RPMI-1640 medium (Sigma, R8758) supplemented

with 10% FBS, 0.01% MEM Non-Essential Amino Acids (Corning, 25-025-Cl), and 50 μM

2-mercaptoethanol at 37˚C and 5% CO2. For the infection experiments, the THP-1 monocytes

were differentiated to macrophages by supplementing the medium with 40 ng/ml of phorbol

12-myristate 13-acetate (PMA, AdipoGen Life Sciences) 48 h prior to the infection.

The bone marrow derived macrophages (BMDM) were obtained from wild-type BALB/c

mice as described previously[39] and cultured in DMEM supplemented with 10% FBS at 37˚C

and 5% CO2. For the infection experiments, the BMDM were incubated with 10 ng/ml γ-INF

overnight prior to the infection.

Antibiotic protection assay

For the intracellular replication assays, J774A.1 cells were cultured in 48 well plates 12–16 h

before the experiment (3x105 cells/well). A. baumannii strains were grown overnight in LB at

37˚C under shaking conditions. Bacterial cultures were normalized to OD600 = 1, washed once

with PBS, and an appropriate volume was added to each well to reach an MOI of 10. Plates were

centrifuged 10 min at 200 x g and incubated for 1 h at 37˚C and 5% CO2. Cells were washed

three times with PBS and subsequently incubated with medium supplemented with 100 μg/ml

gentamicin and 400 μg/ml kanamycin to kill extracellular bacteria. At 2 h post infection (p.i.) the

concentration of antibiotics was decreased to 30 μg/ml gentamicin and 200 μg/ml kanamycin.
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At 2, 4, 6, and 8 h p.i., cells were washed and lysed with 0.1% Triton X-100. Colony forming

units (CFUs) were determined by serial dilution.

To determine the number of bacteria that egress from the infected cells, the antibiotic con-

taining medium was replaced with antibiotic-free medium. At the indicated time points and

after 20 min incubation, the supernatant was recovered and serially diluted to determine CFU.

The ratio of released bacteria in relation to the number of intracellular bacteria corresponding

to each time point was then calculated.

Immunofluorescence staining

For LC3B staining, samples were fixed with ice cold 100% methanol for 5 min at room temper-

ature, permeabilized with 1% saponin for 20 min, and blocked with 1% PBS-BSA for 1 h. The

glass cover slips were incubated with the primary antibody rabbit anti-LC3 (Sigma) at a 1:100

dilution for 3 h at room temperature, then washed 3 times with 1X PBS and incubated with the

secondary antibody goat anti-rabbit Alexa 594 (Invitrogen) at a 1:100 dilution and DAPI for 1

h at room temperature. Afterwards, samples were washed with PBS and mounted with Pro-

Long Glass Antifade Mountant solution (Invitrogen).

Confocal microscopy

Infected cells were analyzed with a Zeiss LSM880 laser scanning confocal microscope (Carl

Zeiss Inc.) equipped with 405nm diode, 488nm Argon, 543nm HeNe, and 633nm HeNe lasers.

A Plan-Apochromat 63X (NA 1.4) DIC objective and ZEN black 2.1 SP3 software were used

for image acquisition.

Live imaging

8x105 J774A.1 cells were plated in a 10 mm Glass Bottom Culture 35 mm petridish (MATEK

corporation, P35G-0-14-C) 12–16 h prior to the infection. On the following day, a gentami-

cin-kanamycin protection assay was performed using UPAB1 GFP at an MOI = 10 as

described above. At 2 h p.i., cells were incubated in DMEM without phenol red (Hyclone) sup-

plemented with 10% FBS, 30 μg/ml gentamicin, and 200 μg/ml kanamycin. Imaging started at

3.5 h p.i. and pictures were taken every 10 or 20 min.

Time lapse microscopy

Live images were acquired on a Zeiss Observer Z1 inverted microscope equipped with a tem-

perature-controlled CO2 incubation chamber. Fluorescence images were acquired with illumi-

nation from a Colibri 7 LED light source (Zeiss) and ORCA-ER digital camera (Hammamatsu

Photonics, Japan). A Plan-Apochromat 63X (NA 1.4) Phase 3 objective and ZEN blue 2.5 soft-

ware were used for image acquisition.

Transmission electron microscopy

For the Transmission Electron Microscopy (TEM) assay, J774A.1 cells were cultured in 24 well

plates 12–16 h before the experiment (2.5x105 cells/well). The next day, an antibiotic protec-

tion assay was performed using UPAB1 GFP at an MOI = 10. At 4, 5, and 7 h p.i., the cells

were washed, detached with a scraper, and pooled together. Cells were fixed in 2% paraformal-

dehyde/2.5% glutaraldehyde (Polysciences Inc., Warrington, PA) in 100 mM sodium cacody-

late buffer pH 7.2 for 1 h at room temperature and subsequently transferred to 4˚C overnight.

