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Abstract

The CYP2D family members are instrumental in the metabolism of 20–25% of commonly prescribed drugs. Although many
CYP2D isoforms have been well characterized in other animal models, research concerning the chicken CYP2Ds is limited. In
this study, a cDNA encoding a novel CYP2D enzyme (CYP2D49) was cloned from the chicken liver for the first time. The
CYP2D49 cDNA contained an open reading frame of 502 amino acids that shared 52%–57% identities with other CYP2Ds.
The gene structure and neighboring genes of CYP2D49 are conserved and similar to those of human CYP2D6. Additionally,
similar to human CYP2D6, CYP2D49 is un-inducible in the liver and expressed predominantly in the liver, kidney and small
intestine, with detectable levels in several other tissues. Metabolic assays of the CYP2D49 protein heterologously expressed
in E. coli and Hela cells indicated that CYP2D49 metabolized the human CYP2D6 substrate, bufuralol, but not debrisoquine.
Moreover, quinidine, a potent inhibitor of human CYP2D6, only inhibited the bufuralol 19-hydroxylation activity of CYP2D49
to a negligible degree. All these results indicated that CYP2D49 had functional characteristics similar to those of human
CYP2D6 but measurably differed in the debrisoquine 49-hydroxylation and quinidine inhibitory profile. Further structure-
function investigations that employed site-directed mutagenesis and circular dichroism spectroscopy identified the
importance of Val-126, Glu-222, Asp-306, Phe-486 and Phe-488 in keeping the enzymatic activity of CYP2D49 toward
bufuralol as well as the importance of Asp-306, Phe-486 and Phe-488 in maintaining the conformation of CYP2D49 protein.
The current study is only the first step in characterizing the metabolic mechanism of CYP2D49; further studies are still
required.
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Introduction

Cytochrome P450 monooxygenases (CYPs) are heme-contain-

ing enzymes that are responsible for metabolizing numerous

endogenous and exogenous compounds, including the steroid

hormones, drugs, carcinogens and environmental pollutants [1].

In humans, the CYP2D enzymes are particularly important in

drug metabolism. Members of the CYP2D family constitute 2–4%

of the total hepatic CYPs but are responsible for the metabolism of

20–25% of commonly prescribed drugs [2]. Furthermore,

CYP2Ds exhibit extensive genetic polymorphism, many types

are associated with altered or abolished enzyme activities, which

leads not only to severe adverse effects in clinical therapy but also

to a non-response to medications [3–5].

A large amount of experimental evidences have indicated the

functional importance of CYP2D6 and its variants in humans

[6,7]. Moreover, the crystal structure of human CYP2D6 has been

solved and many important amino acid residues implicated in

substrate recognition and binding have been determined, in-

cluding Phe-120, Glu-216, Asp-301, Phe-481 and Phe-483 [8,9].

Additionally, many isoforms of the CYP2D subfamily other than

human CYP2D6 have been well characterized in animal models of

drug development, such as rats [10–13], mice [14,15], guinea pigs

[16], dogs [17,18], bovines [19], rabbits [20] and monkeys

[21,22]. However, most investigations have focused on their

sequence clonings, biochemical characterizations and catalytic

activities; little is known about their catalytic mechanisms or the

relationships between their functions and structures.

The chicken is one of the most common domestic animals [23].

Defining the contribution of a chicken CYP isoform to the

metabolism of a specific drug is important not only for poultry

pharmacology and toxicology but also for human health because

of the possible presence of poisonous drug metabolites in chicken

products, such as meat and eggs. To date, several important CYPs,

such as CYP1A4/5 [24], CYP3A37 [25] and CYP2C45 [26], have

been cloned and identified in chickens. However, little is known

about the CYP2D isoforms; though studies with chicken liver

microsomes have suggested that CYP2D isoforms are present in

chickens based on the observed metabolism of bufuralol, which is

a prototypical substrate of human CYP2D6 [27].

Here, we describe the cloning, characterization and catalytic

functional studies of a novel chicken CYP2D gene, termed

CYP2D49, which was the first CYP2D gene reported in chickens.

Through studies of its sequence, tissue expression pattern and

PLoS ONE | www.plosone.org 1 June 2012 | Volume 7 | Issue 6 | e38395



inductive properties as well as metabolic characterization, we

found that CYP2D49 had the ability to catalyze bufuralol 19-

hydroxylation and may be a counterpart to human CYP2D6 in

chickens. Furthermore, we studied the catalytic mechanism of

CYP2D49 toward bufuralol and elucidated the key amino acid

residues involved in its enzymatic activity and protein conforma-

tion.

Results

Identification of a novel CYP2D gene from the chicken
liver with similarity to human CYP2D6
To identify the CYP2D isoforms in chickens, we first searched

against the chicken EST database with the human CYP2D6

sequence. This resulted in the discovery of a unique unpublished

cDNA clone (GenBank accession no. CR354312.1). Based on this

discovery, we cloned the coding sequence of the cDNA (GenBank

accession no. JQ241277) from the chicken liver for the first time.

The sequence has been submitted to the Committee on P450

Nomenclature, which suggested the name CYP2D49 for this gene

[25,28]. To demonstrate the genetic distance between chicken

CYP2D49 and other CYP2D isoforms in experimental animal

species, the identities of the respective CYP2D isoforms are

indicated as percentages in Table 1. The deduced 502 amino acid

residues sequence of CYP2D49 possessed 52%–57% identities

with the other CYP2D enzymes (Table 1). This finding, together

with a phylogenetic comparison of the deduced amino acid

sequence of CYP2D49 with the sequences of other CYP2D

isoforms (Fig. 1A), indicated that chicken CYP2D49 belonged to

the CYP2D family, but showed far evolutionary distance to other

CYP2D enzymes because of the remarkable interspecies differ-

ences.

To determine the genomic structure of chicken CYP2D49, we

further searched the chicken genomic database with the CYP2D49

sequence and compared the gene structure and the neighboring

genes of chicken CYP2D49 to those of human CYP2D6. As shown

in Fig. 1B, CYP2D49 localized in chromosome 1 and is composed

of nine exons and eight introns; additionally, its exon–intron

organization as well as the corresponding sizes of these segments

and the coding region boundaries are conserved and similar to

those of human CYP2D6 (Fig. 1B). Furthermore, we found a set of

genes neighboring CYP2D49 that demonstrate highly conserved

synteny to human CYP2D6 (Fig. 1B). These results suggest that

CYP2D49 may be the chicken counterpart to human CYP2D6.

