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Abstract

The neocortex is the largest part of the mammalian brain and is the seat of
our higher cognitive functions. This outstanding neural structure increased
massively in size and complexity during evolution in a process recapitulated
today during the development of extant mammals. Accordingly, defects in
neocortical development commonly result in severe intellectual and social
deficits. Thus, understanding the development of the neocortex benefits
from understanding its evolution and disease and also informs about their
underlying mechanisms. Here, | briefly summarize the most recent and
outstanding advances in our understanding of neocortical development and
focus particularly on dorsal progenitors and excitatory neurons. | place
special emphasis on the specification of neural stem cells in distinct classes
and their proliferation and production of neurons and then discuss recent
findings on neuronal migration. Recent discoveries on the genetic evolution
of neocortical development are presented with a particular focus on
primates. Progress on all these fronts is being accelerated by
high-throughput gene expression analyses and particularly single-cell
transcriptomics. | end with novel insights into the involvement of microglia in
embryonic brain development and how improvements in cultured cerebral
organoids are gradually consolidating them as faithful models of neocortex
development in humans.
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Introduction

The cerebral cortex, or neocortex, is the part of our brains pri-
marily responsible for abstract thinking and our unique cognitive
abilities as human beings. It is by far the most complex
biological structure, and it forms during embryonic development
following a sequence of genetically predefined molecular
and cellular events. This process of embryonic development
recapitulates the emergence of the human cerebral cortex dur-
ing evolution. Thus, understanding neocortical development in
humans and other species tells us about the magnitude of its
complexity, how it differs from neocortical development in non-
humans, how it emerged during evolution from simpler brains,
and what goes wrong in developmental brain disease.

Through the use of informative experimental animal species,
much has been learned about the basic processes of neocortical
development: neural stem and progenitor cell (NSPC) prolif-
eration, generation, and migration of neurons from their place
of birth to their final location in neocortical layers and the
growth of neural processes and establishment of nerve
connections. Recent advances in genome editing, tissue cul-
ture, and DNA sequencing have accelerated our understand-
ing of neocortical development at many levels. Here, I briefly
summarize some of the most significant advances in our under-
standing of neocortical development generated recently by
the international community, and I give special attention to
progenitor proliferation and neurogenesis of dorsal progenitors
and projection neurons. Although much remains to be learned,
the emerging picture shows that the evolutionary and
developmental emergence of the human neocortex involved
a plethora of genetic and epigenetic changes, including novel
genes and variants, functional gene networks, and novel cell
types and cellular specializations.

Neurogenesis

Development of the neocortex begins with the proliferation
of NSPCs, which amplify their own pool prior to generating
neurons. Recent work shows that the proliferation of NSPCs
and their mode of neuron production vary across species, and
previously unsuspected mechanisms of molecular regulation
have been identified. Novel insights about the diversity of pro-
genitor cells and how their neuronal output contributes to build
the cerebral cortex are also emerging.

Progenitor cell diversity

Work in the last decade has identified a diversity of NSPC types
and their lineage relationships. Following the seminal discov-
ery of apical radial glial cells (aRGCs) as the primary type of
cortical progenitor cell'?, intermediate progenitor cells (IPCs)
were identified”>. IPCs are transit-amplifying progenitors
expressing the transcription factor Tbr2 and produc-
ing the majority of excitatory neurons in the mouse and rat
neocortex*’. Most IPCs cluster and undergo mitosis in a
layer basal from the ventricular zone (VZ), the subventricu-
lar zone (SVZ), although a subset reside in the VZ and undergo
apical mitosis, named short neural precursors®. Further studies in
primates led to the discovery of an expanded and specialized
SVZ, subdivided in inner and outer domains (ISVZ and
OSVZ, respectively)’”. These layers were later identified in
other species with an expanded neocortex, like ferret, cat, and
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sheep'’ and even in New World monkeys and the Amazonian
rodent agouti'"'>. Progenitor cell lineage tracings in human,
macaque, ferret, and mouse led to the discovery of additional
types of basal progenitor cells in the developing neocortex,
which are bound by complex lineage relationships. These include
various types of basal radial glial cells (bRGCs)!*!'"!*> and
subapical progenitor cells'®. The relative abundance and prolif-
erative capacity of these progenitor cell types are much greater
in species with a neocortex that is large and folded (carni-
vores and primates) than in those where it is small and smooth
(mouse and rat). This has been proposed to contribute to the
evolutionary increase in complexity, or complexification,
of the neocortex ',