Samples were washed in sodium cacodylate buffer at room temperature and postfixed in 1%

osmium tetroxide (Polysciences Inc.) for 1 h. Samples were then rinsed extensively in distilled
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water prior to bloc staining with 1% aqueous uranyl acetate (Ted Pella Inc., Redding, CA) for 1

h. Following several rinses in distilled water, samples were dehydrated in a graded series of eth-

anol and embedded in Eponate 12 resin (Ted Pella Inc.). Sections of 95 nm were cut with a

Leica Ultracut UCT ultramicrotome (Leica Microsystems Inc., Bannockburn, IL), stained with

uranyl acetate and lead citrate, and viewed on a JEOL 1200 EX transmission electron micro-

scope (JEOL USA Inc., Peabody, MA) equipped with an AMT 8 megapixel digital camera and

AMT Image Capture Engine V602 software (Advanced Microscopy Techniques, Woburn,

MA).

Cytotoxicity assay

Lactate dehydrogenase (LDH) activity was measure with the CytoTox-One Homogeneous

Membrane Integrity Assay kit (Promega), according to the manufacturer directions. Enzy-

matic activity, as a signal of damage of plasma membrane, was measured from the superna-

tants of infected cells at 8, 12 and 24 h p.i. Non-infected cells were included as a negative

control, and cells treated with 0.1% Triton X-100 were the 100% lysis control.

Secreted protein enrichment for quantitative proteomics analysis

UPAB1 and derivative strains were grown overnight in 5 ml of M9 minimal medium supple-

mented with 0.2% casamino acids (M9CAA) and subsequently diluted to OD600 = 0.05 in 100

ml of fresh M9CAA. Cultures were incubated to mid-log phase and centrifuged at 15,000 x g

for 2 min. Supernatants were filter-sterilized with Steriflip vacuum-driven filtration devices

(Millipore), concentrated with an Amicon Ultra (Millipore) concentrator with a 10-kDa

molecular weight cutoff, flash frozen, and lyophilized. Lyophilized samples were then pro-

cessed for mass spectrometry analysis as described below. Four individual 100-ml culture bio-

logical replicates were prepared for each strain.

Digestion of secretome samples

Precipitated secretomes were resuspended in 6 M urea and 2 M thiourea with 40 mM

NH4HCO3 and then reduced for 1 h with 20 mM DTT. Reduced samples were then alkylated

with 50 mM iodoacetamide for 1 h in the dark. The alkylation reaction was then quenched by

the addition of 50 mM DTT for 15 min, and samples were digested with Lys-C (1/200 w/w) for

3 h at room temperature. Samples were diluted with 100 mM NH4HCO3 four-fold to reduce

the urea/thiourea concentration below 2M, and then an overnight trypsin (1/50 w/w) digestion

was performed at room temperature. Digested samples were acidified to a final concentration

of 0.5% formic acid and desalted with home-made high-capacity StageTips composed of 1 mg

Empore C18 material (3M) and 5 mg of OLIGO R3 reverse phase resin (Thermo Fisher Scien-

tific) as previously described [40,41]. Columns were wet with Buffer B (0.1% formic acid, 80%

acetonitrile) and conditioned with Buffer A� (0.1% TFA, 2% acetonitrile) prior to use. Acidi-

fied samples were loaded onto conditioned columns, washed with 10 bed volumes of Buffer

A�, and bound peptides were eluted with Buffer B before being dried then stored at -20˚C.

LC-MS analysis of secretome samples

Dried secretome digests were re-suspended in Buffer A� and separated using a two-column

chromatography set up composed of a PepMap100 C18 20 mm x 75 μm trap and a PepMap

C18 500 mm x 75 μm analytical column (Thermo Fisher Scientific). Samples were concen-

trated onto the trap column at 5 μl/min for 5 min with Buffer A (0.1% formic acid, 2% DMSO)

and then infused into an Orbitrap Q-Exactive plus Mass Spectrometer (Thermo Fisher
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Scientific) at 300 nl/min via the analytical column using a Dionex Ultimate 3000 UPLC

(Thermo Fisher Scientific). 125-min analytical runs were undertaken by altering the buffer

composition from 2% (0.1% formic acid, 77.9% acetonitrile, 2% DMSO) to 22% Buffer B over

95 min, then from 22% to 40% Buffer B over 10 min, and 40% to 80% Buffer B over 5 min. The

composition was held at 80% Buffer B for 5 min and then dropped to 2% over 2 min before

being held at 2% for another 8 min. The Q-Exactive plus Mass Spectrometer was operated in a

data-dependent mode automatically switching between the acquisition of a single Orbitrap

MS scan (375–1400 m/z, maximal injection time of 50 ms, an Automated Gain Control (AGC)

set to a maximum of 3�106 ions, and a resolution of 70k) and up to 15 Orbitrap MS/MS HCD

scans of precursors (Stepped NCE of 28%, 30% and 35%, a maximal injection time of 100 ms,

an AGC set to a maximum of 2�105 ions, and a resolution of 17.5k).