Expression of recombinant CYP2D49 protein and
detection of the specificity of anti-CYP2D49 antiserum
To study the function of the CYP2D49 protein, the recombi-

nant protein was expressed in a prokaryotic expression system. As

shown in Fig. 2A, a Myc-His-tagged fusion CYP2D49 protein of

approximately 55 kDa was expressed (Lanes 2 and 3) and

successfully purified by Ni2+-NTA affinity chromatography (Lane

4). Western blotting detection using an anti-Myc antibody further

confirmed the correction of the recombinant expression (Fig. 2B).

To further characterize the expression patterns of CYP2D49 at

the protein level, a polyclonal anti-CYP2D49 antiserum was

generated by immunizing mice with the purified CYP2D49

protein. Western blotting results showed that this anti-CYP2D49

antiserum (Fig. 2C, lane 2), but not the pre-immune mouse serum

(Fig. 2C, lane 1), was able to recognize over-expressed CYP2D49

to provide a specific band at 55 kDa. Moreover, the band is

recognized by the anti-Myc antibody (Fig. 2C, lane 4) but not by

the anti-CYP2D49 antiserum that had been pre-adsorbed with

excess antigen (purified CYP2D49-Myc-His-tag fusion protein)

(Fig. 2C, lane 3). These results indicate that the generated

antiserum can recognize CYP2D49 with high specificity.

In vivo and in vitro expression patterns of CYP2D49
To determine the distribution of CYP2D49 in chicken tissues,

real-time PCR and western blotting analyses were performed on

nine tissues. As shown in Fig. 3A, CYP2D49 was ubiquitously

distributed at the mRNA level in all normal tissues assayed. It was

predominantly expressed in the liver, kidney and small intestine,

with lower transcription levels in the brain, lung, heart, spleen,

testis and ovary. Using the generated anti-CYP2D49 antiserum,

the expression of CYP2D49 at the protein level was further

analyzed. As shown in Fig. 3B, CYP2D49 protein exhibited

similar expression patterns to its transcription patterns, with

protein expression occurring predominantly in the liver, kidney

and small intestine, along with weak expression in the testis and

ovary. If extending the exposure time, weaker bands could be

detected in the brain, lung, heart and spleen (data not shown).

To investigate the inductive properties of chicken CYP2D49 in

vitro, Leghorn male hepatocellular carcinoma epithelial (LMH)

cells were treated with four representative CYP inducers

(rifampicin, clotrimazole, b-naphthoflavone and dexamethasone)

and a candidate substrate of CYP2D49 (bufuralol). As shown in

Fig. 3C, no induction was detectable after the treatments with the

five drugs at three time points; this finding demonstrates that

CYP2D49 in the liver is not inducible.

Enzymatic properties of recombinant CYP2D49 protein
The solubilized membrane fraction of E. coli cells transformed

with pCWOri-CYP2D49 showed typical reduced CO-difference

spectra that exhibited Soret peaks at 450 nm (Fig. 4A). However,

no absorption at 450 nm was observed in the solubilized

membrane fraction of E. coli cells transformed with the

corresponding empty vector (date not shown). These results

indicate that partial CYP2D49 proteins heterologously expressed

in E. coli form holoenzymes and exhibit natural catalytic activities.

To further determine the enzymatic properties of CYP2D49,

metabolic assays of the purified CYP2D49 protein were performed

using the typical human CYP2D6 substrates, bufuralol and

debrisoquine [29]. As shown in Fig. 4B and 4C, recombinant

CYP2D49 protein exhibited bufuralol 19-hydroxylation activity.

The formation of 19-hydroxybufuralol was observed to follow

simple Michaelis–Menten kinetics (Fig. 4B). The Km value was

calculated as 3.94860.232 mM [mean 6 standard deviations

(SD)] and the Vmax value was calculated as 361.364.261 nmol

min21 mg21 protein (mean6 SD) (r2 = 0.99; Fig. 4B). In addition,

Eadie–Hofstee plot analysis revealed that the activity of recombi-

nant CYP2D49 enzyme followed a monophasic kinetic pattern

(r2 = 0.97; Fig. 4C). These results demonstrate that the purified

CYP2D49 is enzymatically active and can efficiently metabolize

bufuralol. However, we did not detect any catalytic activity of the

recombinant CYP2D49 protein toward debrisoquine (data not

shown).

Quinidine is a potent inhibitor of human CYP2D6 and has

been widely used as a probe of CYP2D inhibition in other animal

species [13,22,30]. However, low concentrations of quinidine

showed a negligible or low inhibitory effect toward the bufuralol

19-hydroxylation activity of CYP2D49 (data not shown). Though

increasing the concentration of quinidine from 10 mM to 50 mM,

the inhibitory effect is still weak (Fig. 4D).

Newly Identified Chicken CYP2D49
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Enzymatic activities of six CYP2D49 variants towards
bufuralol
Studying the influence of key amino acid residues on the

catalytic activity of an enzyme may shed light on its catalytic

mechanism. In human CYP2D6, amino acid residues such as Phe-

120, Glu-216, Asp-301, Phe-481 and Phe-483 have been proposed

to be involved in the substrate recognition and binding (Fig. 5A).

To investigate whether the above five amino acid residues are also

important for the bufuralol 19-hydroxylation activity of CYP2D49,

site-directed mutagenesis studies were conducted. We first aligned

partial amino acid sequences of chicken CYP2D49 to that of

human CYP2D6 and found that CYP2D49 owned the same

amino acid residues as human CYP2D6 at all the sites except for

the position 126, which is replaced by a valine residue (Fig. 5B).

We then prepared plasmids encoding wild-type and mutant

CYP2D49 (pcDNA-CYP2D49-V126A, V126F, E222A D306A,

F486A and F488A) and transiently transfected them into Hela

cells. Western blotting analysis was used to determine whether the

transient transfection was successful. As shown in Fig. 5C, the

transient transfection with WT and mutant CYP2D49 plasmids

led to the significant over-expression of proteins with an estimated

molecular mass of 55 kDa; these proteins were not detectable in

control cells. The amount of CYP2D49 and its mutants detected

was normalized against the detected amount of b-actin (data not

Figure 1. Phylogenetic tree of CYP2D amino acid sequences and genomic structures of human CYP2D6 and chicken CYP2D49. (A)
Phylogeny of CYP2D amino acid sequences from the chicken and other animal species. The neighbor-joining tree was created using the Molecular
Evolutionary Genetics Analysis Version 4 software. The numbers on the branches indicate the number of times per 100 bootstrap replicates that the
branch appeared in the trees, estimated by a random resampling of the data. Only bootstrap values greater than 50% are shown. The scale bar
represents 5 substitutions in 100 residues. (B) Genomic structures of human CYP2D6 and chicken CYP2D49. The diagram of the organization of the
CYP2D subfamily in humans and chickens was determined by the BLAT analysis of the human and chicken genome data from NCBI database. Exons
are indicated by boxes, whereas introns are indicated by lines. The lengths of the exons and introns are expressed in base pairs. The arrowheads
indicate the direction of transcription.
doi:10.1371/journal.pone.0038395.g001
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shown). Furthermore, the bufuralol 19-hydroxylation activities of

