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The pandemic Escherichia coli sequence type 131 (ST131) carrying plasmid-mediated
colistin resistance mcr genes has emerged worldwide causing extraintestinal infections,
with lineages belonging to three major clades (A, B, and C). Clade B is the
most prevalent in animals, contaminating associated meat products, and can be
transmitted zoonotically. However, the blaCTX−M−15 gene has only been associated
with C2 subclade so far. In this study, we performed a genomic investigation of an
E. coli (strain S802) isolated from a kale crop in Brazil, which exhibited a multidrug-
resistant (MDR) profile to clinically significant antimicrobials (i.e., polymyxin, broad-
spectrum cephalosporins, aminoglycosides, and fluoroquinolones). Whole-genome
sequencing analysis revealed that the S802 strain belonged to serotype O25:H4,
ST131/CC131, phylogenetic group B2, and virotype D5. Furthermore, S802 carried
the clade B-associated fimH22 allele, genes encoding resistance to clinically important
antimicrobials, metals, and biocides, and was phylogenetically related to human, avian,
and swine ST131-H22 strains. Additionally, IncHI2-IncQ1, IncF [F2:A-:B1], and ColE1-
like plasmids were identified harboring mcr-1.1, blaCTX−M−15, and qnrB19, respectively.
The emergence of the E. coli ST131-H22 sublineage carrying mcr-1.1, blaCTX−M−15,
and qnrB19 in agricultural soil represents a threat to food and environmental safety.
Therefore, a One Health approach to genomic surveillance studies is required to
effectively detect and limit the spread of antimicrobial-resistant bacteria and their
resistance genes.

Keywords: acquired polymyxin resistance, emerging zoonotic E. coli, extended-spectrum β-lactamase, food and
environmental safety, genomic surveillance, mcr-1, multidrug-resistant, One Health

INTRODUCTION

The rapid spread of plasmid-mediated colistin resistance mcr genes has gained worldwide attention
as a critical public health issue, since colistin is a last resort antimicrobial used to treat severe
infections caused by multidrug-resistant (MDR) and extensively drug-resistant (XDR) bacteria
(Perez et al., 2016; Tsuji et al., 2019).
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Currently, epidemiological studies have shown that the spread
of colistin-resistant mcr-positive bacteria is not a concern
restricted to hospitals, but also represents a growing problem
involving environmental and food safety. In this regard, various
factors such as environmental sources, food-producing animals,
international travel, and food trade, have accelerated the
worldwide spread of mcr-type genes at the human-animal-
environment interface (Liu et al., 2016; Hassan and Kassem, 2020;
Johura et al., 2020).

In this context, the pandemic Escherichia coli sequence type
131 (ST131) carrying mcr-type genes has emerged causing
extraintestinal infections (Liu et al., 2018; Mamani et al., 2019;
Reid et al., 2019; Li et al., 2021). The complex subclonal structure
of ST131 elucidated three major clades, each associated with a
specific allele of the type 1 fimbrial adhesin gene (fimH), namely
clade A with fimH41, clade B with fimH22, and clade C with
fimH30 (Petty et al., 2014; Stoesser et al., 2016).

Most studies have focused on the ST131-H30 sublineage,
which is one of the leading causes of extraintestinal infections in
humans, including C2 subclade associated with the blaCTX−M−15
gene (Dahbi et al., 2014; Matsumura et al., 2015; Mamani et al.,
2019). In contrast, the most prevalent animal ST131 strains
belong to the ST131-H22 sublineage and can be transmitted
zoonotically, presenting a public health challenge (Liu et al., 2018;
Roer et al., 2019; Saidenberg et al., 2020).

Specifically, contamination of crops by critical priority
pathogens is of great concern, since these pathogens can also
contaminate vegetables for consumption (Cantas et al., 2013;
Araújo et al., 2017; Lopes et al., 2017; Reid et al., 2020;
Lopes et al., 2021), increasing the risk of human exposure to
antimicrobial-resistant bacteria, including mcr-positive strains.
Despite this, little is known about the occurrence of bacteria
carrying mcr-type genes in soils. Therefore, in this study,
we performed a genomic investigation of an mcr-1-positive
E. coli strain exhibiting an MDR profile to clinically significant
antimicrobials and isolated from agricultural soil in the light
of the One Health context that integrates human, animal, and
environmental health.

