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Metabolic reprogramming is a hallmark of malignancy. Understanding the characteristics
of metabolic reprogramming in esophageal squamous cell carcinoma (ESCC) helps
uncover novel targets for cancer progression. In this study, 880 metabolism-related
genes were identified from microarray data and then filtered to divide patients into two
subgroups using consensus clustering, which exhibits significantly different overall
survival. After a differential analysis between two subtypes, 3 genes were screened out
to construct a two subtypes decision model on the training cohort (GSE53624), defined
as high-risk and low-risk subtypes. These risk models were then verified in two public
databases (GSE53622 and TCGA-ESCC), an independent cohort of 49 ESCC patients by
RT-qPCR and an external cohort of 95 ESCC patients by immunohistochemistry analysis
(IHC). Furthermore, the immune cell infiltration of regulatory T cells (Tregs) and plasma cells
showed a significant difference between the high and low-risk subtypes in the IHC
experiment with 119 ESCC patients. In conclusion, our study indicated that three
metabolism-related prognostic genes could stratify patients into subgroups and were
associated with immune infiltration, clinical features and clinical outcomes.

Keywords: esophageal squamous cell carcinoma, immune infiltration, metabolism, prognosis, bioinformatic
INTRODUCTION

Esophageal cancer is a common malignant tumor worldwide. China has the highest incidence of
esophageal cancer in the world, and more than 90% of cases are esophageal squamous cell cancer
(ESCC), which has high degree of malignancy and a poor prognosis (1). Metabolic reprogramming
is a hallmark of cancer (2). Several factors might have an effect on tumor metabolism. Intrinsic
factors include the characteristics of the parental tissue and new properties arising in the tumor
cells. Extrinsic factors including the tumor microenvironment and the metabolic state of
the patients, such as obesity, diabetes and other metabolic disorders, could all contribute to
metabolic phenotypes in tumors. Tumor progression always involves metabolic needs, and
vulnerabilities arise. The early stages of tumor growth require nutrient uptake and biosynthesis,
but with the progression of tumors, such as metastasis and therapy resistance, metabolic needs
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change to resist oxidative stress and enhance the level of oxidative
phosphorylation (3). Hence, it is necessary to characterize ESCC
progression and explore prognosis-related genes from a
metabolic perspective.

The development of omics techniques makes the selection of
metabolism-related diagnostic or prognostic markers more
effective. A recent study identified a novel plasma diagnostic
biomarker panel consisting of eight metabolic molecules that
could clearly distinguish ESCC patients from controls through
untargeted metabolomics analysis (4). A four-gene metabolic
signature could effectively predict the overall survival (OS) of
patients with hepatocellular cancer (5). Glycolysis is a main
metabolic pathway and is characteristically altered in cancer
cells, and a glucose metabolism gene-related prognostic signature
built for glioblastoma has the ability to distinguish the clinical
and molecular features of the disease (6). Karasinska et al.
demonstrated that glycolytic and cholesterogenic gene
expression profiles could identify distinct subgroups associated
with differences in survival and known prognostic pancreatic
tumor subtypes and help develop personalized therapies
targeting unique tumor metabolic profiles (7). These studies all
indicated that metabolism-related markers have good clinical
application value.

In our study, we found that metabolism-related genes
associated with prognosis could stratify ESCC patients into two
subgroups and were associated with tumor grade and OS. Then,
we established a metabolism-related prognostic signature and
showed a better predictive ability for OS. Further analysis
showed that the prognostic signature was associated with
several tumor progression-related pathways and with
infiltration of several immune cell types. These results showed
that the metabolism-related signature serves as a prognostic
marker and has clear clinical application value.
MATERIALS AND METHODS

Patient Samples
For the microarray study, ESCC tissues from 179 patients from
Gene Expression Omnibus (GEO) database and 80 patients’ clinical
data from the Cancer Genome Atlas (TCGA) were used. Forty-nine
ESCC patient tissue samples were collected and patients underwent
surgical treatment in National Cancer Center/Cancer Hospital of
Chinese Academy of Medical Sciences from January 2012 to
December 2012. For the immunohistochemistry (IHC) study, an
ESCC tissue array with 95 patients who underwent surgery between
January 2009 and December 2010 was obtained from Xinchao
(Shanghai, China). Moreover, 119 ESCC patient tissues from
microarrays were collected for IHC analysis. All patients were
confirmed to have primary ESCC after surgery, and our study
was approved by the Medical Ethics Committee of the Cancer
Institute and Hospital, Chinese Academy of Medical Sciences.