the over-expressed WT and variant CYP2D49 proteins were

determined by incubating bufuralol with S9 fractions from Hela

cells which were transfected with empty vector, WT CYP2D49

and six CYP2D49 mutants. As shown in Fig. 5D, the WT

CYP2D49 protein exhibited distinct bufuralol 19-hydroxylation

activity comparing to the control. However, significant decreases

in the bufuralol 19-hydroxylation activity were observed for all the

variants, especially for the D306A variant (Fig. 5D). The bufuralol

19-hydroxylation activities [V(nmol/min/mg protein)] of the WT

CYP2D49 and the V126A, V126F, E222A, D306A, F486A and

F488A variants were 309.7766.14, 44.9161.09, 18.1760.53,

123.7160.98, 2.0760.70, 88.5161.24 and 82.3864.70 (mean 6

SD), respectively, which indicates that these amino acid residues

may play important roles in the bufuralol 19-hydroxylation activity

of chicken CYP2D49.

Circular dichroism spectroscopy analysis
The circular dichroism (CD) spectroscopy analysis is an

excellent tool for the rapid determination of the secondary

structure and folding properties of proteins [32]. To elucidate

the relationship between the function and the structure of

CYP2D49 protein, we further expressed and purified the six

CYP2D49 variants from E. coli cells and investigated the changes

of their physicochemical characterizations by CD spectroscopy

analyses. As shown in Fig. 6A, the CD spectra of CYP2D49 WT

and its variants exhibited the characteristic signature of an a helix

with minima at 222 and 208 nm. The helical contents of the

V126A, V126F, E222A, D306A, F486A, F488A variants as well as

the WT protein were 38.2%, 39.8%, 33.3%, 23.9%, 50.3%,

18.1% and 37.9%, respectively. The helical content of the F486A

variant was much higher than that of the WT CYP2D49, whereas

the helical contents of the D306A and F488A variants were much

lower (Fig. 6A). In addition, based on the mean residue ellipticity

at 222 nm of a 5 mM protein preparation in 100 mM potassium

phosphate (pH 7.4) at 4uC, the melting temperature (Tm) of the

WT CYP2D49 was 59uC (Fig. 6B). At the same concentration, all

variants displayed a cooperative thermal unfolding transition with

Table 1. Comparison of the deduced amino acid sequence of
CYP2D49 with the sequences of other CYP2D isoforms.

Species Forms Identity Accession No.

Chicken CYP2D49 100% AEZ51809

Rat CYP2D3 57% J02868

Human CYP2D6 56% M33388

Bovine CYP2D14 57% X68481

Dog CYP2D15 54% D17397

Guinea pig CYP2D16 52% U21486

Cynomolgus monkey CYP2D17 56% U38218

Marmoset CYP2D19 55% D29822

Hamster CYP2D20 56% D86476

Miniature pig CYP2D21 57% D89502

Mouse CYP2D22 53% AF221525

Rabbit CYP2D24 53% AB008785

Pig CYP2D25 56% Y16417

Japanese monkey CYP2D29 55% AF301911

Marmoset CYP2D30 55% AY082602

doi:10.1371/journal.pone.0038395.t001

Figure 2. Expression of recombinant CYP2D49 protein and
detection of the specificity of anti-CYP2D49 antiserum. (A)
Proteins were analyzed by SDS-PAGE on 10% Tris-Glycine gels stained
with Coomassie brilliant blue R-250. Lane 1: non-IPTG-induced bacteria;
lane 2: IPTG-induced total cell lysates; lane 3: supernatant of the IPTG-
induced cell lysates and lane 4: the protein purified by Ni2+-NTA affinity
chromatography. (B) Western blotting analysis was used to confirm
whether the prokaryotic expression of CYP2D49 protein had succeeded.
The protein samples described in Fig. 2A were detected by the anti-Myc
antibody. Lane 1: non-IPTG-induced bacteria; lane 2: IPTG-induced total
cell lysates; lane 3: supernatant of the IPTG-induced cell lysates and lane
4: the protein purified by Ni2+-NTA affinity chromatography. (C) The
protein samples extracted from Hela cells which were transiently
transfected with pcDNA-CYP2D49 were separated by SDS-PAGE and
immunoblotted using different antibodies. Lane 1: the normal mouse
serum; lane 2: the polyclonal anti-CYP2D49 antiserum; lane 3: the anti-
CYP2D49 antiserum pre-adsorbed with excess antigen (purified
CYP2D49 protein); lane 4: the anti-Myc antibody.
doi:10.1371/journal.pone.0038395.g002
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Tm between 60–62uC, except for the F486A variant, whose

melting temperature was decreased to 50uC (Fig. 6B).

Discussion

Chicken liver microsomes exhibit bufuralol 19-hydroxylation

activity, which indicates the existence of CYP2D isoenzymes in

chickens [27]. However, chicken CYP2D isoforms have not been

previously identified. This prompted us to search for cDNA

sequences of chicken CYP2Ds in the NCBI database and led to the

successful identification of CYP2D49, which is the first reported

avian CYP2D isoenzyme. Here, we studied the genomic

organization, in vivo and in vitro expression patterns and metabolic

properties of CYP2D49 and we further elucidated its probable

metabolic mechanism toward bufuralol.

Human CYP2D6 is a part of the CYP2D gene cluster with two

inactive pseudogenes, CYP2D7P and CYP2D8P [33,34]. However,

these two pseudogenes are not found in the corresponding

genomic region neighboring chicken CYP2D49. The different

numbers of genes in the CYP2D cluster in humans compared with

the chicken are probably the results of the gene duplications of the

P450s, including CYP2Ds, that have occurred in each species

during evolution [35]. To find out whether there is any other

CYP2D existed in chickens, we used the sequence of CYP2D49 to

search for its homologues in the chicken EST and genomic

database but none was found. Thus, CYP2D49 appears to be the

best candidate ‘‘orthologue’’ of CYP2D6 in chickens. However, we

cannot exclude the possibility that there are other CYP2Ds in

chickens due to incomplete EST and genomic information.

