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3Research Centre of the Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
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Abstract

Objectives. Identifying biomarkers causing differential SARS-CoV-2
infection kinetics associated with severe COVID-19 is fundamental
for effective diagnostics and therapeutic planning. Methods. In
this work, we applied mathematical modelling to investigate the
relationships between patient characteristics, plasma SARS-CoV-2
RNA dynamics and COVID-19 severity. Using a straightforward
mathematical model of within-host viral kinetics, we estimated key
model parameters from serial plasma viral RNA (vRNA) samples
from 256 hospitalised COVID-19+ patients. Results. Our model
predicted that clearance rates distinguish key differences in plasma
vRNA kinetics and severe COVID-19. Moreover, our analyses
revealed a strong correlation between plasma vRNA kinetics and
plasma receptor for advanced glycation end products (RAGE)
concentrations (a plasma biomarker of lung damage), collected in
parallel to plasma vRNA from patients in our cohort, suggesting
that RAGE can substitute for viral plasma shedding dynamics to
prospectively classify seriously ill patients. Conclusion. Overall, our
study identifies factors of COVID-19 severity, supports
interventions to accelerate viral clearance and underlines the
importance of mathematical modelling to better understand
COVID-19.

Keywords: COVID-19, plasma SARS-CoV-2 RNA, RAGE, SARS-CoV-2
kinetics, viral dynamics model

INTRODUCTION

Throughout the COVID-19 pandemic, the factors
leading to severe disease have been the subject of
intense study.1–4 Particular attention has been

paid to clinical and immunological characteristics
of severity, as dysregulated and dysfunctional
immune responses are characteristic of poor
outcomes.5,6 Viral loads measured by
nasopharyngeal swabs,7,8 bronchioalveolar
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lavage,9 saliva,10 and at autopsy11 have also been
investigated for their association with SARS-CoV-2
infectivity and COVID-19 severity. In that vein, we
have previously established that high plasma viral
RNA (vRNA) loads in acute infection courses are
tightly associated with fatal outcomes in
hospitalised patients with COVID-19.12

Additionally, Fajnzylber et al.4 have shown that
plasma viral load is associated with increased
COVID-19 severity and mortality. As measuring
SARS-CoV-2 viral load in the lower respiratory
tract requires invasive procedure (e.g. biopsies or
bronchoalveolar lavage), its applicability and
translatability are greatly limited when compared
to plasma viral load that can be easily obtained
from a blood draw. However, the dynamics of
vRNA in the plasma and their relationships with
key immunological markers and COVID-19
outcomes remain poorly characterised.

In addition to experimental and clinical studies,
mathematical and computational modelling have
contributed to furthering our understanding of
SARS-CoV-2 viral dynamics, COVID-19 severity
and treatment/vaccine regimens.13–15 A classical
approach of viral dynamics, the target-cell limited
model, has previously been used to establish the
kinetics of other respiratory viruses including
influenza,16–20 SARS-CoV20 and RSV,21 in addition
to other virus types. In recent studies, this model
and its extensions have quantified key rates
of SARS-CoV-2 kinetics,13,22–25 including the rate
of viral shedding. The association with viral kinetics
in the plasma, which are potentially distinct from
those in the lungs, and COVID-19 outcomes
remains to be delineated. In this study, we address
this limitation by applying mathematical modelling
to establish potential relationships between plasma
SARS-CoV-2 RNA kinetics and COVID-19 outcomes
for hospitalised patients.

We have recently reported that high levels of
vRNA and markers of tissue injury26 (e.g. the
receptor for advanced glycation end products
(RAGE)),27 a marker of lung damage, and
angiopoietin-2 (Ang-2),28 a marker of endothelial
dysregulation and sepsis, at specific days
postsymptom onset are leading indicators of severe
disease burden and mortality.12 To understand
the connection between patient characteristics,
COVID-19 severity and plasma vRNA dynamics,
we collected serial plasma samples from
hospitalised patients and quantified SARS-CoV-2
RNA, RAGE and Ang-2 levels.12 Using a simple and
well-established mathematical model of viral

dynamics,16,29 we estimated model parameters
using a quantitative framework to investigate the
relationship between plasma viral dynamics,
particularly plasma SARS-CoV-2 viral clearance rates,
markers of severity and outcomes in patients
hospitalised with COVID-19. Our results showed key
differences in plasma vRNA kinetics among patient
cohort subgroups. These include an increase in
peak viral loads with increases in disease severity
and mortality and, crucially, a marked decrease in
the rate of viral clearance associated with COVID-19
severity in hospitalised patients. Furthermore,
plasma SARS-CoV-2 RNA kinetics were found to be
highly correlated with plasma RAGE concentrations,
suggesting that RAGE, an important mediator of
pulmonary inflammatory responses,30 is a surrogate
marker for both viral dynamics in the plasma and
COVID-19 shedding that are predictive of severe
COVID-19. This analysis highlights that serial vRNA
samples can be used to distinguish COVID-19
severity. Together, our results emphasise the
importance of quantitative modelling for
understanding and predicting markers of COVID-19
severity with high significance to clinical
translation.