Data Collection
The expression profiles of GSE53624 and GSE53622 were
downloaded from GEO database (http://www.ncbi.nlm.nih.gov/
Frontiers in Oncology | www.frontiersin.org 2
geo) (8, 9). In addition, the transcriptome expression profiles of
ESCC and multitype tumors were acquired from the TCGA
(https://tcga-data.nci.nih.gov/). The fragments per kilobase of
transcript per million mapped reads (FPKM) data and clinical
data were used and downloaded.

Consensus Clustering and Construction of
a Prognostic Signature
The metabolism-related gene set was selected from the Molecular
Signature Database (MSigDB) Kyoto Encyclopedia of Genes and
Genomes (KEGG) gene sets (10). We used the keywords
“Metabolism” and “Metabolic” to screen out metabolism-
related KEGG pathways and acquired metabolism-related
genes in GSE53624 and GSE52622. A total of 880 metabolism-
related genes were collected in our studies, and the gene list is
shown in Supplementary Table 1. Univariate Cox proportional
hazards regression (PHR) analysis and Kaplan-Meier survival
analysis were used to select prognosis-related genes associated
with OS from the metabolism-related genes. Moreover,
consensus clustering was performed on prognosis-related genes
using ConsensusClusterPlus v1.38 (11). The best classification
was selected according to the consensus cumulative distribution
function (CDF) and delta area.

Univariate and multivariate stepwise Cox PHR analyses were
used to construct a metabolism-related prognosis mRNA
signature based on OS (GSE53624). Starting with the gene with
the largest univariate z-score, we gradually added one gene that
showed an association with OS and evaluated the prognostic
performance at each step. The process was repeated until no
improvement was found. The best risk score cutoff value was
selected, and Kaplan-Meier survival curve analysis was used to
calculate differences between groups. In addition, multivariate
Cox regression analysis was applied to determine the
independent prognostic ability of our signature and
clinical factors.

Two public databases (GSE53622 and TCGA-ESCC) were
used to verify our prognosis signature, and IHC analysis was
used to verify the protein expression levels in ESCC tissue.
Subsequently, the clinical predictive ability of the signature
combined with TNM stage and tumor grade was analyzed.
Time-dependent receiver operating characteristic (ROC) curves
and area under the curve (AUC) values were analyzed to
determine the predictive power. Finally, another type of tumor
from the TCGA was assessed to explore the application value of
our prognostic signature.

Immune Infiltration and Functional
Enrichment Analysis
The Tumor Immune Estimation Resource (TIMER2.0; http://
timer.cistrome.org/) was used to estimate immune infiltration
with the CIBERSORTmethod (12). We analyzed the relationship
between immune infiltration and our prognostic signature and
verified it by IHC analysis.

Gene Ontology (GO) and KEGG enrichment analyses of
metabolism-related prognostic genes were performed with
DAVID (https://david.ncifcrf.gov/) (13). The cutoff risk score
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was used to stratify samples into a high- or low-risk group
criterion. GSEA analyses were used to explore hallmark pathway
enrichment in the high- and low-risk groups. The hallmark gene
set (h.all.v7.1.symbols) was selected for use in the cohort and
validation set.

RNA Isolation and RT-qPCR
Total RNA from ESCC tissues was isolated using the TRIzol
protocol (Thermo). cDNA synthesis was performed using the
EasyScript® All-in-one First step cDNA Synthesis SuperMix for
qPCR (AE341, TransGen). qPCR was performed using the
PerfectStart™ Green qPCR SuperMix (AQ602, TransGen) on
an ABI 7900HT Real-Time PCR Thermocycler (Life
Technologies). The gene expression data were normalized to
the results of the endogenous control b-actin. The delta CT
method was used, and all samples were analyzed in triplicate.
The primer sequences are shown in Supplementary Table 2.