The expression data indicate that CYP2D49, similarly to

CYP2D6, is highly expressed in the liver, kidney and small

intestine and modestly expressed in various other tissues [30]. The

specific tissue distribution of chicken CYP2D49 suggests that

CYP2D49 protein may have specific catalytic properties and play

specific roles in the liver, kidney and small intestine. Based on

these, we further studied the inductive characterization of

CYP2D49 in the liver. In humans, CYP1A1, CYP1A2, CYP2B6,

CYP2C8, CYP2C9, CYP2C19 and CYP3A4 are known to be

inducible, whereas CYP2D6 is not [30]. Rifampicin, b-naphtho-
flavone, dexamethasone and clotrimazole are representative CYP

inducers and can induce the expression of chicken CYP3A37,

CYP2H1 and CYP2C45 in LMH cells, the first continuously

dividing cell line of the chicken liver [26,36,37]. However, none of

these inducers can increase the expression of CYP2D49 in LMH

cells. CYPs are often induced by their own substrates to allow

a dynamic adaptation to xenobiotic exposure [38]. However, the

candidate substrate of CYP2D49 (bufuralol) also failed to induce

the expression of CYP2D49. All these indicate that CYP2D49 is

not inducible in the liver, similar to human CYP2D6. Further

studies are still required to demonstrate the regulational mechan-

isms of the in vivo and in vitro expression patterns of CYP2D49.

Recombinant CYP2D49 protein expressed from either pro-

karyotic or eukaryotic systems effectively hydroxylated bufuralol,

as typically observed for human CYP2D6 [29]. Moreover, the Km

value of CYP2D49 for bufuralol 19-hydroxylation reaction

(3.94860.232 mM) is similar to that of human CYP2D6

(4.4 mM) [39]. All these further confirm our notion that chicken

CYP2D49 is an orthologue of human CYP2D6 and indicate that

CYP2D49 may have similar bufuralol binding affinity to human

CYP2D6. However, the Km value of CYP2D49 for bufuralol 19-

hydroxylation reaction is much lower than that of the chicken liver

microsomes reported by Khalil et al., who also investigated the

kinetic parameters of dog liver microsomes for bufuralol parallel

[27]. We found that the Km value of dog liver microsomes for

bufuralol 19-hydroxylation reaction [27] is higher than the value

reported by Roussel et al [31]. Thus, further studies are still needed

to confirm the enzymatic kinetics of chicken liver microsomes for

bufuralol and the critical role of CYP2D49 in this reaction.

Clear differences exist between humans and other animal

species with regard to the phase I and phase II drug metabolic

reactions [30]. Though our data from the genomic organization, in

vivo and in vitro expression patterns and metabolic properties of

CYP2D49 indicate that chicken CYP2D49 is an orthologue of

human CYP2D6, these differences are also observed between

chicken CYP2D49 and human CYP2D6. For example, recombi-

nant CYP2D49 showed inefficient debrisoquine 49-hydroxylation

activity, which is another typical representative reaction of human

CYP2D6 [21]. Indeed, rat CYP2D3 and CYP2D4 are also

deficient in their ability to metabolize debrisoquine, which is

Figure 3. In vivo and in vitro expression patterns of CYP2D49.
(A) CYP2D49 transcripts in the indicated tissues of the healthy chicken
were detected by real-time PCR amplification. The expression of the
target gene was calculated relative to that of 18S rRNA according to the
22DCT method. Error bars represent standard deviations obtained by
measuring each sample in triplicate. He-Heart; Li-Liver; Sp-Spleen; Lu-
Lung; Ki-Kidney; Br-Brain; Sin-Small intestine; Te-Testis; Ov-Ovary. (B)
The lysates of the above chicken tissues were separated by 10% SDS-
PAGE and then stained by Coomassie brilliant blue R-250 for
normalization of sample loadings. Western blotting analysis using
anti-CYP2D49 antiserum was exploited to detect the expression of
CYP2D49 at the protein level. (C) LMH cells were treated with rifampicin,
clotrimazole, b-naphthoflavone, dexamethasone and bufuralol for 24,
48 and 72 h, respectively. Real-time PCR was used to detect the levels of
CYP2D49 mRNA. The ratio of CYP2D49 to b-actin in control cells was set
to 1 and the values in all treated cells were normalized relative to this
value. The experiments were conducted in triplicate and the data are
expressed as the mean 6 SD.
doi:10.1371/journal.pone.0038395.g003
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mainly catalyzed by CYP2D2 [10,40]. Determining whether the

chicken has lost the ability to transform debrisoquine or if other

CYPs are responsible for this reaction requires further study. In

addition, quinidine, a prototypical inhibitor of human CYP2D6

[13,30], showed a negligible inhibitory effect toward the bufuralol

19-hydroxylation activity of CYP2D49. In fact, the inhibition

profiles of the rat, monkey and mouse proteins also differ from that

of the human protein. Bogaards et al. reported a negligible (in the

rat and mouse) or low (in the monkey) inhibitory effect by

quinidine toward bufuralol 19-hydroxylase catalytic activity [41].

Most substrates of CYP2D6 include an aromatic moiety and

a basic nitrogen atom in their structures. Site-directed mutagen-

esis, computational modeling and the crystal structure of human

CYP2D6 identified the importance of Phe-120, Glu-216, Asp-301,

Phe-481 and Phe-483 in substrate recognition and binding [8,9].

Glu-216 and Asp-301, which are two negatively charged residues

in the active site of human CYP2D6, facilitated the binding and

orientation of the ligands in the active site through the formation

of an electrostatic interaction between their carboxylate group and

the basic nitrogen atom of the CYP2D6 substrates [42,43].

Additionally, the aromatic side chains of Phe-120, Phe-481 and

Phe-483 interacted with the aromatic moiety of the substrate

through a hydrophobic (p-p) interaction [9,44–46]. Each mutation

of the position 222, 306, 486 and 488 in CYP2D49 to a neutral

alanine residue greatly decreased the catalytic efficiency of

CYP2D49 toward bufuralol, especially for the mutation D306A.

This finding indicates that these four amino acid residues are

important for the bufuralol 19-hydroxylation activity catalyzed by

CYP2D49. Further studies are still needed to confirm whether the

four sites in CYP2D49 function in the same way to that of human

CYP2D6.