RESULTS

Estimated SARS-CoV-2 RNA viral loads AUC
predicts severity and death

Viraemia AUC (both N and E transcripts) were
inferred in a multiple logistic regression to test
prediction of both severity and death. A critical
form of COVID-19 was independently predicted by
AUC viraemia along with age, sex and Ang-2 AUC
(Figure 1a). For both transcripts, we found an
approximately fivefold increase in the risk of
critical disease for every log10 viraemia AUC unit,
and a 10-fold increase for log10 unit increment of
Ang-2. Above a threshold of 10 and 9 log10

copies/mL of plasma AUC viraemia (for N and E,
respectively), higher rates of critical COVID-19
were observed (Figure 1b). The risk of death
because of COVID-19 was also increased by AUC
viraemia along with age and Ang-2
AUC (Figure 1c). Above a threshold of 16 and 14
log10 copies/mL of plasma AUC viraemia (for N
and E, respectively), a higher risk of death was
observed (Figure 1d). Overall, estimating AUC
viraemia was proven efficient to predict COVID-19
outcome, with a fourfold increased risk in severity
and a fivefold increased risk of death when AUC
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viraemia was above the defined thresholds
(Figure 1e), whatever the target sequence
analysed as both measures strongly correlated
together (r = 0.67, P < 0.0001).

Mathematical modelling successfully
predicts plasma SARS-CoV-2 RNA viral loads

Given the relationships established above, we next
sought to quantify, validate and predict the
dynamics of SARS-CoV-2 RNA in the plasma using
a simple mathematical model (Equation 1). To
assess the ability of our model to predict plasma
vRNA kinetics of hospitalised COVID-19 patients,
we first fit V0, T0, p and dV to average plasma
vRNA concentrations in the full cohort using non-
linear least squares (Methods and Figure 2b).
Across model predictions in the full cohort and in
each of the subgroups, p and T0 were found to
remain consistent, suggesting that differences in
viral kinetics across groups could be explained
entirely by differences in viral inoculation and
clearance rates. We then fixed T0 and p in the
remaining analyses (parameter values see Table 1)
and estimated the population parameters (i.e. the
initial viral load (V0) and clearance rate (dV )) for
each subgroup using a non-linear mixed-effects
model in Monolix (see Methods). Afterwards, the
95% confidence intervals of (V0) and (dV ) for
each population were derived from an estimation
of the Fisher Information Matrix using R 4.2.1 and
we sampled 100 pairs of the parameters dV and
V0 on the basis of their uncertainty distribution
using Simulx 2023R2 to compute the 95%
confidence bands around predicted viral load
curves.

As described in the Methods, we also tested
whether age and/or sex should be included as
covariates in our model estimates by performing
correlation tests between these factors and the
model estimates of dV . These analyses suggested
that age should be a covariate of the elimination
rate dV in the female and severe COVID-19 groups
(t-statistic = �2.24, P-value of 0.03 and t-statistic =
�1.29 with P-value of 0.01, respectively), and sex
should be retained in the estimation of dV in the
full cohort (t-statistic = �2.81 and P-value of 0.01).
All other correlation tests indicated that both
factors age and sex should be removed from the
elimination rates in other subcohorts with P-value
larger than 0.05. However, as the correlation test
used the individual data rather than means within
each subgroup, these t-statistics may introduce

inaccuracies because of the low number of data
points for each patient. Thus, we ultimately opted
not to include any covariates in our parameter
estimates.

Our results showed that our simple viral
dynamics model can reproduce the plasma vRNA
dynamics of the entire population as well as each
subgroup (Figure 3a–h). It is important to note
that as we focussed on modelling plasma viral
RNA loads and not viral production in the lungs,
our model’s predictions captured delays in the
emergence of viral RNA in plasma.

In the full cohort, our results revealed a
decline in plasma vRNA concentrations between
the LOD and LOQ after DSO14, except for a
noticeable increase in viral load at DSO22, which
was particularly evident in critically ill and
deceased patients (Figure 3f and h). Interestingly,
the male subcohort showed marginally higher
estimated viral concentrations with more
variability than the female subcohort (Figure 3b
and c). Regarding COVID-19 severity, our findings
suggest that viral concentrations tended to be
increased and exhibit more fluctuations with
increasing disease severity. For example, critically
ill patients exhibited the highest estimated
plasma vRNA loads and the greatest variability.
On the contrary, the viral kinetics of moderate
patients showed slight variations between the
LOD and LOQ after the first detected time point,
whereas severely ill patients were predicted to
have slightly higher viral loads, albeit with
delayed recorded viral loads (Figure 3d–f). Lastly,
survivors tended to have lower plasma vRNA
concentrations that dipped below the LOQ after
DSO14, while deceased patients exhibited
relatively high and volatile viral loads that
remained above the LOQ throughout our
sampling period (Figure 3g and h). Together,
these results support the observation that the
rate of viral shedding (dv) is a primary driver of
differences in plasma SARS-CoV-2 RNA kinetics
(Table 2).

