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Abstract: The current standard of care for advanced non-small-cell lung cancer is based on detecting
actionable mutations that can benefit from targeted therapy. Comprehensive genetic tests can have
long turn-around times, and because EGFR mutations are the most prevalent actionable mutation, a
quick detection would enable a prompt initiation of targeted therapy. Furthermore, the scarcity of
diagnostic material means that sometimes only cytologic material is available. The Idylla™ EGFR
assay is a real-time PCR–based method able to detect 51 EGFR mutations in 2.5 h. Idylla is validated
for use only on FFPE sections, but some researchers described their experiences with cytological
material. We reviewed the relevant literature, finding four articles describing 471 cases and many
types of cytological input material: smears, cell-block sections, suspensions, and extracted DNA. The
sensitivity, specificity, and limit of detection appear comparable to those obtained with histological
input material, with one exception: the usage of scraped stained smears as input may reduce the
accuracy of the test. In conclusion, usage of cytological material as input to the Idylla EGFR test is
possible. A workflow where common mutations are tested first and fast, leaving rarer mutations for
subsequent comprehensive profiling, seems the most effective approach.

Keywords: idylla; cytology; cytopathology; epidermal growth factor receptor; lung cancer; lung
adenocarcinoma

1. Introduction

Lung cancer is the leading cause of cancer death, accounting for 40% of all cancer-
related deaths [1,2]. The two most common histological subtypes of NSCLC are adeno-
carcinoma (60%) and squamous cell carcinoma (15%), with mixed and large cell tumors
representing uncommon variants [3,4]. Despite advances in early diagnosis and screening,
most cases are currently diagnosed at an advanced stage, where the disease is metastatic
and surgical curative treatment is no longer feasible [5]. Approximately one-third of
NSCLCs, especially non-squamous NSCLCs, harbor an actionable mutation that can be
treated with target therapy [6–8].

Thanks to this, the treatment options for advanced non-small-cell lung cancer (NSCLC)
are improving: in the early 2000s, advanced NSCLC had a 5-year overall survival of about
5%; now, some groups of patients reach 5-year overall survivals as high as 40% [6,9,10].
Targeted therapies are effective only in some subgroups of patients, so pathologists and
molecular biologists are increasingly called to select these patients [11]. Additionally, surgi-
cal resection is not recommended for advanced NSCLC, so the molecular assessment must
be performed on ever-shrinking small biopsies or, often, on cytological material [12–16].
Recent guidelines recommend molecular phenotyping of advanced NSCLCs to guide ther-
apy [17–19]. The identification of a targetable mutation implies the possibility to treat the
patient with a more effective therapy than conventional cytotoxic chemotherapy [20,21]. As
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our knowledge of rarer mutations increases and new drugs become available, guidelines
suggest testing an increasing number of them [17,20,22–24]. Most current guidelines recom-
mend testing for at least epidermal growth factor receptor (EGFR) mutations, v-Raf murine
sarcoma viral oncogene homolog B (BRAF) V600E mutation, neurotrophic receptor tyrosine
kinase (NTRK) gene fusions, and anaplastic lymphoma kinase (ALK) and ROS1 rearrange-
ments, in addition to immunohistochemical evaluation of the programmed death-ligand 1
(PD-L1) tumor proportion score (TPS) [6,11–13,17,20,25,26]. The testing of numerous other
alterations is recommended or suggested by some guidelines, as they are either already
targetable or in the process of becoming targetable (e.g., a phase II/III trial for targeted
therapy is in progress) [12,27,28]. These include human epidermal growth factor receptor
2 (HER2) amplification and mutations, MET amplification, RET rearrangements, fibroblast
growth factor receptor (FGFR) amplifications, and translocations, and Kirsten rat sarcoma
virus (KRAS) G12C point mutations [12,29–33].

EGFR mutations are the most common targetable mutations in NSCLC (15–40%) [34–37].
The EGFR tyrosine kinase receptor is the first member of the HER (human epidermal growth
factor receptor) or ErbB (avian erythroblastosis oncogene B) family, which consists of four
members and includes HER2/ErbB2 [38–40]. HER receptors regulate pathways involved in cell
proliferation and apoptosis, as well as cell motility and neovascularization [41,42]. Activation
depends on receptor dimerization and leads to the activation of two main downstream signaling
pathways: PIK3CA/AKT1/mTOR and RAS/RAF/MAPK [43–46]. These pathways are crucial
in oncogenesis, and in fact, they are commonly mutated in human cancers [47,48].