It is interesting to note that Phe-120 is not conserved in

CYP2D49; rather, it is replaced by a valine residue. In fact, rat

CYP2D2, CYP2D3 and CYP2D4 possess a valine instead of

a phenylalanine at position 120 and exhibit normal bufuralol 19-

hydroxylation activity [47]. We then mutated this position to an

alanine or a phenylalanine; both mutations decreased the catalytic

activity of CYP2D49 toward bufuralol. These results demonstrate

that Val-126 is also important for the catalytic activity of

CYP2D49 toward bufuralol. Although Phe-120 was considered

to be important in orienting the aromatic ring of most substrates

with respect to the heme moiety of the enzyme, no change was

found in the apparent Km or Vmax values for bufuralol oxidation

catalyzed by human CYP2D6 F120A variant [45]. Thus, the

Figure 4. Enzymatic properties of recombinant CYP2D49 protein. (A) Reduced CO-difference spectrum of recombinant CYP2D49 (solubilized
membrane fraction). The spectrum was measured in 200 mM Tris-HCl buffer (pH 7.4) containing 40% glycerol and 2 mM EDTA. No absorption at
approximately 450 nm was observed in the solubilized membrane fraction of E. coli cells transformed with the corresponding empty vector. (B)
Michaelis–Menten plot and (C) Eadie–Hofstee plot of the bufuralol 19-hydroxylation activity of recombinant CYP2D49 enzyme. The incubation and
reaction were processed essentially as described under ‘‘Materials and methods’’ and the enzyme kinetic parameters of CYP2D49 were determined by
HPLC. Each point and bar represents the mean6 SD of three replicates. (D) Inhibitory effect of quinidine on the bufuralol 19-hydroxylation activity of
recombinant CYP2D49 enzyme. For quinidine inhibition studies, the incubation were performed by pre-incubating purified CYP2D49 protein for
5 min at 37uC with 100 mM bufuralol and varying concentrations of quinidine. The reactions were then started by the addition of NADPH. The data
detection and analysis were processed essentially as described under ‘‘Materials and methods’’. Each point and bar represents the mean 6 SD of
three replicates.
doi:10.1371/journal.pone.0038395.g004
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phenylalanine at position 120 may be not critical to the catalytic

activity of human CYP2D6 when the substrate is bufuralol.

Additionally, Narimatsu et al. found that rat CYP2D4 V123F

variant showed increased Km values and decreased Vmax values for

bufuralol oxidation, indicating that Val not Phe at position 123 is

important for the catalytic activity of CYP2D4 toward bufuralol

[48]. They speculated that bufuralol with a basic nitrogen atom

can be captured ionically by the carboxylate group of Glu-219 or

Asp-304 (corresponding to Glu-216 and Asp-301 of human

CYP2D6), resulting in an orientation whereby the oxidation site

Figure 5. Enzymatic activities of six CYP2D49 variants towards
bufuralol. (A) Crystal structure of human CYP2D6. The conformation
was constructed based on the crystallographic data of CYP2D6 (2F9Q)
obtained from Protein Data Bank and drawn using Accelrys ViewerLite
Version 5.0. Amino acid residues at positions 120, 216, 301, 481 and 483
are in ball-and-stick form. (B) Alignment of the partial amino acid
sequences of human CYP2D6 and chicken CYP2D49. The number at the
top is for human CYP2D6; the number at the bottom is for chicken
CYP2D49. The arrowheads show the amino acid residues to be
substituted. (C) Functional expression and detection of WT CYP2D49
and its variants. S9 fractions from Hela cells which were transfected with
empty vector, pcDNA-CYP2D49, pcDNA-CYP2D49-V126A, V126F, E222A,
D306A, F486A and F488A were extracted and separated on 10% SDS-
PAGE gels. Western blotting analysis was then used to confirm that
transient transfection had succeeded. Blots were probed with the anti-
CYP2D49 antiserum and a b-actin antibody, respectively. (D) Bufuralol
19-hydroxylation catalytic activities of six CYP2D49 variants. S9 fractions
of Hela cells which were transfected with empty vector, WT CYP2D49

and six CYP2D49 mutants were incubated with bufuralol as described in
‘‘Materials and methods’’. Metabolites produced in the reactions were
analyzed by HPLC. The data are represented as nanomoles of
metabolite/min/microgram of protein. The data shown are derived
from a representative experiment reported as the mean (n = 3) 6 SD.
Differences between the WT and mutant protein samples are significant
when ** p,0.01.
doi:10.1371/journal.pone.0038395.g005

Figure 6. Physicochemical analyses of WT CYP2D49 protein
and its variants. (A) The CD spectroscopy was used to analyze the
secondary structures of the WT CYP2D49 protein and its variants.
Proteins purified from E. coli were assayed at a final concentration of
5 mM in 0.1 M potassium phosphate (pH 7.4). The CD spectra were
acquired at 4uC on the Chirascan. (B) The thermal melt was monitored
by CD spectroscopy using the same proteins described in Fig. 6A.
Thermal denaturation was monitored at 222 nm by applying a thermal
gradient of 2uC/min over the range from 4–92uC.
doi:10.1371/journal.pone.0038395.g006
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(19-position) of bufuralol comes close to the heme iron. However,

the mutated Phe at position 123 captures bufuralol via hydropho-

bic (p-p) interaction between the aromatic rings of Phe-123 and

bufuralol, lowering the efficacy of the bufuralol oxidation by

interfering with the interaction of other bufuralol molecules with

the carboxylate group of Glu-219 or Asp-304. The CYP2D49

V126F variant may function in the same way to that of rat

CYP2D4. However, further studies are still needed to explore the

exact mechanism.

Furthermore, CD spectroscopy was used to analyze the effect of

site-directed mutagenesis on the secondary structure of CYP2D49

and to reveal the relationship between the function and the

structure of CYP2D49. All six mutations decreased the ability of

CYP2D49 to metabolize bufuralol. However, only D306A, F486A

and F488A variants changed the a-helical content of CYP2D49

protein and the F486A variant decreased the Tm value of

CYP2D49 protein. These results demonstrate that Asp-306, Phe-

486 and Phe-488 may play critical roles in maintaining the

conformation of CYP2D49 protein; mutations at these sites may

break the natural structure of CYP2D49 protein and lead to great

decrease in the catalytic efficiency of CYP2D49 toward bufuralol.

Moreover, both V126A and V126F mutations have no influence

on the secondary structure and thermal stability of CYP2D49,

suggesting that Val-126 may not function through maintaining the

conformation of CYP2D49 protein. However, how exactly Val-

126 affects the catalytic activity of CYP2D49 toward bufuralol still

needs further study.