Differences in SARS-CoV-2 RNA elimination
kinetics distinguish COVID-19 severity

By comparing the viral dynamics of the subcohorts
classified by patient sex, COVID-19 severity, and
COVID-19 outcomes, we gained further insight
into how each of these factors differentiated
plasma vRNA kinetics. Our model predicted that
female patients had lower peak viral loads and a
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(b)(a)

(d)(c)

(e)

Figure 1. Relationships between plasma SARS-CoV-2 RNA probes, patient characteristics, and COVID-19 severity and outcomes. (a) Forest plot

showing predictors (y-axis) of critical condition because of COVID-19 by logistic regression. Either measures of E (blue) or N (red) transcripts AUC

were included in the model. Variables effects were estimated as log10 of the odd ratios (x-axis). (b) ROC curves showing the ability of N and E

transcripts AUC measures to predict severity. The thresholds of 9 and 10 log10 copies/mL AUC for E and N, respectively, showed a high specificity in

predicting severity. (c) Forest plot showing predictors (y-axis) of death because of COVID-19 by logistic regression. Either measures of E (blue) or N

(red) transcripts AUC were included in the model. Variables effects are estimated as log10 of the odd ratios (x-axis). (d) ROC curves showing the

ability of N and E transcripts AUC measures to predict death. The thresholds of 14 and 16 log10 copies/mL AUC for E and N, respectively, showed a

high specificity in predicting death. (e) Correlation between E and N transcripts AUC according to severity (colours) and death (filled or open circles).

Dotted line represents predictivity thresholds for death and severity. Undetectable viraemia during the period (AUC) are plotted at 0.
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plasma viral RNA clearance rate approximately
1.4-times higher than male patients (Figure 4a
and Table 2). However, the 95% confidence bands
overlapped, indicating that we could not
statistically significantly distinguish the dynamics
of viral elimination between male and female
patients. Differences in SARS-CoV-2 RNA elimination
rates were found to be pronounced when patients
were grouped according to COVID-19 severity and
outcomes. In the moderate group, plasma viral
elimination was predicted to be about 1.5-fold
higher than in the severe group whose
elimination rate was approximately fourfold
higher than in the critical group (Figure 4b and
Table 2). Although higher initial viral inoculation
was predicted for the moderate group, rapid viral
elimination can effectively control viral
concentrations in the host, driving down the viral
load curve with lower maximum concentrations.
As shown in Figure 4b, the confidence intervals
around the three curves overlap before the
maximum viral load is reached because of similar
initial concentrations, whereas the significant
differences in elimination rates make the viral

elimination patterns distinguishable thereafter.
Plasma vRNA dynamics and viral clearance rates
were particularly distinct when comparing COVID-
19 survivors with those who did not survive the
disease (Figure 4c). Among all cohorts, the
deceased group was predicted to have the lowest
initial viral concentrations and the slowest rate of
viral clearance, all while demonstrating the
highest degree of variability. Although the
predicted viral load curve of deceased patients
started from a low initial inoculum, its rapid
acceleration caused it to surpass the viral load
curve of the survivors and further extended their
peak levels because of slow viral clearance. In
contrast, the initial viral concentration of survivors
was higher than that of nonsurvivors, and
clearance rates were approximately 3.5-fold faster
in COVID-19 survivors, resulting in an earlier peak
with lower maximum viral concentrations and a
more rapid decline in viral concentrations. This
suggests that plasma SARS-CoV-2 RNA elimination
kinetics can be used to establish the relationship
between plasma vRNA concentrations and disease
severity.

(b)(a)

Figure 2. Graphical descriptions of model and parameter estimation workflow. (a) Target cell limited model (Equation 1) to predict the dynamics

of target (T ) and infected (I) cells and free virus (V ). Target cells become infected at rate β to produce infected cells that die at rate dI . Each

infected cell releases p virions and dies at rate dV . See Methods for complete model description. (b) Methodological approach to estimating viral

clearance rates in hospitalised COVID-19 patients. 1. Data were collected as described in the Methods. Plasma vRNA loads below the limit of

detection (LOD = 13 copies/mL) were set to 34 copies/mL i.e. half the limit of quantification (LOQ = 68 copies/mL) and measurements between

13 and 68 copies/mL were set to the LOQ (see Methods). 2. Samples were separated into subgroups according to patient sex, disease severity

and disease outcome. Data were then averaged in each subgroup and the full cohort at each day of symptom onset. 3. Model parameters were

then estimated as followed: a. Our model characterising the interactions among target cells, infected cells, and virus was developed (see panel 1).

2. β and dI were fixed to previously estimated values.13 3. p, dV and T0 were estimated using non-linear least squares and their values were fixed

for the entire cohort. 4. V0 and dV were then estimated in each subgroup using non-linear mixed-effects modelling.
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Plasma viral RNA loads are correlated with
RAGE concentrations

As we found a link between the area under
plasma SARS-CoV-2 RNA curve, and RAGE and
Ang-2 AUC with severity (Figure 1e), we probed
whether any relationship existed between the
kinetics of predicted plasma vRNA loads and these
two markers of lung tissue insult. We
therefore quantified the correlation between
plasma SARS-CoV-2 RNA, and RAGE and Ang-2
concentrations. In the full cohort, our results
showed that average plasma SARS-CoV-2 loads
were positively correlated with average RAGE
concentrations at the 5% significance level
(Table 3, Figure 5 for the full cohort and COVID-
19 severity, and Supplementary figure 2 for the
results according to sex and COVID-19 outcome),
whereas no relationship was found between
plasma vRNA loads and Ang-2 in the full cohort
or in any subgroup (see Supplementary table 3
and Supplementary figure 3).