MATERIALS AND METHODS

Soil Sampling and Bacterial Isolation
During a surveillance study conducted between October and
December 2019 to monitor the presence of clinically significant
MDR Gram-negative bacteria in crops, 15 soil samples with
a history of cow manure use were collected at a depth of
∼5 cm from chicory (n = 3), kale (n = 3), mustard (n = 3),
parsley (n = 3), and chive (n = 3) crops on a farm in the
state of São Paulo (21◦00′36.0′′ S; 47◦27′00.0′′ W), Brazil. All
samples were stored at 4 ◦C and processed within 24 h. For
bacterial isolation, 1 g of soil was inoculated in Luria-Bertani
broth (Oxoid Ltd., United Kingdom) and incubated at 37 ◦C for
24 h. Subsequently, the cultures were streaked onto MacConkey
agar plates (Oxoid Ltd., United Kingdom) supplemented with
ceftriaxone (2 µg/ml) or colistin (2 µg/ml). Colonies were picked
from the selective plates, subcultured, and streaked to obtain pure

cultures. Bacterial identification was initially performed using 16S
rRNA gene sequencing (Weisburg et al., 1991).

Antimicrobial Susceptibility Testing and
Detection of Resistance Genes
Antimicrobial susceptibility testing was performed by disk
diffusion, VITEK 2 (biomérieux, France), and/or agar dilution
methods with interpretative criteria from CLSI guidelines [CLSI
(Clinical and Laboratory Standards Institute), 2020]. Colistin
minimum inhibitory concentration (MIC) was determined by
broth microdilution according to EUCAST1. Extended-spectrum
β-lactamase (ESBL) production was screened by the double-disk
synergy test (Jarlier et al., 1988). Additionally, mcr-type (mcr-
1 to mcr-9) and blaCTX−M-type (blaCTX−M−1, blaCTX−M−2,

blaCTX−M−8, and blaCTX−M−9 groups) genes were investigated
by PCR (Dallenne et al., 2010; Liu et al., 2016; Xavier et al., 2016;
Borowiak et al., 2017; Carattoli et al., 2017; Yin et al., 2017; Yang
et al., 2018; Wang et al., 2019).

DNA Isolation and Whole-Genome
Sequencing
For whole-genome sequencing (WGS), total DNA was extracted
from an overnight culture using the GenEluteTM Bacterial
Genomic DNA Kit (Sigma-Aldrich, United States) according
to the manufacturer’s instructions. Sequencing was performed
using the Illumina HiSeq 4000 (2 × 150 bp) platform
(Illumina, United States).

Data Processing, Assembly, and Genome
Analysis
A quality check of the raw sequencing data was performed
using the FastQC v.0.11.9 program2 and the reads were trimmed
with Trimmomatic v.0.39 (Bolger et al., 2014). The quality value
used for the base-calling program was Q = 20. In the next
step, de novo genome assembly was carried out with SPAdes
v.3.15.0 (Bankevich et al., 2012) and annotation was performed
with Prokka v.1.14.5 (Seemann, 2014). Sequence type, serotype,
FimH type, and clonotype were identified using MLST v2.0
(Larsen et al., 2012), SerotypeFinder v.2.0 (Joensen et al., 2015),
FimTyper v.1.0 (Roer et al., 2017), and CHTyper v.1.0 (Roer et al.,
2018), respectively. Antimicrobial resistance genes were detected
using ResFinder v.4.1 (Zankari et al., 2012) and Antibiotic
Resistance Gene-ANNOTation (ARG-ANNOT) v.4 (Gupta et al.,
2014). Metals and biocides resistance genes were analyzed by
BacMet v.2.0 (Pal et al., 2014). VirulenceFinder v.2.0 (Joensen
et al., 2014) and the Virulence Factor Database (VFDB) v.R5
(Chen et al., 2005) were used to detect virulence genes, whereas
virulence phylogroup was determined using the online Clermont
typing tool3.

Phylogenetic Analysis
For phylogenetic analysis, we selected the E. coli strain reported
in this study and 849 other strains representative of all clades

1www.eucast.org
2http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
3http://clermontyping.iame-research.center/
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(A, B, and C) of E. coli ST131. A minimum spanning tree was
constructed based on the MSTree v.2 algorithm and the wgMLST
scheme in Enterobase4. The tree was visualized with iTOL v.5.7
(Letunic and Bork, 2019).