The relationship between enzymatic activity and protein

structure and stability is very complicated. Any change of the

structure of an enzyme could affect its catalytic activity to some

extent, however, protein structure and stability is not the only

factor influencing its activity. The key sites of an enzyme can also

function through direct interactions with the substrates. Besides

breaking the natural structure of CYP2D49 protein, the D306A

variant may destroy the electrostatic interaction between carbox-

ylate group of Asp-306 and the basic nitrogen atom of bufuralol,

which inhibited the oxidation site (19-position) of bufuralol coming

close to the heme iron and resulted in great decrease of the

catalytic efficiency of CYP2D49 toward bufuralol. However, the

F486A variant may mainly change the conformation of CYP2D49

and lead to the decrease in the catalytic efficiency of CYP2D49

toward bufuralol to a less extent. All these speculations still need

more experimental evidences.

In conclusion, we have found a novel and also the first CYP2D

gene in the chicken. Studies of its sequence, tissue expression

pattern, inductive properties and metabolic characteristics show

that CYP2D49 can catalyze the 19-hydroxylation of bufuralol and

may be a counterpart to human CYP2D6 in chickens. Further

investigations of the metabolic mechanism of CYP2D49 identified

the importance of Val-126, Glu-222, Asp-306, Phe-486 and Phe-

488 in keeping the enzymatic activity of CYP2D49 toward

bufuralol as well as the importance of Asp-306, Phe-486 and Phe-

488 in maintaining the conformation of CYP2D49 protein. The

current study is only the first step in characterizing the metabolic

mechanism of CYP2D49; further studies are still required.

Materials and Methods

Ethics statement
This study was carried out in strict accordance with the

recommendations in the Regulations for the Administration of

Affairs Concerning Experimental Animals of Guangdong Prov-

ince, China. The protocol was approved by the Committee on the

Animal Care and Use of Laboratory Animal Center of Sun Yat-

sen University (Production Permit Number: SCXK 2004-0011;

Use Permit Number: SYXK 2007-0081). All efforts were made to

minimize suffering.

Chemicals and reagents
Bufuralol hydrochloride, 19-hydroxybufuralol, debrisoquine and

49-hydroxydebrisoquine were purchased from TRC (North York,

Ontario, Canada). NADPH-P450 reductase, cytochrome b5,

NADPH, quinidine, rifampicin, b-naphthoflavone, clotrimazole

and dexamethasone were obtained from Sigma-Aldrich (St. Louis,

MO, USA). Acetonitrile (ACN) and water used for high-

performance liquid chromatography (HPLC) were obtained from

Thermo Fisher Scientific (Fairlawn, NJ, USA) and Milli-Q Ultra-

purification Systems (Millipore, Bedford, MA, USA), respectively.

All the other chemicals and reagents used were of analytical grade.

Animals and cell culture
Three-yellow broilers (three males and three females, 7–8 weeks

old, 1.2–1.5 kg) were purchased from the College of Veterinary

Medicine at South China Agricultural University (SCAU).

Chicken tissues for RNA and protein preparation were collected,

snap-frozen in liquid nitrogen and stored at 280uC until use.

BALB/c mice (five males, 5–6 weeks old) were used to generate

polyclonal anti-CYP2D49 antiserum and purchased from the

Laboratory Animal Center of Sun Yat-sen University (SYSU). The

chickens and mice were fed commercial standard diets and were

allowed access to water ad libitum to ensure the absence of

therapeutic or illicit treatments before slaughtering.

Hela cells (ATCC, CCL-2) and LMH cells (ATCC, CRL-2117)

were maintained at 37uC in Dulbecco’s Modified Eagle’s Medium

(DMEM) and William’s E medium (Sigma-Aldrich, St. Louis,

MO, USA), respectively, that were supplemented with 10% fetal

bovine serum (FBS), 100 U/ml penicillin and 100 mg/ml strep-

tomycin. For induction, the LMH cells were treated with

concentrations of 25, 10, 10, 25 and 100 mM, respectively, of

rifampicin, clotrimazole, b-naphthoflavone, dexamethasone and

bufuralol, which were dissolved in DMSO (Sigma-Aldrich, St.

Louis, MO, USA). After treatment for 24, 48 and 72 h, the cells

were collected for RNA extraction. The control cells were

incubated in equal solvent concentrations.

cDNA cloning and the construction of plasmids
Total RNA from the chicken liver was extracted with the SV

Total RNA Isolation System (Promega, Madison, WI, USA) and

first-strand cDNA was synthesized using SMART MMLV Re-

verse Transcriptase (Promega, Madison, WI, USA) according to

the manufacturer’s instructions. The cDNA encoding chicken

CYP2D49 was amplified by polymerase chain reaction (PCR) from

the single-stranded cDNA template using the following primers:

59-CGGGGAGGGGAGCAGGAGAA-39 (sense) and 59-

CGCAGGAACTCAGGACTAAAAC-39 (antisense). These pri-

mers were designed based on the nucleotide sequence of the

flanking region of the chicken finished cDNA clone

CHEST77m14 (GenBank accession no. CR354312.1). The PCR

product was cloned into the pMD20-T vector (TaKaRa, Qingdao,

China) and verified by DNA sequencing. The deduced sequence

was submitted to the P450 nomenclature committee for name

designation and then to GenBank (accession no. AEZ51809).

To allow functional expression in E. coli, the N-terminal coding

region of CYP cDNA requires a modification, for which we

selected ompA+2 according to the Cytochrome P450 Protocols

[49]. Briefly, a cDNA fragment encoding the bacterial ompA leader

sequence (21 amino acid residues) and two additional spacer

amino acid residues (Leu-Glu) were fused to the CYP2D49
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encoding sequence by PCR. The ompA-CYP2D49 cassette was then

inserted into the Not I/Kpn I sites of the pCWOri+ vector

(pCWOri-CYP2D49). To allow eukaryotic expression, the open

reading frame (ORF) region of CYP2D49 was inserted into the Not

I/Hind III sites of the pcDNATM3.1/myc-His (2) A (Invitrogen,

Carlsbad, CA, USA) vector (pcDNA-CYP2D49). Six mutants

(pcDNA-CYP2D49-V126A, V126F, E222A, D306A, F486A and

F488A) were prepared from pcDNA-CYP2D49 using the Quik-

Change Site-directed Mutagenesis Kit (Invitrogen, Carlsbad, CA,

USA). The mutant cDNAs from pcDNATM3.1/myc-His (2) A

were then subcloned into the pCWOri+ vector using primers

containing Not I/Kpn I sites. All plasmids were verified by DNA

sequencing.