The strongest correlation was found between
RAGE and plasma SARS-CoV-2 RNA in the severe
subgroup, with a correlation of 0.78 (P-value of
1.00 × 10�3). We also found a strong association
between viral load and RAGE levels in the critical
group and among male patients, with correlation
coefficients of around 0.7 (P-values < 0.05). This
relationship was found to be moderate in
survivors (r = 0.46, P-value = 7.03 × 10�2), while
no significant relationship was found between

average SARS-CoV-2 RNA loads and RAGE
concentrations in the moderate and deceased
groups. These results reveal important insights
into the mechanisms underlying COVID-19
pathogenesis and the potential use of RAGE as a
prognostic biomarker in severe and critical cases.

By appropriately adjusting RAGE levels to match
plasma vRNA load ranges, we visualised their
correlations by comparing RAGE levels over time
versus predicted viral load curves for the entire
cohort as well as for each subgroup (Figure 5 and
Supplementary figure 2). In the full cohort, our
results showed that RAGE concentrations in the
first 20 days after symptom onset exhibited similar
elimination rates to predicted plasma vRNA loads,
but that they remained elevated beyond DSO20,
decreasing the measured correlation between
plasma vRNA and RAGE concentrations over the
full 30 days considered in our analyses (Figure 5a).
This pattern was particularly pronounced in the
moderate group (Figure 5b), resulting in
the lowest correlation between vRNA and RAGE.
In contrast, mean RAGE concentrations in the
severe and critical groups were found to be highly
correlated with predicted plasma vRNA curves
throughout the first 30 days after symptom onset
(Figure 5c and d).

DISCUSSION

Establishing the factors affecting the
pathophysiology driving COVID-19 severity is of
high clinical importance.5 We have previously
reported that plasma vRNA concentrations at
fixed days after symptom onset are an early
predictor of COVID-19 mortality.12 Here, we used
mathematical modelling based on serial plasma
viral RNA measurements from hospitalised
patients to establish differences in plasma vRNA
kinetics within patient subgroups characterised
according to patient sex, COVID-19 severity and
disease outcome.

We first evaluated whether SARS-CoV-2 plasma
viraemia could predict severity and death. Using
sequential measures of viraemia, we calculated
AUC for both N and E transcripts and confirmed
the strong correlation between these two
measures, as we previously reported.12 AUC
viraemia efficiently predicted COVID-19 outcome,
with a fourfold increased risk in severity and a
fivefold increased risk of death when AUC
viraemia was above the defined thresholds. These
results add to the growing body of literature

Table 1. Model parameters and estimates

Parameter Description Value (units) Reference

β Viral infectivity rate 0.18 (1/day × 1/

log(copies/mL))

Jenner et al.

(2021)

dI Rate of infected cell

death

0.1 (1/day) Jenner et al.

(2021)

p Lytic viral

production rate

420 (1/day × log

(copies/mL))

Jenner et al.

(2021)

dv Rate of plasma

vRNA shedding

– Fit (see

Table 2)

T(0) Initial number of

target cells

1.27 (109 cells) Fit

I(0) Initial concentration

of infected cells

0 (109 cells) Fixed

V(0) Initial plasma vRNA

load

– Fit (see

Table 2)

Target-cell limited model parameters, their definitions and values. All

fit parameters were estimated within the full cohort, except for dv
which was estimated within each subgroup (see Methods and Table 2

for full results).
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indicating that detectable levels of SARS-CoV-2
transcripts in plasma are associated with COVID-19
severity.4,31–34 Recent studies reported that

infectious virus is usually not recovered from the
plasma of viraemic SARS-CoV-2 infected
individuals,31,35 suggesting that detection of viral
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Figure 3. Mathematical model predicts plasma vRNA dynamics in hospitalised COVID-19 patients. Plasma vRNA kinetics predicted by fitting a

basic viral dynamics model (Equation 1) and estimating initial viral loads (V 0ð Þ) and viral clearance rates (dV ) using non-linear mixed-effects

modelling in (a) the full cohort, (b) female patients, (c) male patients, (d) the moderate patient group, (e) the severe patient group, (f) critical

patients, (g) survivors and (h) deceased patients. (a–h) Solid lines, model-predicted vRNA concentrations using population parameters; error bars,

standard errors of the mean(calculated from the raw data) at each time point; dashed dark grey line, level of quantification (LOQ). Dashed light

grey line, level of detection (LOD). The coloured areas are the confidence bands for each predicted viral load curve.