Pioneer transcriptomic studies of the developing cerebral cor-
tex using bulk tissue, identified differences in gene expression
between germinal layers, cortical areas, developmental stages,
and mammalian species'""*. This illustrated the profound
diversity of transcriptional landscapes in cortical development
at all levels, including folding and across phylogeny, and set
the conceptual foundations for the next technological leap:
transcriptomics of single cells. The advent of single-cell
transcriptomic analyses has revolutionized our approach to
studying cortical development by providing a global and unbi-
ased picture of cell diversity with unprecedented resolution®,
This technology has enabled identification of multiple sets of
transcriptionally distinct progenitor cell classes in the corti-
cal primordium, generating excitatory neurons”’~, and in the
basal ganglia, generating inhibitory interneurons™-'.

Single-cell analyses are also beginning to shed light on
long-standing hypotheses about the heterogeneity of corti-
cal progenitor cells and the dynamics of their lineage and fate
potential during development”~°. Early experimental studies of
these fundamental questions indicated that the fate potential of
cortical progenitors is temporally restricted, such that early
progenitors can produce neurons for all cortical layers but late
progenitors can produce neurons for superficial layers only**".
Such late fate restriction would be cell-autonomous as late
cortical progenitors continued producing superficial-layer neu-
rons even when transplanted into the new cellular environment
of a young host cortex'*’’. The identification of a subset of RGCs
that expressed Cux2 and that were fate-restricted to produce
upper-layer neurons further supported this model*. However,
such fate-restricted progenitors have not been identified in
single-cell transcriptomic studies’****. Rather, some of these
studies support the existence of epigenetically regulated tempo-
ral molecular birthmarks in RGCs, which act in their daughter
neurons as seeds for neuronal diversity. It is proposed that these
conserved differentiation programs may then be integrated with
environmental  (non-cell-autonomous) cues to ultimately
define the identity of the neuronal progeny’**’. Nevertheless,
controversial points of view on these and related issues
remain because of differences in single-cell data processing,
analysis, and interpretation®*!*!.

Modes of neurogenesis and influence on cortex size

Cortical excitatory neurons may be generated directly from the
primary progenitor cells (aRGCs) or indirectly via secondary
basal progenitors such as IPCs and bRGCs. Indirect neurogenesis
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is considered a milestone of mammalian cortical evolution,
enabling a phenomenal increase in the numbers of neurons
produced, particularly those destined to superficial layers, and
leading to cortical expansion*’*. Recent studies reveal that indi-
rect neurogenesis is the major mode of producing deep as well
as superficial cortical layers in mouse™* and that it also exists
in non-mammals, albeit at lower levels and mostly in birds**.
At the molecular level, regulation of the balance between direct
and indirect neurogenesis is phylogenetically conserved across
amniotes, from snakes to birds and mammals, including humans,
where high Robol/2 signaling promotes expression of the Notch
ligands Jagl/2 while repressing the canonical ligand DII1*.
Blockade of this signaling system drives indirect neurogen-
esis, increasing neuron numbers and cortex size. Intriguingly,
indirect neurogenesis also correlates with hyperpolarization
of apical progenitor cells, which represses Wnt signaling®.
Changes in the mode of neurogenesis are responsible for
the reduced cortex size in developmental brain disease, like
microcephaly induced by Zika virus infection. In this case,
activation of the unfolded protein response drives direct neu-
rogenesis, leading to premature and limited neuron production
and to a small cortex***.

Regulation of progenitor cell proliferation

Cerebral cortex size depends on the mode of neurogenesis
and also on the proliferative activity of cortical progenitor
cells. Multiple mechanisms regulating progenitor cell pro-
liferation have recently been uncovered. Regulation of gene
transcription by epigenetic mechanisms has emerged as a key
factor where histone deacetylases and methyltransferases regulate
the generation and position of IPCs, neuron migration, and
cortical lamination’~". Similarly, regulation of chromatin acces-
sibility and other mechanisms related to non-coding genomic
regions critically determines levels and patterns of gene
expression in the developing cortex, defining neuron production,
cortex size, and area identity”'”.