Recombinant protein expression and preparation of anti-
CYP2D49 antiserum
The expression plasmid pCWOri-CYP2D49 was transformed

into DH5a competent cells. A single clone was randomly picked

and cultured at 37uC for 5–7 h in LB media containing 100 mg/L

ampicillin first and then used to inoculate modified TB media

(12 g/L bactotryptone, 24 g/L yeast extract, 2 g/L bactopeptone

and 4 ml/L glycerol) containing 100 mg/L ampicillin and

1.0 mM thiamine with supplementation of trace elements. IPTG

was added at a final concentration of 1 mM when the OD600 of

the cell culture reached 0.7–0.8 and the expression of recombinant

CYP2D49 was then induced at 30uC for 36 h. The cultures were

then chilled on ice and centrifuged at 2,8006g for 20 min at 4uC.
The cell pellet was re-suspended in 100 mM Tris acetate buffer

(pH 7.6) containing 500 mM sucrose and 0.5 mM EDTA and the

suspension was then diluted with an equal volume of ice-cold

water. Lysozyme was added to the re-suspended cells at a final

concentration of 0.25 mg/ml. The suspension was incubated at

4uC for 45 min with agitation. The spheroplasts were pelleted at

2,8006g for 20 min at 4uC and re-suspended in 100 mM

potassium phosphate buffer (pH 7.6) containing 6 mM magne-

sium acetate, 20% glycerol (v/v) and 0.1 mM DL-dithiothreitol.

The suspensions were sonicated on ice and centrifuged at

12,0006g for 20 min at 4uC. The supernatants were pipetted

into ultracentrifuge tubes and centrifuged at 220,0006g for 60 min

at 4uC. The membrane pellets were dissolved in ice-cold MCAC-

0 buffer (pH 7.4) containing 20 mM Tris, 500 mM NaCl, 1%

Triton X-100 (v/v) and 20% glycerol (v/v). The solubilized

membrane fraction containing CYP2D49 was loaded onto

a nickel-charged NTA-agarose column (HisTrap HP, 5 ml, GE,

USA) and purified by fast protein liquid chromatography (FPLC)

(AKTA purifier, GE, USA) according to the manufacturer’s

instructions. The same methods were used to express and purify

the six CYP2D49 variants (pCWOri-CYP2D49-V126A, V126F,

E222A, D306A, F486A and F488A).

In metabolic assays, the reduced CO-difference spectrum of

recombinant CYP2D49 (solubilized membrane fraction) was

measured spectrophotometrically according to the Cytochrome

P450 protocols [49]. The protein concentrations were determined

by the Bradford method. For CD spectra, all purified proteins

were further dialyzed in 100 mM potassium phosphate buffer

(pH 7.4) overnight.

Purified CYP2D49 protein was also used to immunize mice to

raise polyclonal anti-CYP2D49 antiserum according to the

protocol of a previous report [50]. Briefly, prior to a course of

immunization, approximately 0.2 ml of blood was collected from

the mouse to provide a source of pre-immune antiserum. One

week later, approximately 300 mg of purified CYP2D49 protein

emulsified in complete Freund’s adjuvant was injected sub-

cutaneously into the scruff of the mice. After the first injection,

booster injections were performed three times at two-week

intervals with the same antigen amount but using incomplete

Freund’s adjuvant (Sigma-Aldrich, St. Louis, MO, USA). The

mice were then exsanguinated. The blood was stored at 25uC
overnight and then centrifuged at 3,0006g for 10 min at 4uC. The
antisera were collected and stored at 280uC until use.

RNA isolation and real-time PCR
The total RNA from LMH cells and chicken tissues was

extracted using TRIZOL Reagent (Invitrogen, Carlsbad, CA,

USA) and the SV Total RNA Isolation System (Promega,

Madison, WI, USA), respectively. First-strand cDNA was synthe-

sized using random primers and M-MLV reverse transcriptase

(Promega, Madison, WI, USA). The primers used in real-time

PCR were as follows:

CYP2D49-F: 59-GGCAAAGGGTAAGGAGGCT-39;

CYP2D49-R: 59-TGACGGCATTGGTGTAGGG-39;

18s rRNA-F: 59-GAGAAACGGCTACCACATCC-39;

18s rRNA-R: 59-CACCAGACTTGCCCTCCAA-39;

b-actin-F: 59-GGCTGTGCTGTCCCTGTA-39;

b-actin-R: 59-CGGCTGTGGTGGTGAAG-39.

Real-time PCR was performed on an Opticon 2 real-time PCR

system (Bio-Rad, Hercules, CA), according to the manufacturer’s

recommendations. Reactions were performed in a 20-ml volume

containing SYBR Green I Dye. The cycling parameters were

94uC for 2 min, followed by 33 cycles of 94uC for 20 s, 55uC for

20 s and 72uC for 20 s. All samples were analyzed in triplicate and

the expression of the target gene was calculated relative to the

expression of 18s rRNA (or b-actin) according to the 22DCT (or

22DDCT) method [51].

Western blotting analysis
Protein samples from chicken tissues, S9 fractions of transiently

transfected Hela cells and induced bacteria were separated on

10% SDS-PAGE gels and then electrophoretically transferred to

PVDF membranes (PALL, Ann Arbor, MI, USA). The mem-

branes were blocked with freshly prepared TBST buffer (25 mM

Tris-HCl pH 7.5, 150 mM NaCl and 0.1% Tween-20) containing

5% nonfat dry milk for 1 h at room temperature. The membranes

were then incubated for 1 h with the primary antibody in TBST

buffer containing 1% milk, washed three times for 10 min with

TBST, incubated with the secondary antibody for 1 h at room

temperature and then washed for another 30 min with TBST

buffer. The bands were developed for detection with the

LumiGLOH Chemiluminescent Substrate Kit (CST, Beverly,

MA, USA) according to the manufacturer’s instructions. To

confirm the specificity of the anti-CYP2D49 antiserum, the

membranes were incubated with five anti-CYP2D49 antiserum

from five mice, respectively, that had been pre-adsorbed with

excess antigen (purified CYP2D49-Myc-His-Tag fusion protein) at

37uC for 1 h in TBST buffer containing 1% milk. The specific one

was used in the left experiments. When studying the enzymatic

properties of CYP2D49 variants in Hela cells, b-actin was co-

analyzed as the standard on each gel for the quantification of

CYP2D49 and its variants. Chemiluminescence was quantified

using the quantity tool of Image LabTM software (Bio-Rad,

Hercules, CA, USA). The dilutions employed for the antibodies

were as follows: polyclonal anti-CYP2D49 antiserum at 1:1500; b-
actin (C4) (sc-47778, Santa Cruz Biotechnology, Santa Cruz, CA,

USA) at 1:1000; c-Myc (9E10) (sc-40, Santa Cruz Biotechnology,

Santa Cruz, CA, USA) at 1:1000; HRP-rabbit anti-mouse IgG

(Gamma) (Invitrogen, Carlsbad, CA, USA) at 1:4000.
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Enzymatic kinetics and inhibition assays
Bufuralol is a typical substrate of the CYP2D isoforms. The

level of 19-hydroxybufuralol, a major metabolite of bufuralol, is

often measured as an index of CYP2D activity and/or levels [13].