Immunohistochemistry Analysis
For validation of prognostic genes, ESCC patient tissue arrays
containing 95 samples were used to analyze prognosis and gene
expression differences. FOXP3 was a specific marker of Treg
cells. We selected the 119 ESCC tissues with high expression of
FOXP3 that could be matched to samples in the GSE53624
dataset, to explore the relationship between immune infiltration
and gene expression. IHC staining was performed according to
the manufacturer’s instructions. Antibodies against CD38
(Abcam, #ab108403), INPP5E (Abcam, #ab236108), POLR3G
(Abcam, #ab230854) and FOXP3 (CST, #98377) were used in
our study. The cytoplasmic staining score was calculated by the
intensity score × percentage score, the nuclear staining score was
calculated by the percentage (range from 0-3 score). Immune cell
staining was calculated as the percentage of field area.
Independent pathologists were given an IHC score or percentage.

Statistical Analysis
Clinical statistical analysis was tested by Student’s t test for two
groups, one-way ANOVA for three or more groups, and chi-
squared tests or Wilcoxon tests for cohort clinicopathologic
features or differential expression. A p-value < 0.05 was
considered statistically significant. R software and several
packages, including ConsensusClusterPlus, ggplot2, limma,
survival, survminer and timeROC (bioconductor.org/
biocLite.R), were used for the statistical analysis and plotting.
SPSS version 25 software and GraphPad Prism were also used.
RESULTS

Metabolism-Related Prognostic Gene
Expression Identifies Two Distinct
Subgroups of ESCC
A total of 880 metabolism-related genes were filtered from the
mRNA microarray data (GSE53624 and GSE53622). A total of
101 prognosis-related genes met our criteria and were used to
identify subgroups. The cluster stability increased from k = 2 to
Frontiers in Oncology | www.frontiersin.org 3
k = 10 (Figure 1A and Supplementary Figure S1). We found
that consensus clustering could distinguish the clinical
characteristics into two subgroups (k = 2) in 119 patients
(Figure 1B). There was a significant difference between
subgroup-1 and subgroup-2 (p = 0.018; Figure 1C). Further
analysis showed that subgroup 2 was closely correlated with poor
grade (75%, p = 0.001; Figure 1D). The DAVID functional
enrichment results also showed that the 101 prognosis-related
genes could be enriched in several metabolic-related pathways
(Supplementary Figure S2). These results indicated that these
metabolism-related genes might be associated with tumor
prognosis and involved in tumor progression.
Identification of a Three-Gene
Metabolism-Related Prognostic Signature
in Patients With ESCC
The 101 prognosis-related and, 135 significantly differentially
expressed metabolism-related genes (logFC > 1; adjusted p <
0.01) between subgroup 1 and subgroup 2 were selected to
calculate estimated regression coefficients by multivariable
stepwise Cox PHR analysis. The three-gene prognostic
signature was established in 119 patients (GSE53624) with
ESCC, and we calculated the risk score and divided patients
into high-risk (n=62) and low-risk (n=57) groups with the best
cutoff point of -2.513. There was a significant difference between
the high- and low-risk groups in terms of OS (p < 0.001,
Figure 2A). The heatmap also showed that the expression of
the three genes in the signature was significantly different in the
high- and low-risk groups (Figure 2B). In addition, multivariate
Cox analysis demonstrated that our three-gene signature could
serve as an independent predictive factor for poor OS
(HR =3.005; 95% CI: 1.80-4.99; p<0.001; Figure 2C). Finally,
the metabolism-related prognosis signature (CD38, INPP5E and
POLR3G; Figure 2D) with the best prognostic performance was
selected. The estimated regression coefficients were identified as
follows: risk score = (-0.14797 × expression level of CD38) +
(0.03732 × expression level of INPP5E) +(-0.21290 × expression
level of POLR3G).
Validation of the Prognostic Value of the
Metabolism-Related Prognostic Signature
To validate the prognostic value in public datasets, we selected 60
samples from the GSE53622 dataset and 80 samples from the
TCGA dataset, and the same estimated regression coefficients
and best cutoff values were selected. We found that our signature
could effectively distinguish the high- and low-risk groups in the
GSE53622 (p=0.023, Figure 3A) and TCGA (p=0.028,
Figure 3B) datasets. Multivariate Cox analysis also
demonstrated that our signature could serve as an independent
predictive factor for OS in the GSE53622 (HR =2.172; 95% CI:
1.00-4.68; p=0.048; Figure 3C) and TCGA (HR =4.251; 95% CI:
1.589-11.37; p=0.004; Figure 3D) datasets. RT-qPCR was used to
analyze an independent cohort of 49 ESCC patients and showed
good predictive ability (Figures 4A‒C). The detailed clinical
information is shown in Table 1.
October 2021 | Volume 11 | Article 772145