Table 2. Plasma vRNA shedding rates distinguish COVID-19 severity in hospitalised patients

Group Initial viral load (V0, log(copies/mL)) 95% CI of V0 Viral decay rate (dV , (1/day)) 95% CI of dV

Full cohort 1.47 × 10�6 [4.06 × 10�7, 5.30 × 10�6] 2.01 [1.79, 2.26]

Female 2.43 × 10�6 [5.13 × 10�7,1.15 × 10�5] 2.48 [2.07 2.97]

Male 1.14 × 10�6 [2.46 × 10�7, 5.27 × 10�5] 1.74 [1.49, 2.03]

Moderate 2.14 × 10�5 [7.67 × 10�6, 5.95 × 10�5] 4.50 [4.03, 5.03]

Severe 4.18 × 10�9 [5.72 × 10�10, 3.06 × 10�8] 2.96 [2.43, 3.60]

Critical 1.82 × 10�7 [7.65 × 10�9, 4.33 × 10�6] 1.12 [0.84, 1.51]

Alive 2.88 × 10�6 [8.43 × 10�7, 9.83 × 10�6] 2.55 [2.29, 2.84]

Deceased 9.24 × 10�10 [1.02 × 10�10, 8.39 × 10�9] 0.74 [0.54, 1.02]

Plasma viral RNA elimination kinetics were estimated within subgroups defined by sex, disease severity and disease outcome using a non-linear

mixed-effects model. We estimated distinct differences in dv values according to patient sex and COVID-19 severity. Notably, a large decrease in

viral shedding rates was observed between survivors and nonsurvivors. Shading distinguishes segregating subgroups (e.g. female and male).
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RNA in plasma likely results from the translocation
of viral products from the lungs into the
blood, rather than from the systemic replication
of SARS-CoV-2. Hence, single viral load measures,
but more importantly, total exposure as measured
by AUC in our study, are likely to reflect the
degree of lung insult, which may explain their
positive predictive values for disease severity.

In support of this model, by examining the
relationships between plasma viral RNA
concentrations and two immunological markers of
lung tissue insult, we found a positive correlation
between plasma viral load and RAGE
concentrations. In particular, RAGE levels were
strongly correlated with plasma vRNA
concentrations and viral kinetics in the severe and
critical subgroups. In contrast to our AUC results

(a)

(c)

(b)

Figure 4. COVID-19 severity is characterised by differences in plasma vRNA clearance rates. Plasma vRNA kinetics predicted by fitting our basic

viral dynamics model (Equation 1) and estimating viral clearance rates (dV ) according to patient sex, COVID-19 severity and disease outcomes.

Predicted and observed viral loads for (a) female and male patients, (b) patients grouped according to COVID-19 severity and (c) survivors and

deceased patients. (a–c) Solid lines: predicted plasma vRNA concentrations. The coloured areas are the confidence bands for each predicted viral

load curve. The solid circles indicate the average viral concentrations at each DSO for the corresponding groups.

Table 3. Correlation between average plasma vRNA and RAGE

concentrations

Group Pearson’s correlation P-value

Full cohort 0.63 1.10 × 10�3

Female 0.62 8.20 × 10�3

Male 0.72 1.10 × 10�4

Moderate 0.46 7.03 × 10�2

Severe 0.78 1.00 × 10�3

Critical 0.68 2.20 × 10�4

Alive 0.54 7.30 × 10�3

Deceased 0.37 1.63 × 10�1

Average plasma viral RNA and RAGE were calculated within subgroups

defined by sex, disease severity and disease outcome for each DSO.

Correlation coefficients were calculated based on average plasma viral

load and RAGE concentrations at each DSO (see Methods). The

corresponding results for Ang-2 are provided in Supplementary table 3.

Shading distinguishes segregating subgroups (e.g. female andmale).
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(Figure 1), we found no correlation between Ang-2
concentrations and vRNA AUC. While both RAGE
and Ang-2 are markers of lung tissue insult, they
relate to different damages: RAGE is associated with
acute alveolar epithelial injury while Ang-2 relates
to endothelial damage. Our model suggests that
the source of plasma vRNA more likely stems from a
breach of the alveoli rather than of the blood
vessels supplying them. This also suggests a link
between the higher risk associated with plasma
viraemia and the high expression of emergency
pathways of alveolar regeneration expressed in
autopsied lungs post-COVID.11

By comparing the estimated viral shedding
patterns of the entire cohort and the cohort
subgroups, our results indicated that viral
clearance rates drove heterogeneous
viral dynamics. Moreover, plasma viral kinetics,
and particularly the plasma vRNA elimination rate,
were predicted to differ depending largely on
severity and outcome of COVID-19. Notably,
increases in severity and mortality were found to
be accompanied by a significant decrease in viral

clearance rate and higher peak viral loads. More
specifically, in severe patients, viral clearance
dropped to one-fourth that of moderate patients.
Furthermore, viral clearance was more than three
times faster in survivors than in deceased patients.
Interestingly, female patients were found to have
higher plasma viral elimination rates than male
patients, which may be one mechanism behind
lesser severities seen in women. Taken together,
our results suggest that plasma viral RNA kinetics,
and particularly the rate of viral shedding, is
associated with COVID-19 severity. Furthermore,
given the connection between RAGE and plasma
SARS-CoV-2 kinetics (Figure 5), RAGE could be
used as a proxy measure for the plasma kinetics of
SARS-CoV-2 RNA concentrations to prospectively
evaluate COVID-19 severity.