The bufuralol 19-hydroxylation activity of CYP2D49 was de-

termined by incubating bufuralol with the purified CYP2D49

protein. The incubation mixture contained 100 mg of CYP2D49

protein (protein inactivated by heating for 10 min was used as the

control), 0.2 mM NADPH-P450 reductase, 0.1 mM cytochrome

b5, 0.02 mg/ml liposome (1, 2-dioleoyl-sn-glycero-3-phosphocho-

line, 1, 2-didodecanoyl-rac-glycero-3-phosphocholine and 1, 2-

diacyl-sn-glycero-3-phospho-L-serine mixture), 10 mM MgCl2, 2–

200 mM bufuralol and 100 mM potassium phosphate buffer

(pH 7.4) in a final volume of 250 ml. After a 3-min pre-incubation

at 37uC in a shaking water bath, the reaction was started by

adding NADPH and further incubated at 37uC for 10 min. After

the reaction was stopped by the addition of 20 ml of 60% HClO4

aqueous solution and vortexed, the reaction mixture was

centrifuged at 12,0006g for 5 min at room temperature. An

aliquot (20 ml) of the supernatant was subjected to HPLC analysis

using a Waters 2695 HPLC System (Waters Alliance, Milford,

MA) equipped with a Waters 2475 fluorescence detector. To

separate bufuralol and the bufuralol 19-hydroxylation product, the

samples were injected onto a Hypersil BDS C18 column

(4.66250 mm I.D; particle size 5 mm; Elite, Dalian, China)

equipped with an Analytical Guard Column (3.0620 mm I.D.;

particle size 5 mm; Phenomenex). The mobile phase consisted of

20 mM perchloric acid (pH 2.5) and acetonitrile (65:35, v/v). The

chromatograph was operated at a flow rate of 1 ml/min at room

temperature, with fluorescence detection at 252/302 nm (excita-

tion/emission). A quantitative analysis of the reaction products

was performed using the peak area.

Debrisoquine is a classical substrate for the CYP2D isoforms

and, similar to bufuralol, serves as a probe of CYP2D activity. The

amount of 49-hydroxydebrisoquine transform from debrisoquine is

used to judge the enzymatic activity of CYP2D isoforms [52]. The

incubation conditions were similar to those used with bufuralol

and the detection of 49-hydroxydebrisoquine was performed

according to a published method [21].

The experiments involving inhibition by quinidine were

performed by pre-incubating purified CYP2D49 protein for

5 min at 37uC with 100 mM bufuralol and varying concentrations

of quinidine. The reactions were then started by the addition of

NADPH. The reactions were incubated and the reaction products

were detected as described above.

Expression and enzymatic properties of CYP2D49
variants in Hela cells
The Hela cell line was selected as the recipient cell line because

of its high transient transfection efficiency and its low endogenous

levels of drug metabolism. Before transfection, the Hela cells were

grown overnight to 80% confluence in a 10-cm dish. For each

dish, 24 mg of the expression constructs (pcDNA-CYP2D49, one of

the six mutant constructs or the empty vector) was combined with

60 ml of Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA) in

3 ml of FBS-free DMEM. The transfections were performed in

6 ml of FBS-free DMEM for 6 h. The culture medium was then

replaced with 12 ml of fresh medium (10% FBS in DMEM).

Forty-eight hours after transfection, the cells grown in the culture

medium were rinsed with phosphate-buffered saline (PBS,

pH 7.4), scraped and collected in 100 mM potassium phosphate

buffer (pH 7.4). They were then sonicated with five pulses at 40 W

for 5 s at 10 s intervals. The S9 fractions containing the cytosol

and microsomes are frequently used in assays to measure the

metabolism of drugs and other xenobiotics. Therefore, the cell

homogenate was centrifuged at 9,0006g at 4uC for 20 min to

isolate the S9 fraction, which was then carefully transferred to

a clean tube for western blotting analyses or assays of enzymatic

activity. The protein concentration of S9 fractions were estimated

by the Bradford method.

The bufuralol 19-hydroxylation activity of each S9 fraction was

determined according to a published method [21] with a slight

modification. Briefly, in a brown glass conical tube (2 ml), a 250-ml
incubation mixture was prepared that contained 1.0 mg of

protein, 10 mM MgCl2, 1 mM NADPH and 100 mM bufuralol

in 100 mM potassium phosphate buffer (pH 7.4). After a 3-min

pre-incubation at 37uC,the reaction was started by adding

NADPH and further incubated at 37uC for 10 min. The detection

of 19-hydroxybufuralol was performed as described above.

Circular dichroism spectroscopy
All CYP2D49 variants were assayed at a concentration of 5 mM

in 100 mM potassium phosphate buffer (pH 7.4). The circular

dichroism (CD) spectra of these samples were obtained using the

Chirascan (Applied Photophysics Limited, Leatherhead, Surrey,

UK) at 4uC using a 1.0-nm bandwidth, 1-mm cell, 1.0-nm step,

0.5-s time-per-point and 1.0-min time internal. The thermal

denaturation was monitored at 222 nm by applying a thermal

gradient of 2uC/min over the range from 4 to 92uC. The value for
the buffer alone was measured and subtracted from the protein

spectra. The CD spectra of all of the proteins were acquired as

‘ellipticity’ in millidegrees h. The data were converted to the mean

residue ellipticity ([h] in degree cm2 dmol21), as described

previously [32]. The [h] at 222 nm of 233000 deg cm2 dmol21

was regarded as representing a 100% helical conformation. The

helical content of the proteins was estimated by dividing the value

of 233000 cm2 dmol21 by the [h] value at 222 nm [53].

Data analysis
The standard curve of 19-hydroxybufuralol was calculated using

a linear least-squares regression analysis (MicrosoftH Excel, 2003).

The estimations and statistical analyses of the enzyme kinetic and

inhibition parameters were performed using GraphPad PrismH
software, version 5. Significant differences were evaluated by

ANOVA (significance was defined as p,0.05).

The conformation of CYP2D6 was constructed based on the

crystallographic data of CYP2D6 (2F9Q) obtained from Protein

Data Bank (http://www.rcsb.org/pbd/) and drawn using Accelrys

ViewerLite Version 5.0.
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