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Liu et al. Metabolic-Related Prognosis Signature for Cancer
We next further validated the prognostic value by IHC
analysis. The ESCC tissue array including 95 patients was used
as an external validation cohort and divided into two groups
based on the IHC score and area percentage in the ESCC slides
(Figure 4D). The detailed clinical information is shown in
Table 2. The risk scores were also calculated with the same
estimated regression coefficients based on the IHC scores of
POLR3G and INPP5E and the area percentage of CD38. We also
found a significant difference in risk score between the high- and
low-risk groups (Figure 4E). Consistently, CD38, INPP5E and
POLR3G were also significantly associated with OS by IHC
analysis (Figure 4E).

The Clinical Predictive Ability of the Three-
Gene Prognosis Signature
We analyzed the relationship between our signature and clinical
factors on 179 samples from the GEO database. First, we found
that the expression of CD38, INPP5E and POLR3G was
significantly different between tumor and normal tissues
Frontiers in Oncology | www.frontiersin.org 4
(Figures 5A‒C). IHC analysis also showed differences in
protein expression level (Figure 5D). In addition, we also
found that CD38 had low expression in tumor tissue and N3
stage (Figure 5B). POLR3G had the lowest expression in high
grade tumors (Figure 5C). We next found that the risk score was
associated with tumor grade (Supplementary Figure S3).
Moreover, we analyzed the sensitivity and specificity of the risk
score combined with TNM stage and tumor grade through ROC
curve analysis. Our results showed that the AUC value could be
enhanced in the training, validation and IHC validation groups
when these variables were combined (Figure 5E and
Supplementary Figure S4A). Multivariate Cox analysis also
showed that risk score was an independent predictive factor
for OS in the IHC validation group (HR =1.874; 95% CI: 1.073-
3.273; p=0.027; Supplementary Figure S4B). These results all
indicated that our prognostic signature could be used as a
prognostic biomarker.

In addition, we analyzed the application ability of our
signature in other types of tumors from the TCGA database.
A B

C D

FIGURE 1 | Metabolic-related prognosis gene sets were associated with tumor grade and overall survival. (A) Consensus clustering matrix of 119 ESCC samples
for k=2 to k=5. (B) Heatmap and clinicopathologic features of the two subgroups defined by the metabolic-related gene sets. (C) Kaplan-Meier survival analysis for
the two subgroups. (D) The percentage of two subgroups in tumor grade.
October 2021 | Volume 11 | Article 772145
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Our results showed that the prognostic signature could also
distinguish risk groups in head and neck squamous cell
carcinoma (p < 0.001, Supplementary Figure S5A) and skin
cutaneous melanoma (p=0.004, Supplementary Figure S5B).
These results indicated that our signature might also be used for
tumors with similar tumor characteristics but needs
further exploration.

GSEA Enrichment and Immune Infiltration
Analysis of Our Signature
The GSEA functional enrichment analysis showed that epithelial-
mesenchymal transition (EMT) and Wnt-beta-catenin signaling
Frontiers in Oncology | www.frontiersin.org 5
were enriched in the high-risk group, while inflammatory
response and the P53 pathway were enriched in the low-risk
group; these results were consistent in the training and two
validation groups (Figure 6A). In addition, we tried to analyze
the correlation between risk score and immune infiltration and
found that plasma B cell infiltration was negatively correlated with
risk score and that Treg infiltration was positively correlated with
risk score in the training and two validation groups (Figure 6B).
Hence, we next analyzed the expression of FOXP3, which is a
natural marker for Tregs, by IHC in 119 ESCC patient tissues
belonging to the training group. Then, we selected 20 ESCC
patients with higher infiltration of Tregs than others. Among
A B

C

D

FIGURE 2 | The establishment of a metabolic-gene prognosis signature in the training group. (A) Kaplan-Meier survival analysis of overall survival, the distribution of
patients’ risk scores, and survival status for the high- and low-risk groups. (B) The heatmap of three gene signatures. (C) The independent prognostic factor of the
three gene signature by multivariate Cox regression analysis. (D) Kaplan-Meier survival analysis for INPP5E, CD38 and POLR3G expression.
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A B