A limitation of our study is the use of average
plasma vRNA per day of symptom onset to estimate
viral dynamics and shedding rates within each
subgroup. This approach is simple to obtain but is
insufficient to fully characterise dispersion within
the data and may be affected by data sparsity,

(b)(a)

(d)(c)

Figure 5. Average RAGE concentrations are positively correlated with average plasma vRNA loads. Average RAGE concentrations were found to

be associated to predicted plasma viral loads. Viral load and RAGE concentrations for (a) the entire cohort, (b) the moderate patient group,

(c) severe patients and (d) the critical group. (a–d) Solid lines: predicted plasma vRNA concentrations. Dots: average RAGE data derived from

clinical data. Error bars: standard error at each time point calculated from the raw data.
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especially for DSOs with few patient observations
(e.g. less than three). Alternative approaches could
include bootstrapping to artificially densify data
and fitting multiple replicate samples using non-
linear mixed-effects models. This can be very
computationally taxing and introduces additional
noise, so we opted here to instead work directly
with the raw data. Furthermore, although our
approach to undetectable and unquantifiable
plasma vRNA data reduced data information loss, it
slightly increased average viral loads and decreased
the standard deviation per DSO. Moreover, our
target-cell limited model only described the
temporal relationship between target cells,
infected cells and SARS-CoV-2 virus without
considering the impact of antibodies and immune
responses. Future work should consider variables
that are highly correlated with disease severity (see,
for example, Jenner et al. 202113) to provide a more
comprehensive picture of their interactions with
plasma vRNA shedding rates.

Our analyses provide further strong evidence that
viral clearance rates distinguish COVID-19 severity,22

which is critical for identifying at-risk populations.
Our results suggest that treatments acting to
accelerate viral clearance as part of a
multidimensional therapeutic approach may
provide benefit to hospitalised patients if
administered before DSO 4 according to the
predicted plasma vRNA load curve of the moderate
group. Furthermore, our model’s predictions
support early and serial testing of plasma vRNA
loads to better assess the likelihood of COVID-19
severity. Importantly, our results support the use of
more easily obtainable RAGE concentrations as a
suitable surrogate of plasma viral load to
distinguish severe COVID-19 patients. This study
demonstrates the importance of assessing
immunovirological dynamics in COVID-19 and the
role of mathematical modelling to quantify key
drivers of these kinetics.

METHODS

Study cohort and cohort subgroups

As described previously,12 our cohort includes individuals
with symptomatic infection and a positive SARS-CoV-2
nasopharyngeal swab PCR hospitalised with COVID-19 at
either the Centre Hospitalier de l’Université de Montréal
(CHUM) or the Jewish General Hospital (JGH) in Montréal,
Canada and enrolled in to the Québec COVID-19 biobank.36

Samples were collected at recruitment into the full cohort
and at hospitals days 0, 2, 7, 14 and 30. Samples were

collected if blood was otherwise required for clinical
purposes within a 48-h window of the requested time
points. Following discharge, follow-up visits were planned
at days 30, 90, 180, 365, 545 and 760. COVID-19 severity (i.e.
moderate, no oxygen support; severe, oxygen support with
low flow nasal cannula; or critical, requiring oxygenation
by high flow nasal canula, non-invasive or invasive
mechanical ventilation) was assessed over the course of
hospital stay. Fatal outcomes were any deaths which
occurred within 60 days of symptom onset (DSO60).

To study differences in plasma vRNA kinetics according to
patient-specific characteristics, we established seven
different nonexclusive subgroups in addition to the full
cohort. We grouped patients based on traits including sex
(male and female), maximum severity (moderate, severe and
critical) and outcomes at DSO60 (alive and deceased). Total
patient numbers in each group are reported in Table 4.

Quantification of plasma viral RNA

Absolute copy numbers of SARS-CoV-2 RNA (N and E
regions) in plasma samples were measured by real-time
PCR. Viral RNAs were extracted from 230 μL of plasma
collected on EDTA using the QIAamp Viral RNA Mini Kit
(Qiagen, Germantown, Maryland, USA, Cat. No. 52906),
according to the manufacturer’s instructions. Real-time PCRs
were performed in 384-well plates using the TaqPath 1-Step
Multiplex Master Mix (No ROX) (Thermo Fischer Scientific,
Frederick, Maryland, USA, Applied Biosystems Cat. No.
A28521) on a QuantStudio 5 instrument. Three master
reaction mixes with specific primers and probes were prepared
for quantification of N and E genes from SARS-CoV-2 and 18S
(as a control for efficient extraction and amplification). The
RT-qPCR was performed in a volume of 15 μL including
3.75 μL of Taqpath Master Mix, 1.88 μL of an 8× mix of
primers/probe (providing a final concentration of each
primer of 400 nM (N and 18S) or 800 nM (E) and probe of

Table 4. Full cohort and patient subgroups

Subgroup

Total

number of

patients

Percentage

of full

cohort (%)

Number of

viraemic

patients

Percentage

of full

cohort (%)

Full cohort 294 100 256 87

Female 127 43 117 46

Male 166 57 139 54

Moderate

COVID-

19

94 32 80 31

Severe

COVID-

19

87 30 77 30

Critical

COVID-

19

112 38 99 39

Alive 246 84 212 83

Deceased 47 16 44 17

Plasma SARS-CoV-2 RNA kinetics were analysed in eight different

subgroups according to sex, COVID-19 severity and outcomes at DSO60.