EGFR mutations are more commonly found in NSCLCs with adenocarcinoma histol-
ogy, in women and in never smokers [49–51]. Most mutations affect exons 18–21 and are
represented by exon 19 deletions and L858R (exon 21) point mutations (together account-
ing for 90% of EGFR mutations) [52]. Tumors harboring these mutations can be treated
with EGFR tyrosine kinase inhibitors (EGFR-TKIs) such as gefitinib and erlotinib (first
generation), afatinib and dacomitinib (second generation), and osimertinib (third genera-
tion), obtaining significantly longer progression-free survivals compared with conventional
cytotoxic chemotherapy [53–58]. However, treatment with first- and second-generation
EGFR-TKIs tends to select an additional mutation (EGFR T790M) which is associated with
treatment resistance [59,60]. Osimertinib (a third-generation EGFR-TKI) is at present the
only drug that can overcome this resistance [61,62]. It is thus currently indicated for the
treatment of EGFR T790M-mutated NSCLC and has shown promising data even as a
first-line EGFR-TKI [63]. However, EGFR mutations that confer resistance to osimertinib
are starting to emerge [64].

Due to long turn-around times for comprehensive molecular phenotyping (sometimes
made even longer by the need to outsource), many patients are treated with conventional
chemotherapy despite potentially harboring an actionable mutation. Some cases may be
detected and treated earlier by performing an initial fast and specific test focused on the
most commonly involved gene—EGFR [7].

The Idylla™ EGFR assay is one such test. It is a cartridge-based closed system that
assesses 51 mutations using real-time PCR, with a turn-around time of 2.5 h and a hands-on
time of 2 min. The system takes care of deparaffinization and nucleic acid extraction, so
slices cut from the FFPE block can be directly inserted into the cartridge. However, samples
other than FFPE slices can be employed as inputs, and some researchers have reported their
experience with cytological material such as scraped smears and suspensions of fine-needle
biopsy material. This review aims to gather, contextualize and summarize the evidence
about the usage of the Idylla™ EGFR assay in cytological specimens of NSCLC.

2. Results

In total, 220 articles were identified during the initial search. After duplicate removal
and title screening, 14 articles were left. After abstract and full-text screening, 3 articles were
left [7,65,66]. Hand-searching of references did not yield additional articles. Unpublished
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data from a submitted manuscript by our group was included (D’Ardia et al. 2021).
Ultimately, 4 articles describing 471 cases were included in the present review [7,65,66].

3. Discussion

To assess the adequacy and efficacy of the Idylla™ system in testing EGFR mutations
in cytological specimens of non-small-cell lung cancer (NSCLC), we reviewed the interna-
tional literature identifying 4 articles describing 471 cases [7,65,66]. Overall, Idylla appears
to be adequate and effective on the whole range of cytological samples (smears, cell blocks,
residual material), with a few important pitfalls that will be discussed.

3.1. Diagnostic Performance of Idylla on Cytological Material

Arcila and colleagues [7] formally investigated the sensitivity and specificity of Idylla
on cytological material compared with next-generation sequencing (NGS). In a validation
phase, they found a sensitivity of 94.0% (95% CI: 83.5–98.8%) and a specificity of 100%
(89.4–100.0%). In a subsequent clinical implementation phase, they report a sensitivity
of 95.6% (84.9–99.5%) and a specificity of 100%. The other studies either did not assess
sensitivity and specificity or did so but with an older reference method [65,67]. These
results are comparable to those obtained with histological samples [68].

Regarding the analytical sensitivity (limit of detection—LOD), Arcila and colleagues
report that it depends on the total input DNA, on the variant allele frequency (VAF), and
on the specific variant tested. Most mutations can be detected at a 1.5–2.2% VAF with 50 ng
input DNA; VAFs as low as 0.4% can be detected with higher DNA inputs (400 ng) [7]. De
Luca and colleagues report a LOD of ≤1% VAF with only 10 ng of input DNA, but only
for exon 19 and 21 mutations [65]. Noteworthily, the T790M mutation has been reported
to have a significantly higher LOD (8% VAF with 50 ng input and 2% VAF with 400 ng
input), suggesting that it can be missed in some cases, especially when subclonal [7]. This
has been reported on histological samples as well [69,70].

3.2. Performance on Different Cytological Samples

Because the bioptic material is often scant, it is convenient to be able to use whatever
is available, or even to repurpose samples that would otherwise have been wasted (e.g.,
needle rinse, supernatant) [71–73]. The Idylla EGFR test has been performed, in different
studies, on the whole range of cytological specimens: cell-block sections (unstained or
stained with H&E), scraped smears (stained with Papanicolaou, Diff-Quik, H&E, or even
immunocytochemistry), suspensions of the freshly aspirated material (fixed in CytoLit or
unfixed, in PBS), and finally extracted DNA from sources as diverse as cell-block sections,
cell pellets, pre-capture NGS libraries and stained smears (Table 1).

