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Machine learning detection of obstructive hypertrophic
cardiomyopathy using a wearable biosensor

Eric M. Green', Reinier van Mourik?, Charles Wolfus @', Stephen B. Heitner®, Onur Dur? and Marc J. Semigran’

Hypertrophic cardiomyopathy (HCM) is a heritable disease of heart muscle that increases the risk for heart failure, stroke, and
sudden death, even in asymptomatic patients. With only 10-20% of affected people currently diagnosed, there is an unmet need
for an effective screening tool outside of the clinical setting. Photoplethysmography uses a noninvasive optical sensor incorporated
in commercial smart watches to detect blood volume changes at the skin surface. In this study, we obtained
photoplethysmography recordings and echocardiograms from 19 HCM patients with left ventricular outflow tract obstruction
(oHCM) and a control cohort of 64 healthy volunteers. Automated analysis showed a significant difference in oHCM patients for 38/
42 morphometric pulse wave features, including measures of systolic ejection time, rate of rise during systole, and respiratory
variation. We developed a machine learning classifier that achieved a C-statistic for oHCM detection of 0.99 (95% Cl: 0.99-1.0). With
further development, this approach could provide a noninvasive and widely available screening tool for obstructive HCM.
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INTRODUCTION

Hypertrophic cardiomyopathy (HCM) is a heritable disease of heart
muscle characterized by hypertrophy without a systemic etiology.
Patients with HCM are at increased risk of heart failure, stroke and
sudden cardiac death.' Approximately 30-40% of HCM patients
have outflow tract obstruction (oHCM) at rest,” which is associated
with worse clinical outcomes.® Characteristic hemodynamic
abnormalities in patients with oHCM were noted in the earliest
descriptions of HCM* and have been observed using arterial
pressure tracings, acoustic phonography, and echocardiography.

Echocardiographic screening, the standard diagnostic for HCM,
estimates the prevalence of HCM at ~1:500 individuals.” However,
Medicare claims data identify only ~100,000 US patients
diagnosed with HCM—an implied diagnosis rate of ~16%.°
Consistent with these data, in a study of sudden death victims
diagnosed with HCM at autopsy, only ~20% had been clinically
recognized.” Efforts to use electrocardiography (ECG) or echocar-
diography to screen asymptomatic individuals for HCM have been
limited by test characteristics and cost.®° Further, the nonspecific
symptoms of HCM (exercise intolerance, dyspnea, and fatigue) can
delay referral of even symptomatic individuals for diagnostic
cardiac imaging studies. As a result, there is a demonstrable need
for approaches to properly direct potential unrecognized patients
for definitive diagnostic studies.

Photoplethysmography (PPG) is a noninvasive optical method
to detect blood volume changes in the microvascular bed at the
skin surface.'® This technology is the basis for clinical pulse
oximeters and has now been widely incorporated into widely used
commercial smartwatches for heart rate detection. We hypothe-
sized that computational analysis of PPG waveforms collected
from a wearable biosensor could distinguish between traces from
patients with oHCM and healthy individuals and thus provide a
potential approach to identify people with unrecognized oHCM.

RESULTS

Patient characteristics

Out of 21 patients in PIONEER-HCM, two were excluded from the
digital substudy because of sensor errors during data collection.
The 19 enrolled oHCM patients were 22-70 years old, and nine
(47%) were women (Table 1). Participants had left ventricular
hypertrophy (interventricular septal thickness 1.64 + 0.20 cm) with
severe resting left ventricular outflow tract (LVOT) obstruction
(peak pressure gradient 70.1 +42.8 mmHg). All were in sinus
rhythm at the time of sensor recording. The 64 healthy volunteers
enrolled in MYK-491-001 comprised the control group. They were
18-49 years old (38% women), and none had evidence of left
ventricular hypertrophy (interventricular septal thickness 0.83 +
0.13 cm), LVOT obstruction or other cardiovascular disease.