Plasmid Assembly, Annotation, and
Typing
Putative plasmid contigs were assembled using plasmidSPAdes
v.3.15.0 (Antipov et al., 2016) and subjected to BLASTn analysis
followed by gap closure. Annotation was performed by the
Rapid Annotations using Subsystems Technology (RAST) server
(Aziz et al., 2008) and manually curated with Geneious
v.11.1.5 (Biomatters Ltd., Auckland, New Zealand). Plasmid
replicon types and multilocus sequence typing were determined
using PlasmidFinder v.2.1 and pMLST v.2.0 (Carattoli et al.,
2014), respectively.

Conjugation Assays
Conjugation assays were conducted using azide-resistant E. coli
C600 as recipient strain. Overnight cultures of donor and
recipient strains were mixed (ratio 1:1) and incubated for
18 h at 37 ◦C without shaking as previously described (Furlan
et al., 2020a). Transconjugants were selected using MacConkey
agar (Oxoid Ltd., United Kingdom) supplemented with sodium
azide (200 µg/ml) and ceftriaxone (2 µg/ml), or sodium azide
(200 µg/ml) and colistin (2 µg/ml), and confirmed by PCR for the
detection of mcr- and blaCTX−M-type genes as described above.

RESULTS

MDR mcr-1-Positive ESBL-Producing
E. coli Isolated From Agricultural Soil
In this study, the presence of a mcr-1-positive ESBL-producing
E. coli strain (named S802), identified by 16S rRNA gene sequence
analysis and pairwise genome comparison of average nucleotide
identity, was confirmed in one soil sample from the kale crop. In
addition, the E. coli strain S802 displayed an MDR profile, defined
as resistant to at least one antimicrobial of three or more different
categories (Magiorakos et al., 2012). The MDR profile of E. coli
S802 included resistance to colistin, penicillin, cephalosporins,
aztreonam, aminoglycosides, quinolones, tetracycline, and
chloramphenicol. In contrast, the strain displayed an
intermediary resistance profile to ampicillin/sulbactam,
remaining susceptible to piperacillin/tazobactam, amikacin,
and carbapenems (Table 1).

Identification of the Pandemic
Escherichia coli ST131 Lineage and
Phylogenetic Analysis
WGS revealed that E. coli strain S802 belonged to serotype
O25:H4 and phylogroup B2, known for including highly virulent
extraintestinal lineages. Strain S802 carried fimH22 allele and

4https://enterobase.warwick.ac.uk/species/index/ecoli

TABLE 1 | MICs of antimicrobials for mcr-1-positive ESBL-producing E. coli strain
S802 from agricultural soil.

Antimicrobials MIC (µg/ml)a

Ampicillin ≥256

Ampicillin/sulbactam 16/8

Piperacillin/tazobactam 2/4

Ceftazidime 32

Ceftriaxone ≥256

Cefotaxime ≥256

Cefepime 32

Aztreonam 16

Ertapenem 0,5

Imipenem 1

Meropenem 1

Gentamicin 64

Amikacin 2

Ciprofloxacin 8

Tetracycline ≥256

Chloramphenicol 32

Colistin 4

aMIC values indicating resistance are shown in bold.

was assigned to the clade B pandemic ST131/CC131 lineage
(Figure 1). In addition, the clonotype CH40-22 was determined.

Phylogenetic relatedness among 850 genomes of globally
reported E. coli ST131 strains (Figure 2A) assigned S802 to
a cluster comprising human E. coli ST131-H22 strains from
Spain, Netherlands, Germany, and Belgium; one avian strain
from Germany; and one swine strain from Spain. E. coli strain
S802 was most related to two strains isolated from humans in
Spain in 2010 (Figure 2B).

Wide Resistome Against Multiple
Antimicrobial Categories
In addition to the colistin resistance gene mcr-1.1, WGS
analysis showed that ESBL production in the S802 strain
was associated with the presence of the blaCTX−M−15 gene.
Furthermore, a wide resistome was detected encoding other
resistance determinants to β-lactams (blaTEM−1A, blaTEM−1B),
aminoglycosides [aac(3)-IIa, aadA1, aadA2b, aph(3′)-Ia, aph(3′′)-
Ib, aph(6)-Id], fluoroquinolones (qnrB19), sulphonamides (sul1,
sul2, sul3), trimethoprim (dfrA1, dfrA5), macrolides (mdfA),
phenicols (catA1, cmlA1), and tetracyclines (tetA), as well as
mutations in the quinolone resistance-determining region of
gyrA (Ser83Leu, Asp87Asn) and parC (Ser80Ile) (Table 2).