C D

FIGURE 3 | Validation of the prognostic signature in the two validation cohorts. Kaplan-Meier survival analysis of overall survival, the distribution of patients’ risk
scores, survival status, and heatmap of the three gene signatures in the validation cohort of 60 patients (A) and 80 patients (B). Multivariate Cox regression analysis
in the two validation cohorts (C, D).
Frontiers in Oncology | www.frontiersin.org October 2021 | Volume 11 | Article 7721456

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Liu et al. Metabolic-Related Prognosis Signature for Cancer
these patients, we found that 15 patients belonged to our high-risk
group. In addition, we found that CD38 (13/20; area percentage ≤
1%) and POLR3G (15/20; IHC score ≤ 1) were expressed at a low
level in the high-risk group, while INPP5E (12/20; IHC score > 1)
Frontiers in Oncology | www.frontiersin.org 7
was expressed at a high level (Figure 6C). These results all
indicated that our three-gene prognosis signature involves
several signaling pathways, performs well in distinguishing risk
groups and is associated with tumor immune infiltration.
A B

C

D

E

FIGURE 4 | Validation of the independent cohort by RT-qPCR and IHC analysis. (A) Kaplan-Meier survival analysis of overall survival, the distribution of patients’ risk
scores, and survival status for the high- and low-risk group in an independent validation cohort with 49 ESCC patients. (B) Heatmap of three gene signatures in an
independent validation cohort with 49 ESCC patients. (C) The independent prognostic factor of the three gene signature by multivariate Cox regression analysis in an
independent validation cohort with 49 ESCC patients. (D) HE staining and INPP5E, CD38 and POLR3G expression were analyzed by IHC analysis in an external
validation cohort of 95 ESCC patients. (E) Kaplan-Meier survival analysis of overall survival for the risk score, INPP5E, CD38 and POLR3G in the IHC validation cohort.
October 2021 | Volume 11 | Article 772145
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DISCUSSION

Metabolic reprogramming represents tumor-associated
metabolic changes that have been regarded as hallmarks of
cancer (2). A variety of metabolic changes have been found in
cancer cells. A previous study showed that several tumor-
associated metabolic pathways, such as glutamine metabolism,
uridine metabolism, fatty acid biosynthesis, and abnormally
expressed enzymes, have also been discovered in ESCC
through metabolomics analysis (14). Identification of metabolic
alterations is key to understanding tumor progression and
exploring metabolic targeted strategies for treatment. In
addition, several metabolism-related genes can also serve as
diagnostic or prognostic markers.

For ESCC, a multiple index assessment model was used for
mortality risk prediction in cancer patients based on the expression
of lncRNAs, microRNAs andmRNAs. Metabolic reprogramming is
a characteristic of cancer, and a metabolic signature might be used
to reflect tumor progression and patient prognosis. A previous study
established a glucose-related prognostic signature for patients with
glioblastoma and displayed good predictive ability (6). Glycolytic
Frontiers in Oncology | www.frontiersin.org 8
and cholesterogenic genes were used to identify distinct subgroups
associated with survival and prognostic subtypes in pancreatic
cancer (7). In our study, prognosis-related metabolic genes could
divide ESCC patients into two subgroups. For further analysis, we
found that subgroup 2 was significantly associated with poor tumor
grade and OS. Hence, we established an optimal prognosis model
based on prognosis-related and differential genes and the detailed
workflow is shown in Figure 7. The three-gene prognosis signature
showed a better predictive ability, which was validated by other
databases. The same estimated regression coefficients and best cutoff
values could also be used for the IHC validation in other center
ESCC tissue arrays. Interestingly, we also found effective predictive
power for other squamous cell carcinomas, such as head and neck
squamous cell carcinoma and skin cutaneous melanoma. GSEA
showed that several common tumor-related pathways, such as the
EMT and Wnt pathways, were enriched in the high-risk group,
TABLE 1 | The clinicopathological characteristics stratified by prognosis
signature in 49 ESCC patients.