Shading indicates segregating subgroups (e.g. female andmale).
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200 nM), 4.38 μL of H2O and 5 μL of the RNA extracts,
controls or standards. The cycling parameters for qPCR
were 53°C for 10 min, 95°C for 2 min and then 95°C for
3 s and 60°C for 30 s for 45 cycles. N and E SARS-CoV-2
quantifications were performed in quadruplicate and 18S
measurements were performed in duplicates. The sequences
of the primers and probes are provided in Supplementary
table 1. Positive and no-template controls were included in all
experiments.

To obtain absolute copy numbers of N and E SARS-CoV-2
transcripts, in vitro transcribed RNA standards were
generated. Linear DNA templates for in vitro transcription
containing a T7 promoter upstream of the complete sequence
of N or E genes were generated by PCR from a commercially
available plasmid (Integrated DNA Technologies, Coralville,
Iowa, USA, 2019-nCoV-N_positive plasmid – IDT Cat. No.
10006625; 2019-nCoV-E_positive plasmid – IDT Cat. No.
10006896). The PCR reaction was performed in a total volume
of 50 μL: 0.5 μL of Taq Polymerase (Thermo Fischer Scientific,
Frederick, Maryland, USA, Invitrogen Cat. No.18038042), 5 μL
of 10× Reaction Mix, 3 μL of MgCl2 (50 mM), 1.5 μL of dNTP
(10 mM), 2.5 μL of each primer (10 μM, providing a final
concentration of each primer of 500 nM), 25 μL of H2O and
10 μL of the plasmid. The sequences of the primers are given
in Supplementary table 2.

The cycling parameters were 94°C for 3 min and then
94°C for 45 s, 55°C 30 s and 72°C for 2 min for 40 cycles of
amplification, with a final extension at 72°C for 10 min. The
PCR product was purified using the QIAquick PCR
purification kit according to the manufacturer’s protocol
(Qiagen, Germantown, Maryland, USA, Cat. No. 28104).
RNA transcripts were produced in vitro using the
MEGAscript T7 Transcription Kit (Thermo Fischer Scientific,
Frederick, Maryland, USA, Invitrogen Cat. No. AM1333). The
transcription reaction was performed in a total volume of
20 μL: 2 μL of 10× Reaction Buffer, 2 μL of each rNTP, 2 μL
of Enzyme Mix and 0.5–2 pmol M13-flanked DNA template.
The reaction was performed at 37°C for 4 h, then 1 μL of
TURBO DNase was added and incubated for an additional
15 min at 37°C. RNA transcripts were then purified using
the RNeasy mini kit according to the manufacturer’s
protocol (Qiagen, Germantown, Maryland, USA, Cat. No.
74104). Purified RNA N and E transcripts (1328 nt for N and
296 nt for E) were quantified by Nanodrop and the RNA
copy numbers were calculated using the ENDMEMO
online tool (http://www.endmemo.com/bio/dnacopynum.
php). Aliquots of 1011 copies/μL were stored at �80°C. For
each qPCR batch, one aliquot was thawed, and six serial
dilutions were prepared to generate a standard curve
(500 000 to 5 RNA copies per PCR well).

Quantification of RAGE and Ang-2
concentrations by Luminex

Never-thawed plasma aliquots were thawed at RT and SARS-
CoV-2 virus was inactivated using 1% Triton-X100 for 2 h at
RT. After inactivation, measurements were taken in duplicates
using a customised Human Magnetix Luminex Assay
(LXSAHM-26), as per the manufacturer’s instructions. Plates
were acquired using a Bio-plex 200 array system (Bio-Rad
Laboratories) for CHUM samples, or MagPix® System
(Luminex) for samples from JGH. Raw fluorescence intensity

values were first manually background-subtracted, then
concentrations were extrapolated using each plate’s
individual standard curve for all analytes using the bcrm
package in R to construct a Bayesian Continual Reassessment
Methodmodel.37

Area under the curve (AUC) analysis

To analyse the kinetics of SARS-CoV-2 plasma viraemia and
reflect its levels over the course of the disease, we
calculated the viraemia AUC for both N and E transcripts.
For this analysis, we selected participants with at least two
RNA measurements available between DSO0 and DSO30,
and at least one measurement between DSO6 and DSO16
(which was previously identified as the period during which
plasma viraemia peaks12). For all participants, DSO0 and
DSO30 were artificially set at threshold (limit of detection:
0.81 log10 copies/mL), since SARS-CoV-2 RNA was not
detected in any sample collected at these dates. N or E AUC
were thus inferred in two different logistic regression
model to predict outcome (severity and death), along with
other previously identified clinical (age and sex) and
biological (Ang-2 and RAGE) parameters.