Genes predicted to confer tolerance to metals,
including copper (cueOR, cutACEF, pcoEABCDRSE),
silver (silESRCBAP), copper/silver (cusSRCFBA), mercury
(merRTPCADE), tellurium (tehAB, terY3Y2XY1W, terZABCDE),
tellurium/selenium/chromium (ruvB), nickel (nikABCDE),
nickel/cobalt/iron (rcnABR), cobalt/magnesium/manganese
(corAB), and zinc (zraP) were also identified.

Regarding biocides resistance, genes encoding efflux pumps,
transport modulators, and other proteins associated with
resistance to acridines (acrAEFS, tehAB, tolC), chlorhexidine
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FIGURE 1 | Worldwide distribution and sources of E. coli ST131-H22 carrying mcr-type, β-lactamase, and qnr-type genes at the human-animal-environment
interface. The figure was produced using data retrieved from Enterobase (http://enterobase.warwick.ac.uk/species/index/ecoli) and Pubmed
(https://pubmed.ncbi.nlm.nih.gov/) (blaTEM-types were not included in the figure).

FIGURE 2 | (A) Minimum spanning tree based on wgMLST of 850 worldwide distributed E. coli strains belonging to ST131. (B) Highlighted cluster containing E. coli
S802 (BioSample accession indicated in bold) and showing the fimH allele, source of origin, country, and collection year of closely related strains.

(cpxA), crystal violet (mdtABCEFGHKNOP, tehAB), ethidium
bromide (acrAEFS, sugE, tehAB, tolC), hydrochloric acid
(gadCEWX), hydrogen peroxide (cpxA, fetAB, sitABCD),
organic solvents (marRAB), quaternary ammonium compounds

(acrAEFS, cpxA, emrABEKRY, mdtABCEFGHKNOP sugE, tolC),
sodium deoxycholate (evgAS), and sodium dodecyl sulfate
(acrAEFS, emrABEKRY, mdtABCEFGHKNOP sugE, tolC) were
detected (Table 2).
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TABLE 2 | Genome features, resistome, and virulome of E. coli S802.

Featurea Chromosomeb pS802-MCR pS802-CTX-M pS802-QnrB

Size (bp) 4,963,667 (94 contigs) 285,390 162,792 3,041

GC content (%) 50.47 48.47 52.48 52.09

No. of genes 4,688 315 174 2

Inc group (pMLST) NA HI2 (ST4)-Q1 F [F2:A-:B1] ColE1-like

Resistome

Polymyxins mcr-1.1

β-Lactams blaTEM−1A blaCTX−M−15, blaTEM−1B

Aminoglycosides aac(3)-IIa, aadA1, aadA2b, aph(3′′)-Ib,
aph(6)-Id

aph(3′)-Ia, aph(3′′)-Ib, aph(6)-Id

Quinolones qnrB19

Sulphonamides sul1, sul2, sul3 sul2

Trimethoprim dfrA1 dfrA5

Macrolides mdfA

Phenicols catA1, cmlA1

Tetracyclines tetA tetA

Metals corAB, cueOR, cutACEF, cusSRCFBA,
nikABCDER, pcoCD, rcnABR, ruvB,
tehAB, zraP

merRTPCADE, pcoEABCDRSE,
silESRCBAP, terY3Y2XY1W,
terZABCDEF

merRTPCADE

Biocides acrAEFS, cpxA, emrABEKRY, evgAS,
fetAB, gadCEWX, marRAB,
mdtABCEFGHKNOP sugE, tehAB, tolC

qacE11 sitABCD

QRDR mutations gyrA (Ser83Leu, Asp87Asn), parC
(Ser80Ile)

Virulome chuA, cnf1, fyuA, gad, hlyCABD, hra,
ibeA, irp1, irp2, kpsE, kpsM II-K5,
ompT, papIBAHCDJKEFG, usp,
ybtAEPQSTUX, yfcV

cia, cvaABC/cvi, etsC, hlyF,
iroBCDEN, iss, iucABCD, iutA,
mchF, ompT, sitABCD, traT

aQRDR, Quinolone resistance-determining region. bNA, Not applicable.