Proteomic analysis

Secretome samples were processed using MaxQuant (v1.6.17.0.[42]) and searched against the

NCBI annotated A. baumannii UPAB1 proteome (NCBI Accession: PRJNA487603, 3750 pro-

teins, downloaded 2020-3-10), a six-frame translation of the UPAB1 genome generated using

the six-frame translation generator within Maxquant, and the ATCC17978 proteome (Uni-

prot: UP000319385, 3627 proteins, downloaded 2014-11-16) to allow the use of Uniprot anno-

tation information associated with ATCC17978 proteins. Searches were undertaken using

“Trypsin” enzyme specificity with carbamidomethylation of cysteine as a fixed modification.

Oxidation of methionine and acetylation of protein N-termini were included as variable modi-

fications, and a maximum of 2 missed cleavages were allowed. To enhance the identification of

peptides between samples, the Match between Runs option was enabled with a precursor

match window set to 2 min and an alignment window of 20 min with the label free quantita-

tion (LFQ) option enabled[43]. The resulting outputs were processed within the Perseus

(v1.6.0.7) analysis environment[44] to remove reverse matches and common protein contami-

nates prior to further analysis. For LFQ comparisons, biological replicates were grouped and

data was filtered to remove any protein which was not observed in at least one group three

times. Missing values were then imputed based on the observed total peptide intensities with a

range of 0.3σ and a downshift of 2.5σ using Perseus. Student t tests were undertaken to com-

pare the secretome between groups with the resulting data exported and visualized using

ggplot2[45] within R. The resulting MS data and search results have been deposited into the

PRIDE ProteomeXchange Consortium repository[46,47] and can be accessed with the identi-

fier:PXD024736 using the Username: reviewer_pxd024736@ebi.ac.uk and Password:

YS5qjHcG.

Statistical analysis

All statistical analyses were performed using GraphPad Prism 8.0 (GraphPad Software Inc., La

Jolla, CA). For all datasets, Student’s unpaired t-tests were used.

Supporting information

S1 Fig. UPAB1 but not 19606 replicates in macrophages. Representative images of infected

cells at the indicated time points. Samples were stained for cell nuclei (grey), actin (magenta)

and Acinetobacter GFP (cyan). Individual channels (greyscale) and merged images are shown.

Bars: 20 μm.

(TIF)
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S2 Fig. UPAB1 replicates in multiple host cell lines. Representative Z-projections with

orthogonal views of infected J774A.1 cells (left panel) or BMDM (right panel) at 7 and 5 h p.i.,

respectively. Samples were stained for cell nuclei (grey), actin (magenta) and Acinetobacter
GFP (cyan). Bars: 20 μm. White arrows indicate the vacuole.

(TIF)

S3 Fig. UPAB1 ACVs are LC3 negative. Representative images of J774A.1 macrophages (A)

non-infected, (B) Serratia marcescens-infected (2 h p.i.), or (C) UPAB1-infected (1, 2.5 and 5 h

p.i.). Samples were stained for cell nuclei (grey), LC3 (magenta) and bacteria expressing GFP

(cyan). Individual channels (greyscale) and merged images are shown. Insets show a higher

magnification of the area indicated by the white box. Bars: 20 μm.

(TIF)

S4 Fig. UPAB1 replicates in multiple host cell lines. Representative images of infected THP-

1 (upper panels) or BMDM (lower panels) cells at 5 h p.i. Samples were stained for cell nuclei

(grey), actin (magenta) and UPAB1 GFP (cyan). Individual channels (greyscale) and merged

images are shown. Bars: 20 μm.

(TIF)

S5 Fig. Recent clinical isolates replicate in J774A.1 macrophages. Representative images of

infected cells with the indicated strains. Samples were stained for cell nuclei (grey), actin

(magenta) and Acinetobacter GFP (cyan). Individual channels (greyscale) and merged images

are shown. Bars: 20 μm.

(TIF)

S1 Table. Bacterial strains used in this study.

(DOCX)

S2 Table. Primers used in this study.

(DOCX)

S3 Table. Plasmids used in this study.

(DOCX)

S1 Dataset. Data used in this study.

(XLSX)
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