One important note is in order: while all other specimens appear interchangeable
in terms of diagnostic yield, stained smears have been linked to false negatives and, less
frequently, false positives [7,65,66]. De Luca and colleagues [66] found 2 false-negative
L858R mutations on stained slides and noted the association with a high background
fluorescence in the second channel of the Idylla EGFR cartridge, where the detection of the
L858R mutation takes place. This background fluoresce was higher when the smears were
stained with H&E and Papanicolaou and lower with Diff-Quik, and de-staining helped
but did not eliminate it completely [66]. Arcila and colleagues found both false negatives
and false positives [7]. These cases can usually be recognized at the manual review of the
amplification curves, but orthogonal testing is required for confirmation.

Despite these problems with stained smears, sometimes the material is so scant that a
smear is all that is available to determine the molecular phenotype of an NSCLC. In these
contexts, pathologists are often reluctant to sacrifice their best (or only) diagnostic smear to
molecular methods [66,74,75]. Because it is the smear with the highest tumor cellularity,
however, the best smear is often the most suitable for molecular tests [76,77]. This problem
may be solved by the digitalization of the smear, to capture its morphology indefinitely
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(for medico-legal or teaching purposes) [78]. The biological material will then be available
for molecular tests.

Table 1. Input material used for the Idylla EGFR assay in the studies included in the present review.
FFPE: formalin-fixed and paraffin-embedded. H&E: hematoxylin and eosin. ICC: immunocytochem-
istry. PBS: phosphate-buffered saline. NGS: next-generation sequencing.

Input Material No. of Cases References

Cell-block (FFPE) section 181 [7]
Scraped stained smear

Papanicolaou 11 [65,66]
Diff-quik 36 [7,65,66]

H&E 21 [66]
ICC 1 [66]

Suspension
In CytoLit 62 [7]

In PBS 28 D’Ardia 2021 (unpublished)
Extracted DNA
from cell-block 25 [7,66]

from pellet 14 [7]
pre-capture NGS library 16 [7]

from stained smear 76 [65]

Similarly, the only smear suitable for molecular tests may be stained with immuno-
cytochemistry (most often with hematoxylin and diaminobenzidine) [79–81]. Among all
the cases included in the present review, only one diaminobenzidine-stained slide was
tested as input for the Idylla EGFR system, and it resulted in a false negative result [66].
However, a single case is not enough to draw conclusions and further studies on the matter
are encouraged. Furthermore, when the alternative is between performing an EGFR test
on suboptimal material and not performing it at all, a (false) negative result would not
fundamentally alter the clinical management of the patient. A true positive, on the other
hand, would give the patient access to a more effective treatment [82]. If supported by
future studies, immunocytochemically-stained smears could also be digitized to allow
sacrification of the biologic material for molecular tests [83].

3.3. Pitfalls of Idylla on Cytological Specimens

The Idylla EGFR cartridge assesses only 51 different exons 18–21 EGFR mutations [7].
All other mutations are not recognized by the system, so they will be false negatives by
design [84]. Notably, some resistance mutations such as C797S and G724S are not detected
by Idylla. Coupled with the relatively lower limit of detection for the T790M mutation, this
makes Idylla less useful in the setting of EGFR-TKI resistance [7].

It should be pointed out that with cytological samples, as with histological samples,
Idylla is sensitive to both a scarcity and an excess of input DNA. In the case of scarce
DNA (high total EGFR Cq), Idylla can sometimes call a negative rather than an inadequate.
Manual review of the curves is fundamental to identify these cases [7]. In the case of
excessive input DNA (low total EGFR Cq), as is the case with cartridge overload or EGFR
amplification, false positives may be called [7]. This is crucial to keep in mind when the
input is not a canonical FFPE tissue slice or extracted DNA, but rather a scraped smear or
a cell suspension, where precise quantitation of the input DNA and percentage of tumor
cells can be difficult or impossible. In these cases, the automated Idylla callings should not
be trusted and the amplification curves should always be manually checked [7].