One of the most exciting findings has been the identification
of mRNA species transported within the long basal process
of aRGCs and locally translated at their basal endfeet, next
to the pial membranes™°. This includes proteins regulating
the cell cycle, like Ccnd2, and lengthening of G, S, and M
phases of the cell cycle, which depletes progenitor cells
causing premature neurogenesis or apoptosis’**.

IPCs are usually depicted as round cells extending few short
processes™’, and bRGCs are usually depicted as having a
single smooth and unbranched basal process'**>. Recent
observations demonstrate that the degree of process branching
and elaboration in both IPCs and bRGCs is greater in ferret and
human (which have a large and folded cortex) than in mouse
(which has a small and smooth cortex) and this is linked to a
greater proliferation rate of these cortical progenitor cells®*.
Basal progenitor process growth and proliferation are related
to the membrane-bound protein PALMD, enabling these cells to
receive pro-proliferative signals related to integrin function® "%,
Indeed, modulation of cortical progenitor cell proliferation
by cell-extrinsic signals has now been demonstrated to occur
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from multiple sources, including growing axons and migrating
neurons®*%’ extracellular neurotransmitters and ions®®, and
Notch, Wnt, Fgf, and Shh signals™.

Once IPCs and neurons are born from aRGCs, they must first
delaminate and migrate away from the VZ toward the SVZ.
This critical process is regulated by several signaling mecha-
nisms, including Robo’', YAP”?, Insm] via the apical adherens
protein Plekha7”, and the centrosome-associated protein Akna’.

Neuronal migration

Once neurons are born, they must migrate from their place
of birth in the germinal layers to their final location in the
neuronal layers. Neuronal migration is a multi-step process
that begins with neuronal delamination from the VZ and move-
ment to the SVZ. (See Silva et al.”” [2019] for an excellent
review on neuron migration.)

Delamination

New advances in understanding cortical development have
identified the microtubule-associated protein Lszts as a master
regulator of cellular dynamics, promoting the delamination
of neurons and bRGCs born from aRGCs by altering apical
junction organization’ .

Multipolar phase transition

Once newborn neurons delaminate from the VZ, they enter
the SVZ and undergo a transition phase displaying multipo-
lar morphology”. During this process, NeuroD1 expressed by
multipolar cells represses Prdm16, which regulates mitochon-
drial reactive oxygen species, and this signaling axis is crucial
for the regulation of the multipolar phase migration’”’. Dbnl,
a protein interacting with F-actin, is another key regulator
of neuronal multipolar morphology, polarity, and migration
by regulating the levels of N-cadherin’.

Bipolar locomotion

Cortical neurons resume radial migration by re-acquiring
polarity and extending a single leading process as they exit
the SVZ. This leading process establishes intimate adhesive
interactions with the basal process of RGCs for guidance in
their migratory displacement. The long-held concept that the
leading process of these radially migrating neurons is single
and unbranched”® has been challenged by new observations,
demonstrating frequent branching and thus more complex
migratory behaviors than previously reported®’. In fact, lead-
ing process branching is much more frequent in the develop-
ing cortex of ferret than mouse and is related to the tangential
displacement of radially migrating neurons. Thus, this seems
directly related to the maintenance of the radial organization of the
cerebral cortex during the tangential expansion and folding of the
neocortex*>. However, an excessive tangential displacement
of cortical neurons is deleterious, and the horizontal tiling of
the developing cerebral cortex, or regular distribution of its
radial units, must be actively maintained. The microtubule
stability regulator protein Memol plays key functions in the
maintenance of RGC structure and cortical tiling by repress-
ing the hyperbranching of the basal process of RGCs and the

Page 4 of 9



excessive dispersion of radially migrating neurons®. On the
other hand, it was recently shown that the chromatin-modifying
enzyme Prdml6 is also necessary for transcriptional silenc-
ing in RGCs and to promote the migration of late-born cortical
neurons and cortical layering*.

Evolution of cerebral cortex development

A fundamental feature of the evolution of cerebral cortex in
amniotes is the phenomenal increase in neuron number and
expansion in size. This process is recapitulated during embry-
onic development, and recent work demonstrates the importance
of the balance between direct and indirect neurogenesis®.
Mechanisms regulating this critical balance, including tran-
scriptional programs regulated by progenitor cell membrane
polarity” and canonical signaling pathways like the unfolded
protein response’, some of which are highly conserved across
amniotes like Robo and DI11*, are beginning to be identified.