Analysis of PPG waveforms

Continuous PPG recordings revealed differences in pulse wave
patterns between control subjects and oHCM patients. In
individual beats (Fig. 1a), pulse wave traces from oHCM patients
often had a steeper initial rate of rise and contained multiple
peaks of variable intensity. When patterns were examined across
multiple beats, pulse wave traces from oHCM patients showed
more frequent irregularly shaped beats and greater variability
from beat to beat, including with respiration, than those from
healthy controls (Fig. 1b). A set of 42 morphometric features was
algorithmically extracted from all tracings (Fig. 1b) of which 38
differed significantly between groups of healthy volunteers and
oHCM patients (Fig. 1¢), including measures of systolic ejection
time, slope of the systolic upstroke, and respiratory variation.
These data suggest that, in aggregate, beats from oHCM patients
are morphologically distinct from those of healthy volunteers.

"MyoKardia, Inc., South San Francisco, CA, USA; *Wavelet Health, Mountain View, CA, USA and 3Oregon Health Sciences University, Portland, OR, USA

Correspondence: Marc J. Semigran (msemigran@myokardia.com)

Received: 6 November 2018 Accepted: 24 May 2019
Published online: 24 June 2019

Scripps Research Translational Institute

NP| nature partner
pJ journals


http://orcid.org/0000-0002-9579-4311
http://orcid.org/0000-0002-9579-4311
http://orcid.org/0000-0002-9579-4311
http://orcid.org/0000-0002-9579-4311
http://orcid.org/0000-0002-9579-4311
https://doi.org/10.1038/s41746-019-0130-0
mailto:msemigran@myokardia.com
www.nature.com/npjdigitalmed

E.M. Green et al.

Development of machine learning classifier to detect oHCM

We proceeded to develop an automated classifier that could
distinguish between recordings from oHCM patients and healthy
volunteers. Although significant differences were found in many
morphometric pulse features, the substantial beat-to-beat varia-
bility within individual traces (as illustrated in Fig. 1b) limited the
performance of classifiers based on averaging beats across a
recording. To best account for this heterogeneity, we used a multi-
instance classifier to calculate an “oHCM score” for each recording
(see Methods). After training and cross-validation, the model
achieved a C-statistic for oHCM detection of 0.99 (95% ClI:
0.99-1.0). At an operating threshold that optimizes the sum of
sensitivity (95%) and specificity (98%), the model correctly
classified 18/19 patients with oHCM and 63/64 healthy volunteers
(98% accuracy) (Fig. 1d). The final model thus achieved
discrimination between patients with oHCM and healthy controls.

DISCUSSION

In this study, we developed an automated machine learning
classifier to detect oHCM in PPG signals collected from a wrist-

worn optical biosensor in patients who had resting outflow tract
obstruction. This work builds on decades of investigation into
oHCM hemodynamics and integrates them with contemporary
advances in biosensor technology and machine learning to create
a noninvasive strategy to detect disease outside of a clinical
setting. Indeed, the algorithm combines features corresponding to
known hemodynamic abnormalities in HCM (e.g., rate of systolic
pressure rise and systolic ejection time) with morphological
features extracted from the PPG signal.

This proof-of-principle study provides motivation for more
comprehensive trials to better characterize the PPG signature of
oHCM and to explore other structural heart diseases. Strengths of
this study include its conduct at multiple sites by investigators
who were centrally trained to obtain high-quality PPG recordings
in a consistent manner, and the synchronization of PPG with
echocardiograms that were performed by centrally trained
sonographers and interpreted in a core laboratory. However, the
current study is limited by its small size and the fact that data were
collected from two separate studies. There were differences in
age, gender, and beta blocker utilization between cohorts,
although none were correlated with oHCM score in subgroup
analyses. Furthermore, the changes observed in oHCM are not
similar to previously described age-dependent changes in PPG
waveforms.!" Future studies incorporating larger cohorts are
required to study the impact of age and gender in oHCM PPG
signals more extensively. It also cannot be excluded that other
differences between the two studies could have potentially
affected the results of this analysis. Future studies comparing
demographically matched cohorts evaluated under the same
conditions will help resolve this uncertainty. Finally, the Leave-
One-Group-Out cross-validation method may overestimate per-
formance of the classifier, so further validation studies incorporat-
ing strictly separated training and testing datasets will be required
to confirm the initial results presented in this paper.