Determining the association between viral
kinetics and lung tissue insult markers

To investigate the association between lung tissue insult
markers and plasma vRNA kinetics, we assessed the
correlation between viral load and each marker from
DSO0 to DSO30. For this, we first transformed RAGE and
angiopoietin-2 (Ang-2) concentrations to the log10 scale
and then calculated the mean and standard deviation at
each DSO for the entire cohort and each subcohort,
as described above. Pearson’s correlation coefficients and
P-values between RAGE and Ang-2 and plasma viral RNA
concentrations were then quantified using the corr
function in Matlab r2022a.38

Mathematical model of plasma SARS-CoV-2
kinetics

To predict plasma vRNA concentrations in the full cohort
and each subgroup, we applied the target cell-limited
model.39 This model is a system of ordinary differential
equations describing the temporal evolution of target (T)
and infected cells (I) and free virus (V) (Figure 2a) given by

dT

dt
¼ �βTV ,

dI

dt
¼ βTV�dII,

dV

dt
¼ pI�dVV : (1)

Here, target cells interact with free SARS-CoV-2 particles
and become infected at rate β, infected cells produce p
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virions per cell and die at rate dI, and free virus is cleared at
rate dv.

We have previously successfully applied a similar model
to predict viral loads from nasopharyngeal (NP) samples13

that are typically orders of magnitude higher than plasma
vRNA titres. Supplementary figure 1 demonstrates the
ability of the model in Equation 1 and Methods described
herein to characterise NP viral loads from hospitalised
patients. The focus of this study was to apply this model to
plasma vRNA concentrations to determine their dynamics
and association with COVID-19 biomarkers and outcomes.

Data processing and model parameter
estimation

To estimate ourmodel’s parameters, we restricted our analysis
to a period between 0- and 30-day postsymptom onset (DSO).
To reduce the possibility of overestimating viraemia before 6
or after 20 DSO, viral load measurements below the limit of
detection (LOD = 13 copies/mL) were set to 34 copies/mL, that
is half the limit of quantification (LOQ = 68 copies/mL),40 and
measurements between 13 and 68 copies/mL were set to the
LOQ. One severely immunocompromised patient (male organ
transplant recipient) was removed from the analysis as an
outlier after observing persistently high vRNA loads that were
inconsistent with the rest of the cohort. Patients were then
assigned to the subgroups described in Table 4. For each
subgroup, we calculated the mean and standard deviation of
plasma viral load (in log10 copies/mL) each day postsymptom
onset. DSOs with only one patient observation were removed
to avoid standard deviations of 0.

Based on our previous work,13 we first fixed the initial
concentration of infected cells (I0), the decay rate of
infected cells (dIÞ and rate of infectivity (β). We chose to
refit the number of initial number target cells (T0), as our
earlier work focussed on viral load dynamics in the lungs.

Next, to determine the viral kinetic parameters that
demonstrated the most heterogeneity between cohort
subgroups, we first fit average the plasma vRNA
concentrations in each subgroup using non-linear least
squares by minimising the squared difference between
observed and predicted average plasma vRNA loads, i.e.

min ∑n
i¼1 V tij

� ��Yij

�� ��2� �
,

using the function lsqnonlin in Matlab. In the equation
above, Yij denotes the average observed plasma vRNA of
subgroup i at time tij (in log10 copies/mL) and V tij

� �
is the

predicted viral load at time tij. Each parameter was
initialised to values estimated in our previous work.13

From this initial analysis, we determined that only the
rate of viral elimination (dV ) differed drastically between
subgroups, with smaller differences observed in initial viral
loads (V0). Thus, to better quantify the degree of
heterogeneity in this key parameter between each
subgroup, we fixed all other model parameters13 and fit
only dV and V0 using a non-linear mixed-effects model in
Monolix,41 as in previous studies.22,42

We fitted the structural model

Yij ¼ log10V tij,Ψ ij

� �þ eij,

as in Néant et al.22 Here Ψ ij is the vector parameters of
subgroup i, with each parameter Ψ i taken to be log-
normally distributed according to

Ψ i ¼ θie
ηi

with θi the fixed effect and ηi the random effect. Similar to
the non-linear least-squares equation above, V tij,Ψ ij

� �
represents the predicted viral load from Equation (1) and eij
is a normally distributed additive error term with mean 0
and standard deviation σij (i.e. eij � N 0, σij

� �
). We also

explored the inclusion of covariates for sex and age in our
model parameter estimates by performing the correlation
test in Monolix between each factor and the elimination
rate dV for each group. For this, Monolix implements a
linear regression between the covariates and dV to test
whether the estimated beta coefficients are statistically
significantly different from 0 using a Student’s t-test. A
schematic description of the data analysis and parameter
estimation workflow is provided in Figure 2b.
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