Beyond the emergence of indirect neurogenesis, cortical
evolution involved additional key mechanisms. Cell lineage
labeling and single-cell transcriptional analyses have revealed
a remarkable evolutionary increase in diversity of cortical
progenitor cells, particularly at the genetic level. This includes,
for example, multiple subtypes of aRGCs and bRGCs identi-
fied in human, macaque, or ferret but not in mouse or rat'*!>*,
Likewise, innovations in progenitor cell lineages are critical
for the emergence and expansion of the OSVZ'**, the basal
germinal layer typical of big and folded brains, which is absent in
mice and is perturbed in human diseases that affect brain size®.

The search for genetic mechanisms evolved in primate and
human phylogeny which are likely relevant in the evolution
of their neocortex, has led to the identification of primate-
specific and human-specific genetic programs expressed in the
developing cerebral cortex. These include whole collections of
primate-specific miRNAs targeting cell cycle genes” and also
miRNA-mRNA modules in the embryonic human brain that
undergo dynamic transitions during development and that
identify expression networks in specific cell types®. As for
protein-coding genes, recent studies have identified genes that
emerged in the recent human lineage by means of total or par-
tial duplication, and that promote cortical progenitor cell
proliferation. Other studies have identified programs of gene
expression in cortical progenitor cells that are human-specific**"'.

Species with large brains have a tendency of being folded, and
knowledge of specific mechanisms involved in cortex folding
has also increased recently. This highlights the relevance
of the sodium ion channel SCN3A function in progenitor
cells®, of gliogenesis””, and of extracellular matrix proteins™,
in the mechanical aspect of tissue folding. Intriguingly, the
organization of folds in the frontal cortex is widely conserved
from Old World monkeys to hominoids™, which offers a remark-
able opportunity to study cortical evolution and the acquisition of
higher brain functions in primates.
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Discovering the developmental importance of
microglia

Largely ignored previously in the field of neocortical develop-
ment, microglia have become a new relevant component in our
understanding of this process. Microglial cells are found in
the developing neocortex at much earlier stages and at much
greater abundance than previously considered; there, they
interact intimately with progenitor cells and regulate their
number, hence emerging as important players in the regulation of
neurogenesis™’. Microglia may also contribute to progenitor
cell delamination and expansion of ISVZ/OSVZ in primates™.
Moreover, microglia are critical regulators of brain wiring,
contributing to the specification of neural circuits and relaying
information from the periphery, including the microbiota” .

Cerebral organoids as a model of human neocortical
development

Although it is not possible to study the development of the
human neocortex at the experimental level, major tech-
nological breakthroughs in the last few years on stem cell
reprogramming and tissue culture offer possibilities that were
previously unthinkable. Following the first protocol to generate
cerebral organoids from human embryonic stem cells and induced
pluripotent stem cells'”, these have become the Rosetta stone
to study and manipulate human brain development'’'. Not
only can we now grow human cerebral organoids for many
months, recapitulating many of the early features of cortical
development, but they can be grown to form functional cir-
cuits and be responsive to sensory stimuli'””. Most impor-
tantly, the recent design of a culture protocol to generate highly
reproducible cerebral organoids is a fundamental milestone
for the consolidation of this as a faithful model of human brain
development'”. Comparison between organoids grown from
human and chimpanzee cells reveal human-specific features of
cortical progenitor cells'” and the validity of these organoids
to advance our understanding of human brain evolution'*'".

Conclusions

Understanding  neocortical ~development requires working
at many different levels, from single-cell transcriptomics to
tissue mechanics, and this must be applied to studying his-
togenesis at multiple levels, from neurogenesis to connectivity
and cortex folding. Understanding neocortical evolution and
disease requires understanding development across relevant
informative species and in the context of genetic or contex-
tual failure. Recent technological advances offer unprece-
dented opportunities for conducting this research; for example,
single-cell genomic analyses help elucidate molecular changes
in human brain disease at the resolution of cell types'’’, and
patient-derived iPSCs are used to model and hopefully rescue the
disease'”. Only through our ability to use and combine these
amazing tools in creative ways will we decipher what makes us
human and what genetic changes occurred during evolution
that led to the development and emergence of the human
neocortex.
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aRGC, apical radial glial cell; bRGC, basal radial glial cell;
IPC, intermediate progenitor cell; ISVZ, inner subventricu-
lar zone; NSPC, neural stem and progenitor cell; OSVZ,
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