Virulome
Virulome analysis of E. coli S802 revealed a diversity of virulence
factors, including chuA (outer membrane hemin receptor),
cia (colicin Ia), cnf1 (cytotoxic necrotizing factor), cvaABC/cvi
[colicin (microcin) V operon], etsC (putative type I secretion
outer membrane protein), fyuA (yersiniabactin receptor), gad
(glutamate decarboxylase), hlyCABD (α-hemolysin operon), hlyF
(hemolysin F), hra (heat-resistant agglutinin), ibeA (invasin of
brain endothelial cells), iroBCDEN (salmochelin operon), irp1-
2/ybtAEPQSTUX (yersiniabactin synthesis), iss (increased serum
survival lipoprotein), iucABCD/iutA (aerobactin operon), kpsE
(capsule polysaccharide export inner-membrane protein), kpsM
II-K5 (polysialic acid transport protein; group II capsule), mchF
(ABC transporter protein), ompT [outer membrane protease
(protease 7)], papIBAHCDJKEFG (P fimbriae operon), sitABCD
(iron and manganese transport system), traT (complement
resistance protein), usp (uropathogenic specific protein), and
yfcV (fimbrial protein) (Table 2). In this regard, E. coli S802 was
assigned to the virotype D5, based on the presence of the cnf1,
hlyA, ibeA, kpsM II-K5, and papGIII genes (Dahbi et al., 2014).

Plasmids and Horizontal Transfer
Three plasmids, named pS802-MCR, pS802-CTX-M, and pS802-
QnrB, were harbored by the S802 strain and carried mcr-1.1,
blaCTX−M−15, and qnrB19, respectively (Figure 3).

The pS802-MCR plasmid was 285,390 bp in length, containing
48.47% GC and 315 coding regions (CDSs), and belonged to
the HI2 (ST4) and Q1 incompatibility groups. Besides mcr-
1.1, this plasmid carried blaTEM−1A, aac(3)-IIa, aadA1, aadA2b,
aph(3′′)-Ib, aph(6)-Id, sul1, sul2, sul3, dfrA1, catA1, cmlA1, tetA,
merRTPCADE, pcoEABCDRSE, silESRCBAP, terY3Y2XY1W,
terZABCDEF, and qacE11 resistance genes (Table 2). Analysis
of the genetic context of mcr-1.1 revealed the presence of ISApl1
upstream and pap2 downstream of the gene. Moreover, pS802-
MCR showed a high nucleotide identity with other IncHI2
plasmids of E. coli strains isolated from animal, human, and
food in European and Asian countries, as well as with plasmids
of Salmonella Schwarzengrund strains isolated from poultry in
Brazil (Figure 4).

The pS802-CTX-M plasmid was a 162,792 bp IncF [F2:A-
:B1] plasmid, containing 52.48% GC and 174 CDSs. In addition
to the blaTEM−1B, aph(3′)-Ia, aph(3′′)-Ib, aph(6)-Id, sul2, dfrA5,
tetA, merRTPCADE, and sitABCD resistance genes (Table 2), the
ISEcp1-blaCTX−M−15-1orf477 transposition unit was identified
inserted in the transposon Tn2 truncated by IS26 in this plasmid.
Virulence genes, namely cia, cvaABC/cvi, etsC, hlyF, iroBCDEN,
iss, iucABCD, iutA, mchF, ompT, sitABCD, and traT, were also
carried on pS802-CTX-M. The pS802-CTX-M plasmid exhibited
a high nucleotide identity with IncF plasmids of E. coli strains
isolated from animal, human, and food in North American,
Asian, Australian, and European countries (Figure 5).
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FIGURE 3 | Overview of the plasmids (A) pS802-MCR, (B) pS802-CTX-M, and (C) pS802-QnrB carrying mcr-1.1, blaCTX−M−15, and qnrB19, respectively, in E. coli
S802.

Additionally, pS802-MCR and pS802-CTX-M harbored genes
involved in the replication (rep genes), partition/maintenance
(par genes), conjugation (tra, trb, trh operons), toxin-antitoxin
systems (higB/higA, hipB/hipA, hok/sok, relE/parE), and
inhibition of SOS response (psiAB). Conjugation assays
confirmed transfer of pS802-MCR and pS802-CTX-M from
E. coli S802 at frequencies of 4.25 × 10−6 and 5.32 × 10−3

transconjugants/receptor, respectively.
The pS802-QnrB was a small 3,041 bp ColE1-like plasmid,

containing 52.09% GC and only the qnrB19 and 1pspF
(truncated transcription activator) genes (Table 2). The qnrB19
gene was located in the conserved genetic context between
the sequence encoding the regulatory RNAII and the Xer-
mediated recombination site. The pS802-QnrB plasmid was
related to other ColE1-like plasmids of Enterobacterales isolated

worldwide at the human-animal-environment interface and
shared 70% query coverage and ∼99.5% nucleotide identity with
plasmids of the same incompatibility group of E. coli strains
isolated from poultry in Brazil (GenBank accession numbers:
KX452393.1 and KX452394.1), similarly to the IncHI2-IncQ1
plasmid in this study.