Finally, as already discussed, care should be taken when using stained smears as
input, for the associated risk of false negatives and false positives due to the background
fluorescence introduced by the stain.
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3.4. The Agility of Cytological Sampling

It is well known that it is best for the collection of the sample to be performed directly
by the cytopathologist who will then evaluate it microscopically, and not by some other
professional figure [85]. In the procedure known as rapid on-site evaluation (ROSE), the
cytopathologist can smear the material on glass slides, air-dry them, stain them with
a quick cytological stain (such as Diff-Quik) and evaluate them for adequacy on the
spot, using a microscope [86–89]. While a morphological diagnosis can be rendered
directly in some cases, the most important thing is that ROSE allows the cytopathologist
to perform two crucial steps: sampling can be repeated on the spot if the first smears
are inadequate or non-diagnostic, thus greatly reducing the rate of inadequate diagnoses,
patient anxiety, and diagnostic delay; by integrating clinical, imaging (ultrasonography,
computed tomography) and microscopic cytologic data, the material can be allocated in
the best way possible [90–92]. For example, in suspect lymphoproliferative disorders, some
material may be saved in phosphate-buffered saline (PBS) to perform flow cytometry [93],
and in lymph nodal metastases of unknown primary, some material can be fixed in formalin
to prepare a cell block for accurate immunohistochemical phenotyping [93–96]. This makes
fine-needle aspiration more effective, reliable, and accurate [97–99].

Cytological sampling harvests fresh tissue and living cells [100,101]. This means that
virtually any subsequent test can be performed on the material if it is stored correctly,
from cytological (smears) to histological (cell blocks) preparations, with the whole array
of ancillary tests at one’s disposal (immunocytochemistry, immunohistochemistry, flow
cytometry, cytogenetics, molecular biology) [102–107]. One important factor that must
not be overlooked in the context of molecular biology is that harvesting fresh (unfixed)
material means that the quality of nucleic acids (both DNA and RNA) is at its best because
no fixatives have been used and the risk of contamination is vastly reduced [108–110].

In the context of lung cancer, the most common contexts in which a cytopathologist is
called to act are [72,111,112]: during bronchoscopy (with or without ultrasound guidance),
where fine-needle aspirates and forceps biopsies can be performed; to perform a computed-
tomography–guided fine-needle aspiration (CT-FNA); to perform fine-needle aspiration
of a non-pulmonary mass, for example, a metastatic lymph node or suspect cutaneous
metastasis; to analyze a fluid for malignancy in the context of exfoliative cytology (e.g.,
bronchoalveolar lavage, bronchial washing, pleural effusion).

In the first three cases, when a fine-needle aspirate is performed, then the cytologist has
at its disposal the whole array of cytological techniques, ancillary techniques, and he can
always fall back to histological techniques by preparing a cell block [113–115]. Performing
rapid on-site evaluation complements and enhances the accuracy of the procedure.

However, even when the sampling is not cytological but histological (e.g., endo-
bronchial forceps biopsy, core needle biopsy) the agile cytopathologist can employ quick
cytological techniques for rapid on-site evaluation and specimen triage [116–123]. Small
biopsies can be used to prepare the whole array of cytological specimens in several ways.
For example, the biopsy can be used to prepare a touch imprint cytological glass slide,
or it may be submerged in phosphate-buffered saline and delicately agitated to harvest
some cells, before submerging it in the final container with fixative. Finally, after the
bioptic sample has been fixed in formalin and collected to be processed histologically, the
residual fixative may be centrifuged to harvest detached cells. The quality and quantity of
DNA obtained with these methods is variable and has not been, to date, formally assessed
in the literature.

Regarding fluids, regardless of how they are sent to the pathology lab (i.e., fresh or
diluted with fixative), they are an important source of genetic material. Sometimes, they
can be collected by the cytopathologist. In this regard, Al-Turkmani and colleagues [84]
described their experience with using the Idylla KRAS test on pancreatic cyst fluid. In
this case, an undetermined morphological diagnosis was greatly enhanced by the data
provided by Idylla (KRAS mutation) using the aspirated cyst fluid.
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3.5. Strengths and Weaknesses of the Idylla EGFR Test

The main advantage of the Idylla platform is its speed: less than two minutes of
hands-on time and less than 2.5 h of total time to results. Because no batching is required
(each sample is processed on its own), no additional time other than the running time of
the cartridge is required. For comparison, in one of the studies included in this review, the
average turn-around time was 2 days with Idylla versus 14–28 days with NGS [7]. If the
freshly aspirated material is centrifuged and pipetted directly in the cartridge, the results
can be ready in less than three hours from the biopsy [85]. Such speed is unparalleled by
NGS and even by other PCR-based methods.

Additionally, Idylla is extremely easy to use if compared with NGS and PCR-based
methods, and no specific training is required. This allows even peripheral laboratories
without experienced molecular biologists to perform some molecular tests in-house rather
than outsourcing them, dramatically decreasing turnaround time [66].