Variables Low risk High risk p-value

No. of patients 25 24
Age 　 　 0.111
<60 14 (56.00%) 8 (33.33%)
≥60 11 (44.00%) 16 (66.67%)

Gender 0.889
Female 12 (48.00%) 12 (50.00%)
Male 13 (52.00%) 12 (50.00%)

Smoking 0.458
Yes 12 (48.00%) 9 (37.50%)
No 13 (52.00%) 15 (62.50%)

Drinking 0.684
Yes 9 (36.00%) 10 (41.67%)
No 16 (64.00%) 14 (58.33%)

Tumor grade 0.158
Well 5 (20.00%) 2 (8.33%)
Moderately 11 (44.00%) 17 (70.83%)
Poorly 9 (36.00%) 5 (20.83%)

T stage 0.958
T1 2 (8.00%) 3 (12.50%)
T2 5 (20.00%) 5 (20.83%)
T3 16 (64.00%) 14 (58.33%)
T4 2 (8.00%) 2 (8.33%)

N stage 0.447
N0 9 (36.00%) 7 (29.16%)
N1 5 (20.00%) 9 (37.50%)
N2 6 (24.00%) 6 (25.00%)
N3 5 (20.00%) 2 (8.33%)

TNM stage 0.725
I 1 (4.00%) 2 (8.33%)
II 7 (28.00%) 8 (33.33%)
III 17 (68.00%) 14 (58.33%)

Fustat 0.196
Alive 18 (72.00%) 13 (54.16%)
Death 7 (28.00%) 11 (45.83%)
OS 59.864 ± 17.933 42.079 ± 27.048 0.009**
**p < 0.01.
TABLE 2 | The clinical characteristics at baseline, stratified by risk score in IHC
validation group.

Variable Low risk High risk p-value

No. of patients 49 46
Age 0.866
<60 11 (22.45%) 11 (23.91%)
≥60 38 (77.55%) 35 (76.09%)

Gender 0.052
Male 36 (73.47%) 41 (89.13%)
Female 13 (26.53%) 5 (10.87%)

T stage 0.266
T1 2 (4.08%) 1 (2.17%)
T2 14 (28.57%) 5 (10.87%)
T3 29 (59.18%) 35 (76.09%)
T4 1 (2.04%) 1 (2.17%)
NA 3 (6.12%) 4 (8.70%)

N stage 0.005**
N0 30 (61.22%) 17 (36.96%)
N1 15 (30.61%) 13 (28.26%)
N2 2 (4.08%) 14 (30.43%)
N3 2 (4.08%) 2 (4.35%)

TNM stage 0.093
I 5 (10.20%) 1 (2.17%)
II 24 (48.98%) 15 (32.61%)
III 14 (28.57%) 25 (54.35%)
IV 3 (6.12%) 3 (6.52%)
NA 3 (6.12%) 2 (4.35%)

Tumor grade 0.084
Well 10 (20.41%) 3 (6.52%)
Poorly 10 (20.41%) 7 (15.22%)
Moderately 29 (59.18%) 36 (78.26%)

IHC area% of CD38 <0.001***
<1% 10 (20.41%) 33 (71.74%)
≥1% 39 (79.59%) 13 (28.26%)

IHC score of INPP5E 0.083
<2 19 (38.78%) 26 (56.52%)
≥2 30 (61.22%) 20 (43.48%)

IHC score of POLR3G <0.001***
<2 11 (22.45%) 37 (80.43%)
≥2 38 (77.55%) 9 (19.57%)

Death at FU 0.002**
No 23 (46.94%) 8 (17.39%)
Yes 26 (53.06%) 38 (82.61%)
OS 40.98 ± 27.01 22.52 ± 23.52 <0.001***
October 2021
 | Volume 11 | Artic
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while the inflammatory response and p53 pathways were enriched
in the low-risk group. These results indicated that our prognostic
signature might be specific suitable for squamous cell carcinoma
and indicated similar biological characteristic changes. These genes
might play an important function in tumor progression and are
worth further exploration.

For the metabolism-related gene signature, CD38 is
a multifunctional ectoenzyme and key modulator of
nicotinamide dinucleotide (NAD+) and could also serve as a
second messenger enzyme for the synthesis of cADPR. Increased
CD38 activity could result in a low level of intracellular NAD+
Frontiers in Oncology | www.frontiersin.org 9
and inhibit tumor cell growth, inducing apoptosis (15, 16).
The previous studies showed that non-coding RNA
expression was associated with tumor immune infiltrate (17–
19). Moreover, CD38 could also play a significant role in the
immunometabolism of the tumor microenvironment (15, 20).
Chatterjee et al. demonstrated that metabolic reprogramming of
the CD38-NAD+ axis improved T cell survival, immune cell
recruitment to the tumor and T cell memory (20). INPP5E,
encoding inositol polyphosphate-5-phosphatase, promotes sonic
hedgehog (SHH) signaling in SHH medulloblastoma by
negatively regulating a phosphoinositide 3-kinase (PI3K)
A B C