DISCUSSION

The emergence of clinically relevant bacterial strains in soils
is an underestimated public and environmental health problem
that requires attention. In this regard, mcr-positive E. coli
lineages from farming soil and agricultural soil have been
previously reported in China (Zheng et al., 2017) and Algeria
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FIGURE 4 | Comparison between IncHI2 plasmids. Plasmids of E. coli strains: plasmid unnamed (GenBank: CP015833.1) from a human in the United Kingdom;
plasmid: 1 (GenBank: LR882919.1) from a human in the Netherlands; pECJS-B60-267 (GenBank: KX254341.1) from a pig in China; pS802-MCR (GenBank:
MW495059.1) from soil in Brazil; pMCR_915_E1 (GenBank: MT929285.1), pMCR_1085_C1 (GenBank: MT929286.1), pMCR_1139_D1 (GenBank: MT929287.1),
and pMCR_170_D1 (GenBank: MT929288.1) from turkey meat in the Czech Republic. Plasmids of Salmonella Schwarzengrund strains: p280_12888 (GenBank:
CP045449.1) and p280_9355 (GenBank: CP045446.1) from poultry in Brazil. Matches with less than 70% identity and no matches appear as blank spaces.
Resistance genes to antimicrobials/biocides and metals are indicated in red and blue, respectively.
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FIGURE 5 | Comparison between IncF plasmids. Plasmids of E. coli strains: pAMPD02 (GenBank: CP058310.1) from a giant panda in China; 134q (GenBank:
CP023363.1) from a canine in Scotland; pSDJ2009-52F (GenBank: MH195200.1) and pCERC4 (GenBank: KU578032.1) from a human in Australia; plasmid
unnamed (GenBank: CP027485.1) from a human in the United States; pL65-2 (GenBank: CP034739.1) from a goose in China; p13P484A-2 (GenBank:
CP019282.1) from a pig in China; pVPS18EC0676-1 (GenBank: CP063726.1) from veal in the United States; pS802-CTX-M (GenBank: MW495061.1) from soil in
Brazil. Plasmid of Salmonella Kentucky: pCVM29188_146 (GenBank: CP001122.1) from poultry in the United States. Matches with less than 70% identity and no
matches appear as blank spaces. Resistance genes to antimicrobials and metals are indicated in red and blue, respectively, whereas virulence genes are indicated in
orange.
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(Touati et al., 2020), respectively. In Brazil, mcr-type genes from
soil samples have only been detected in total DNA or cultivable
microbiota so far (Oliveira et al., 2019; Furlan et al., 2020b; Dos
Santos et al., 2020). In this study, we report for the first time
the presence of an mcr-1-positive E. coli isolated from the soil
ecosystem in American countries, representing a potential risk of
human exposure to antimicrobial-resistant bacteria.

E. coli belonging to the ST131 pandemic high-risk clone
has been identified in human, animal, environmental, and food
samples (Figure 1). In addition, E. coli ST131 has been frequently
reported carrying clinically significant antimicrobial resistance
genes, such as mcr-types and/or ESBL genes (Rodrigues et al.,
2017; Reid et al., 2019), and associated with extraintestinal
diseases, mainly bloodstream and urinary tract infections (Liu
et al., 2018; Mamani et al., 2019; Reid et al., 2019).

Whereas E. coli ST131-H30 is the most prevalent sublineage
causing extraintestinal infections in humans (Dahbi et al.,
2014; Matsumura et al., 2015; Mamani et al., 2019), ST131-
H22 predominates in animals, contaminating associated meat
products, and can be transmitted zoonotically (Liu et al., 2018;
Roer et al., 2019; Saidenberg et al., 2020). Findings from our
phylogenetic analysis showed that avian, swine, and human
ST131-H22 strains were closely related, supporting results from
previous studies (Liu et al., 2018; Reid et al., 2019; Roer
et al., 2019; Saidenberg et al., 2020), and also included our
environmental strain in the same cluster as those strains
(Figure 2), highlighting their transmission at the human-animal-
environment interface.