The increasing ubiquity of wearable devices with PPG sensors
increases the feasibility and potential impact of implementing an
algorithm to detect oHCM from PPG signals. The high rate of
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Table 1. Baseline characteristics
oHCM patients Healthy volunteers
Number enrolled 19 64
Age, mean (SD), years 57.5 (14.3) 28 (7.4)
Sex, # female (%) 9 (47) 24 (38)
Heart rate, mean (SD), bpm 72 (11) 59 (9)
Resting LVEF, mean (SD), % 73 (6.2) 63 (4.1)
Septal thickness, mean (SD), cm  1.64 (0.20) 0.83 (0.13)
Resting LVOT gradient, mean 70.1 (42.8) NA
(SD), mmHg
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Fig. 1 Differences in photoplethysmography tracings between oHCM patients and healthy volunteers. a Single beats extracted from the PPG
recordings and b 10 s continuous recordings illustrating differences in waveform morphology between two representative healthy subjects
and two oHCM patients. Markers indicate separation between beats detected by an automated algorithm. Example morphometric features
are shown as follows: (1) systolic ejection time, (2) slope of systolic rise, and (3) slope of diastolic decline. ¢ Plot of the magnitude and statistical
significance of the difference in feature values between healthy controls and oHCM patients for 42 analyzed pulse features. The 38 features
with Bonferroni-corrected p < 0.05 are colored black and the remaining four are shown in red. d Receiver-operator curve with marker
indicating the cutoff point used to derive the embedded confusion matrix
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undiagnosed oHCM, combined with the high cost of global
screening using current technology, underscore the need for
broadly available, inexpensive screening methods for this disease.
More effective identification of seemingly healthy individuals with
oHCM who may be at risk of developing cardiac morbidity would
be of significant benefit.

METHODS

Study design

The PIONEER-HCM digital substudy was conducted at five HCM referral
centers in the US as part of a phase 2 clinical trial to evaluate the effects of
treatment with mavacamten, a small molecule myosin inhibitor, in patients
with symptomatic oHCM (NCT02842242).'* The study enrolled 21 patients
ages 18-70 with HCM, NYHA class II-lll symptoms, and a resting LVOT
gradient greater than 30 mmHg. Patients in PIONEER cohort A (n=11)
were on no concomitant cardiac medications; in cohort B (n=10),
background beta blockers were permitted. Control data were obtained
from all healthy volunteers (n = 64) enrolled in the MYK-491-001 study to
evaluate MYK-491, a small molecule myosin activator (NCT03062956).
These participants were identified as free of cardiovascular disease by
history, physical examination, ECG, and echocardiography. Both trial
protocols were reviewed and approved by the relevant ethics committees.
An independent data monitoring committee regularly reviewed the study
data to help identify emerging safety or conduct issues. All patients
provided informed consent, and the studies were conducted in
accordance with the provisions of the Declaration of Helsinki and the
International Conference on Harmonization Good Clinical Practice
guidelines.

Data collection and analysis

Study subjects underwent resting echocardiography with standard two-
dimensional, M-mode, and Doppler imaging by trained sonographers.
Studies were read by a central laboratory (Brigham and Women'’s Hospital,
Boston, MA).

PPG signals were collected for 5 min (1-5 recordings per participant) at
rest using an investigational wrist-worn biosensor (Wavelet Health,
Mountain View, CA) at either the screening visit or on Day 1 of the study
prior to receiving investigational drug.'® PPG signals from all patients were
acquired by a single investigator at each site, who underwent centralized
training on a documented procedure that minimizes the impact of
differences in environmental factors including ambient light and
temperature. All devices ran identical firmware and signal processing
methods to obtain high-quality signals. Signals were transmitted by
Bluetooth to an iPad and uploaded to a cloud database for analysis.

Recordings were segmented into beats using an automated algorithm,
and a multi-instance classifier was trained to assign each recording an
oHCM score based on qualified beats (instances).™ Briefly, a set of 42
morphometric pulse features was extracted into a feature vector for each
beat. The multiple-instance learning via embedded instance selection
(MILES) method™ was used. It consists of (i) transforming feature vectors
from all beats in a recording into a single vector per recording and (ii)
fitting the resulting vectors with a support vector machine. For evaluation
of the final MILES model, we employed Leave-One-Group-Out cross-
validation with nested hyperparameter tuning,'® which in turn used 68-
fold cross-validation with random selection of training and testing cohorts
(70% testing/30% training). In summary, for each patient in the dataset, the
model was trained and tuned using all recordings except for that
patient’s."” The accuracy, sensitivity, specificity and area under the curve of
this model were evaluated.

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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