As De Luca and colleagues have shown, the cartridge can even be loaded directly by
the cytopathologist with minimal training [85]. If the Idylla workstation is placed in the
same room, or if the cartridge is run right away, then this means that the test results will
be ready in a few hours from the sampling. This saves enormous amounts of time and
money, because it is not only conceptually simpler, but it obviates the need for numerous
intermediate time-consuming and costly steps. Because there is no need to prepare a cell
block, at least one day of waiting time, several minutes of lab technician time, and all the
reagents are saved. Then, there is no need to process the cell block, embed it in paraffin, cut
the resulting block and stain it. Similarly, no biologist time or reagents are required because
no extraction step is necessary. In some labs, due to batching or due to the need to ship
formalin-fixed paraffin-embedded blocks or unstained sections to a more central laboratory,
this procedure might take several days [85]. On the other hand, when the cytopathologist
can load the cartridge and run the test on the spot, then the patient can have a combined
morphological and molecular diagnosis on the same day of the aspirate. In addition to
hastening clinical management and preventing therapeutic delays, this will also relieve the
anxiety of the patient by shortening his waiting time [124].

Such an astonishing speed must come with compromises [125]. In fact, a single
cartridge is more expensive than the same assay performed with other means, and, in
comparison with NGS, the total number of mutations detectable is limited to the 51 included
by design. Furthermore, only the EGFR gene is assessed, while the number of known driver
mutations in NSCLC is steadily rising [6,39]. Other Idylla cartridges that might be useful in
NSCLC exist (i.e., the KRAS and BRAF tests) [126], and another interesting cartridge is in
development (currently for research use only), targeting ALK, ROS1, RET, and NTRK1/2/3
rearrangements as well as MET exon 14 skipping. However, each cartridge is a closed
system that runs independently from the other ones, with a different input sample and the
costs are additive. What is a strength for the single case (i.e., the possibility to rinse the
needle directly in the cartridge and have the results in a few hours) becomes a weakness
when the cases cannot be batched, the material cannot be used for multiple tests, and the
costs are not amortized.

As with everything, and—for the case in point—molecular tests, perfection does not
exist and some choices have to be made. Each pathology service has different needs, and
the optimal instruments have to be chosen on a per-case basis.

4. Materials and Methods

Two authors (Alessandro Caputo and Angela D’Ardia) independently searched
4 databases (PubMed, EMBASE, Scopus, Google Scholar) from inception to 15 Febru-
ary 2021 using the following queries:

• PubMed: idylla (lung OR NSCLC OR pulmonary) (cytology OR cytological OR smear
OR FNAB OR FNAC OR needle OR aspiration)
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• EMBASE: idylla:ti,ab,kw AND (lung:ti,ab,kw OR nsclc:ti,ab,kw OR pulmonary:ti,ab,kw)
AND (cytology:ti,ab,kw OR cytological:ti,ab,kw OR smear$:ti,ab,kw OR fnab:ti,ab,kw OR
fnac:ti,ab,kw OR needle:ti,ab,kw OR aspiration:ti,ab,kw)

• Scopus: idylla AND (lung OR NSCLC OR pulmonary) AND (cytology OR cytological
OR smear OR FNAB OR FNAC OR needle OR aspiration)

• Google Scholar: idylla lung cytology OR cytological OR smear OR FNAB OR FNAC
OR needle OR aspiration

Studies were screened first based on the title, then on the abstract, and finally on the
full-text, where available. The present review included original studies using cytological
specimens of NSCLC as input to the Idylla™ EGFR assay (Biocartis, Mechelen, Belgium).
Review articles were excluded but their reference lists were hand-searched for potentially
relevant articles to include in this review. The reference lists of all included articles were
also recursively hand-searched.

Studies were appraised and data were extracted independently by two authors (AC
and AD’Ar). When needed, authors of the included studies were contacted via email.
Disagreements were resolved by discussion among the two authors responsible for the
search, and, when needed, with a third author (PZ).

5. Conclusions

Usage of the Idylla EGFR test as a first (triage) step seems reasonable, given its
high specificity and the relatively high prevalence of EGFR mutations (15–40%) in non-
squamous NSCLC [6,7]. If no mutations are identified by Idylla, further NGS testing is
not compromised; however, for EGFR-mutated patients, a positive Idylla result will mean
that therapy can be started in a matter of days rather than weeks [7]. Thus, a workflow
where actionable and common mutations are tested first and fast, leaving rarer mutations
for subsequent comprehensive profiling, seems the Cmost effective (albeit more expensive)
approach to NSCLC phenotyping.
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