Notably, IncF [F1:A2:B20] plasmids without blaCTX−M−15,

the most clinically relevant ESBL gene worldwide (Bevan et al.,
2017), and IncF [F2:A1:B-] plasmids with this gene are the most
frequently associated with the C1 and C2 subclades of ST131,
respectively (Johnson et al., 2016; Pitout and DeVinney, 2017).
In contrast, IncF [F2:A-:B1] without blaCTX−M−15 is commonly
detected in clade B (Reid et al., 2019; Flament-Simon et al., 2020).
Interestingly, we reported the presence of blaCTX−M−15 in clade
B of ST131 in this study (Figure 1). Analysis of pS802-CTX-M, an
IncF [F2:A-:B1] plasmid, revealed that the ISEcp1-blaCTX−M−15-
1orf477 transposition unit was inserted in a truncated Tn2
transposon, highlighting the role of the insertion sequence ISEcp1
for the mobilization of blaCTX−M−15 onto plasmids (Dhanji et al.,
2011; Zong et al., 2015).

Additionally, pS802-CTX-M harbored the ColV region,
frequently identified in avian pathogenic E. coli (APEC) and
associated with increased fitness and virulence of these strains
(Johnson et al., 2006). The presence of ColV plasmid in
E. coli strains isolated from humans can indicate evidence of
zoonotic transmission (Rodriguez-Siek et al., 2005; Liu et al.,
2018). As detected in the present study, ColV plasmids can
also carry multiple antimicrobial resistance genes, which is
clinically relevant due to the combination of virulence and
resistance determinants in a single mobile genetic element
(Flament-Simon et al., 2020).

Although the origin of the E. coli ST131-H22 high-risk
sublineage carrying the mcr-1.1, blaCTX−M−15, and qnrB19
genes was not investigated, cow manure used for soil fertilization
was the most likely source. In addition, other animal (e.g., wild

animal feces), human (e.g., sewage), and environmental
(e.g., contaminated irrigation water) sources could be involved in
the dissemination of clinically relevant bacterial strains (Beuchat,
2002; Cantas et al., 2013; Araújo et al., 2017).

The range of hosts and sources of the E. coli ST131-H22
sublineage, including soil detected here, supports a genetic
versatility and adaptation mediated by the gene content, which
includes genes encoding resistance to antimicrobials, biocides,
and heavy metals. In fact, the plasmids pS802-MCR and
pS802-CTX-M co-harboring resistance genes to antimicrobials,
biocides, and heavy metals were identified (Figures 3–5).
In this regard, heavy metals could come from sources such
as contaminated irrigation water, inorganic fertilizers, and
pesticides commonly used in agricultural practices, remaining in
the environment for long periods (Gimeno-Garcia et al., 1996;
Sipter et al., 2008; Osaili et al., 2016; Bhilwadikar et al., 2019).
Consequently, these compounds, as well as biocides, may act as
selectors of strains resistant to antimicrobials.

Finally, the presence of MDR pathogens displaying a broad
resistome in agricultural soil could lead to contamination
of vegetables and, since these foods are usually consumed
raw, the risk of human exposure to antimicrobial-resistant
bacteria with clinical interest increases (Reid et al., 2020;
Lopes et al., 2021). Although ingestion of these bacteria may
not immediately have a direct impact on health, colonization
by this pathway can contribute to the horizontal gene
transfer of antimicrobial resistance to the gut microbiome
(Maeusli et al., 2020). Thereafter, a potential threat to human
health would be associated with future endogenous infections,
mainly in immunosuppressed patients, in whom therapeutic
failure could occur.

CONCLUSION

The emergence of zoonosis-associated E. coli ST131-H22
carrying a broad resistome, including mcr-1.1, blaCTX−M−15,
and qnrB19, in agricultural soil represents a potential risk
of human and animal exposure to antimicrobial-resistant
bacteria and/or their resistance genes, posing a threat to
public and environmental health. Also considering the possible
contamination of vegetables for consumption from soil
pathogens, appropriate measures, such as the improvement of
agricultural practices, in addition to stricter regulations, need
to be taken. Therefore, a One Health approach is required
to effectively limit the spread of MDR bacteria and prevent
their health impacts.
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