D

E

FIGURE 5 | The relationship between the metabolism-related gene signature and clinicopathologic parameters. (A‒C) Relationships between the expression of three
genes (INPP5E, CD38 and POLR3G) and the tumor characteristics, including comparison with normal tissues, tumor grade (poorly, moderately and well), N stage
(N0, N1, N2 and N3) and TNM stage (TNM1, TNM2 and TNM3) were analyzed. (D) The differential expression between tumor and normal tissues was verified by IHC
analysis. (E) The ROC curve of each parameter with AUC scores in the training cohort, validation 1 cohort (GSE53622), validation 2 cohort (TCGA-ESCC) and
independent validation cohort. *p < 0.05; **p < 0.01; ***p < 0.001.
October 2021 | Volume 11 | Article 772145

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Liu et al. Metabolic-Related Prognosis Signature for Cancer
signaling axis that maintains primary cilia on tumor cells (21).
POLR3G is a DNA-directed RNA polymerase III subunit that is
enriched in stem and cancer cells (22). POLR3G is associated
with differentiation, and targeting PLOR3G might promote
differentiation to reduce tumorigenicity (23). The differential
expression of three genes between tumor and normal tissue was
verified in the database and IHC and was also associated with OS.
Three genes have direct or indirect metabolic functions and are
involved in tumor progression. The prognosis signature based on
three genes displays good predictive ability and serves as an
independent prognostic risk factor. The clinical prognostic
factors TNM stage and tumor grade were the main prognostic
risk factors and could also enhance the predictive ability when
combined with our signature. These results indicated that the
prognostic signature has potential application value for
distinguishing different ESCC subgroups and for guiding
individualized treatment.
Frontiers in Oncology | www.frontiersin.org 10
The tumormicroenvironment contains several cell types, such as
fibroblasts, immune cells, adipocytes and endothelial cells.
Metabolic factors are generally assumed to be the reason for
immunosuppression in the extracellular milieu of tumors (24).
For example, tumor cells can release the immunosuppressive
metabolite adenosine or tryptophan catabolite kynurenine to
affect the T cell immune response (25, 26). Lactate mainly
originating from tumors can drive T cells toward an
immunosuppressive Treg phenotype or inhibit M2 macrophage
cells (27, 28). In addition, pH and pO2 are all key players in tumor
metabolism and have an effect on the tumor microenvironment and
antitumor immunity (29, 30). In our study, we also found that
several immune cell infiltrates were significantly associated with
prognostic signature. Tregs are mainly inhibitory immune cells that
have a positive correlation with our signature risk score. IHC
analysis showed that the high-risk patients had a high level of
infiltration of Tregs. We also found that plasma cells had a negative
A B

C

FIGURE 6 | GSEA functional enrichment and immune infiltration analysis. (A) The four hallmark pathways were all enriched in the training, validation 1 (GSE53622)
and validation 2 (TCGA-ESCC) groups by GSEA functional enrichment analysis. (B) The risk score was positively correlated with Treg cell infiltration, and negatively
correlated with plasma cells in the training, validation 1 cohort(GSE53622) and validation 2 cohorts (TCGA-ESCC). (C) IHC validation of three-gene metabolic-related
signatures (INPP5E,CD38 and POLR3G) and FOXP3(Treg) in 20 ESCC tissues.
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correlation with the risk score. CD38 is generally expressed at low
levels in tissue but is particularly highly expressed in plasma cells
(31). Plasma cells are characterized by coexpression of CD138 and
CD38 (32). Hence, we used the expression of CD38 to analyze the
infiltration of plasma cells and found that significantly low
expression of CD38 was shown in the high-risk group.
Altogether, these results supported that metabolism-related genes
might be associated with the tumor microenvironment that
regulates tumor progression.

In conclusion, our study demonstrated that metabolism-
related prognostic genes could stratify patients into two
subgroups and were associated with tumor grade and OS. The
three-gene prognostic signature from metabolism-related genes
displays a good ability to predict OS and the infiltration of
immunosuppressive Tregs and plasma cells.
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